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Abstract 

 
This article (i) iterates what is meant by credit risks and the mathematical-statistical modelling 
thereof, (ii) elaborates the conceptual and technical links between credit risk modelling and 
capital adequacy framework for financial institutions, particularly as per the New Capital Accord 
(Basel II)’s Internal Ratings-Based (IRB) approach, (iii) proffer a simple and intuitive taxonomy on 
contemporary credit risk modelling methodologies, and (iv) discuses in some details a number 
of key models pertinent, in various stages of development, to various application areas in the 
banking and financial sector. 
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1. INTRODUCTION 
 
Whereas a dictionary definition of “credit risk” 
merely alludes to the possibility of the borrower not 
returning the amount of money borrowed from the 
lender when due, as per agreed upon at the time of 
lending, a regulatory perspective necessarily 
generalises the notion of “credit” to a large class of 
business activities that financial institutions operate. 
As a corollary, the notion of “credit risk” also 
generalises to encompass all kinds of risk 
phenomena associated with said business. 

This article properly begins by defining credit 
risks from three distinct lines of banking businesses 
that cradle around three distinct lines of financial 
products: loans, bonds, and derivatives. 
 

1.1 What is Credit Risk? 
 
Credit Risks, along with Market/Price Risks and 
Operational Risks, comprise the main types of 
Financial Risks, by which is meant risks that are (i) 
measured in monetary units, (ii) arisen from/rooted 
in financial-market variables/financial-institution 
factors, (iii) managed by means of financial 
techniques/tools, and/or (iv) seen as being 
intrinsic/integral to the system of financial 
markets/institutions. 

In and of itself, credit risk refers to the 
possibility and probability of financially relevant 
losses arising from credit events, which in turns are 
defined in general terms thus:  

For bank loans – credit risks cover all of the 
followings:  

- Default risk pertains to the risk of 
significant losses due to failed principal and/or 
interest payments, whence including in this 
definition counterparty risk, i.e. the possibility of 
one’s failing to honour transactional promises, 
thereby leading to significant opportunity losses 
arising from attempts to seek substitute 
transactions, which in some cases may not be 
possible. In other words, by letting both defaults on 
payments and such counterparty failures be referred 
to collectively as default events, default risk is seen 
as the specialisation of credit risks by virtue of the 
fact that whole of default events forms a strict 
subset within the universe of possible credit events. 
For modelling purposes, default events are most 
naturally captured by a random variable (r.v.) with a 
Bernoulli distribution, with Probability of Default 
(PD) as the one and only (distributional) parameter. 
In a sense, the determination of a default event 
occurring is akin to tossing a highly-skewed coin, 
with the probability of landing ‘Head’ (for default) 
much smaller than 1 in 2, with most cases landing 
‘Tail’ (for non-default):  
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- Collateral risk involves uncertainty in the 
realisable value of collateral assets in the event of 
default actually occurring. In a quantitative model, it 
is captured as Loss Given Default (LGD) in various 
guises, namely a simple numerical constant, a means 
parameter governing the distribution of some 
random variable, a function of time or other 
variables, or itself a random variable, etc., depending 
on the level of details and modelling methodology. 

- Drawdown risk arises in connections with 
contingent claim products and open credit lines. It is 
captured with the quantity Exposure At Default 
(EAD) that, as with LGD, may be specified simply as 
a numerical constant or otherwise. 

For bonds/fixed-income securities/debt 
instruments, whereupon there exist independent 
credit rating agencies who rate the creditworthiness 
of various debt issues and their issuers on a finite 
alpha-numeric ordinal scale, credit risks refer to 
downgrade risk, as every time a credit rating agency 
announces a ‘credit downgrade’, replacing one 
credit-rating grade with another a ‘notch’ or more 
lower down, or even a simple ‘credit watch/alert’, 
the implicated securities immediately suffer loss in 
value, as they are marked-to-market with new 
discount rates, ones reflecting yet higher credit 
spreads, i.e. discount rate differentials above (credit) 
risk-free bonds. Note that within this context, 
default event corresponds to the bottommost credit 
grade. Also, in this context a credit upgrade 
resulting in a marked-to-market gain in value may be 
interpreted in terms of upside risks. 

For credit derivatives including credit default 
swaps (CDS), credit linked notes (CLN), collateralised 
debt obligations (CDO), and structured products of 
various types, credit risks refer to financial risks 
resulting from credit derivative deals and 
transactions, whereupon the exact nature of credit 
events depend on how they are stipulated in the 
derivatives contracts, so as to include, among the 
possibilities, single-name/multi-name bond 
default/downgrade, accounting/technical insolvency, 
business/corporate bankruptcy, debt/payment 
restructuring, and so on. 
 

1.2 What is a Credit Risk Model? 
 
Quantitative model refers to a “toy model” endowed 
with critical a number of mathematical properties 

obtained from real-life entities or systems, whereby 
an analyst may experiment with different details and 
configurations of various model components in 
order to engender in-depth understanding of the 
mechanisms, processes, as well as behaviours of the 
real item or system under realistic situations, 
especially where there are technical, time, cost, 
and/or ethical constraints prohibiting 
experimentation with real-life objects. 

Financial risk management process comprises 4 
main steps, namely to: 1. IDENTIFY/define, 2. 
MEASURE/assess, 3. MITIGATE/manage, and 4. 

REVIEW/report the pertinent financial risks. 
Contemporary risk management concepts abide 
strictly by the principle that any risk that can be 
mitigated must be quantitatively measured first. 

Credit-risk models in this context therefore 
refer simply to quantitative models employed 
toward the task of measuring the extents of credit 
risks concerned. Nowadays, credit risk modelling is 
almost always based on probability theory and 
principally utilises statistical tools for performing 
analyses, so that probability distribution 
assumptions and parametric estimation techniques 
are often required. 

In terms of multiplicity of the financial obligors 
involved, both varieties or credit risk models, 
namely single-obligor credit-risk models (for 
individual loans/bond issues and single-name credit 
derivatives) as well as multiple-obligor credit-risk 
models (for bank loan/bond investment portfolios 
and multi-name credit derivatives), exist and play 
complementary roles. 

On the other hand, contemplating along the 
line of how analytical results are put to use, credit 
risk models may be categorized into 6 application 
areas/groups, namely:  

Credit Determinant Models are single-obligor 
credit risk models used mostly in the analysis of 
individual bank loans, especially in the retail lending 
line of business:  

- Beginning with the development of Credit 
Scoring Model (Altman, 1968), which, having 
empirically determined a set of relevant obligor 
attributes and corresponding factor-loading 
coefficients, then produces real-valued a credit score 
to be used in discriminating (potential) loan clients 
on the basis of creditworthiness:  

 

 ngeRawScoreRaspaceAttributeSasa n ,,  (2) 

 
- From this develops Loan Decision Model 

which compares a raw credit score against some 
specified threshold values and hence transforms it 
into a decision variable, such as whether to approve 

a particular loan as it stands, request more 
information and/or modify terms of lending, and so 
on: 
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- And with sufficient accumulated data on 

historical defaults/non-defaults, it is possible to 
pursue a Statistical PD Estimation Model, for 
instance by converting the signal output from a 
credit scoring model into a numerical PD estimate, 
whose value by definition ranges from 0 (certain not 
to default) to being 100% certain of a default event:  
 

 ]1,0[ˆ,ˆ ppsa   (1) 

 
In any event, whether the aim is credit scoring, 

loan decision, or statistical PD estimation, the ex 
post model performance depends on the inherent 
discriminatory power of the statistical inference 
engine that lies of the heart of any such 
methodology once applied to real-application data. 

Rating Transition Models are single-obligor 
credit risk models used mostly in the analysis of 
rated corporate bonds, especially those that trade in 
secondary markets with sufficient liquidity, often 
relying on Discrete-/Continuous-Time Markov Chain 
(MC) as the key theoretical constructs. Such models 
create a set of transition probabilities from one 
credit rating grade (on an ordinal, alpha-numeric 
scale) to another, the whole of which is summarised 
into a transition probability matrix. As “D for 
default” constitutes the lowest possible grade, PD 
estimates are included in the corresponding bottom 
row of the matrix. Such a matrix also forms the basis 
from which Credit Spreads/Term Structure Models 
are derived. 

Default Process Models are single-obligor credit 
risk models used mostly in the analysis of individual 
bank loans, especially large corporate loans. Here 
default event is modelled with some stochastic 
process, from which PD estimates may then be 
derived. Default process models come in two fairly 
distinct types, namely:  

- Structural Default (Asset-value) Models set 

out to model asset value process  0, tAt  rather 

explicitly, whence over any horizon a default arises 
whenever the obligor’s balance sheet got so 
structurally weak so as to be unable to continue 
operating as a going concern, the simplest case 

being one of insolvency, i.e. 0],0(  sAts , 

whence PD is derived from the ‘risk-neutral-world’ 
probability associated with such an event. 

- Default Intensity (Reduced-form) Models set 
out to model (stochastic) default arrival process 

 0, tDt  directly, with nothing to say about the 
obligor’s balance sheet structure or any other types 
of internal information. Only a quantity called 
default intensity is relevant for the specification of 
the default arrival process, whereupon this default 
intensity itself may be specified as a constant 

0 , a function of time, 0),( tt , or even a 

stochastic process  0, tt , depending on the 

modelling concept and capability. 

Credit Portfolio Models are multiple-obligor 
credit risk models used in the analysis of bank 
loan/bond investment portfolios, enlisting such 
theoretical developments and modelling tools as 
Bernoulli mixture models and Copula dependency 
models. Such techniques are also relevant in the 
analysis of double default risk (when an obligor with 

credit guarantor defaults, it’s also possible for the 
credit guarantor, now taking the original obligor’s 
place, to also default), PD-LGD correlation (when 
LGD is a random quantity that correlates statistically 
with the default event), and credit-market risk 
correlation (when credit events and market events 
are not completely independent). Often, credit 
portfolio models involve two-stage randomness, i.e. 
one randomness accounts for the number of credit 
events, each of which gives rise to another 
randomness associated with individual losses, where 
summing up individual losses generally calls for a 
mathematical concept/technique of convolution. 

Moreover, there are Credit Derivatives Models 
(Chaplin, 2005; Meissner, 2005) used in the financial 
engineering process of designing, conducting 
research and development, productionising and 
pricing, i.e. calculating the financial cost of 
implementing a requisite hedging programme for all 
outstanding credit derivatives transactions/deals. 

Finally there are Model Validation Tools, which 
are not models or modelled results in the above 
sense, but refer to analytical tools used in 
reviewing/testing/validating a model in terms of 
being theoretically sound as well as empirically 
supported (forecast errors, goodness of fit, etc.). As 
such, model validation tools find their uses more in 
middle-office/business-control applications than in 
front-end/business-line applications. 

 

1.3 Credit Risk Models in relation to Capital 
Adequacy Framework 
 
Risk Capitals, Economic Capitals & Capital Adequacy 
Framework – Risk Capitals within the context of 
credit risks in banking refers to the level of equity 
capital deemed sufficient to absorb financial losses 
from all realised credit events without affecting the 
ability to honour financial obligations, stipulated at 
some statistical confidence level deemed sufficient 
in the eyes of supervisory authority in her capacity 
as fiduciary over public deposits and credit rating 
agencies in their capacity as monitoring agents on 
behalf of principals, i.e. those who lend to financial 
institutions and/or hold papers issued by them. 

Economic Capitals (EC) refers to risk capitals 
estimated at a given statistical level of confidence, 
which depends on equity shareholders’ 
requirements (as indicated by the cost of equity 
capitals) and bondholders’ requirements (as 
indicated by the cost of debt capitals). For public 
companies, determining EC involves an additional 
consideration, namely agency credit rating, i.e. 
should a public company wish to continue its ‘AA’ 
rating, and so on. 
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Capital Adequacy Framework for safeguarding 
bank assets’ exposure to credit risks refers to the 
standard and measure in specifying the minimum 
level of bank capital, i.e. the Regulatory Minimum 
Capital (RC), that serves as a protection of general 
deposit accounts from financial losses arisen from 
credit events, stipulated at some statistical 
confidence level established by the regulatory 
authority and enforced by the supervisory agency, 
taking into account the natural trade-off between the 
will to protect the public and the desire to ease 

compliance costs so that banks remain operationally 
profitable. At any rate, RC specification cites 
conservatism as the guiding principle; whereas EC 
estimation cites accuracy as the guiding principle. 

Obtaining EC/RC from the Credit Portfolio’s 
Loss Distribution –  despite the differences, EC and 
RC both correspond to quantities that may be 
determined given the statistical Loss Distribution of 
a Credit/Credit-Risk Sensitive Portfolio 

istrreditLossDPortfolioCL folioCreditPort ~ : 
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 Begin with the definition of Expected Loss (EL), 

set to coincide with the means of said loss 
distribution: 
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(6) 

 
Being non-decreasing, the generalised 

inversewhich is the same as the usual function 
inverse when the distribution function is continuous 

and strictly increasing over the distributional 
support - of such a loss distribution exists and is 
called the quantile function:  
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Now EC - whence ideally RC as well - can be 

estimated in terms of Credit Value-at-Risk (Credit-
VaR) calculation, taken at the )%1(100   

statistical confidence level:  
 

ELFECRC CreditRiskCreditRisk   )1(   (9) 

 
Moreover, Unexpected Loss (UL) may be defined 

as the standard deviation (SD) of the loss 
distribution: 
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So that Credit-VaR can also be stated as an 

0m  multiple of UL:  

 

ULmELFm   )1(0 1   (11) 

 
Credit Risk Models Capable of Generating Credit 

Portfolio’s Loss Distribution – Clearly, of all the 6 
application areas or model groups, only credit 
portfolio models (group 4) are capable of generating 

loss distribution as well as EC/RC information at the 
credit portfolio level. And in practice, any modelling 
framework capable of estimating EC could form a 
basis for specifying RC, any qualitative differences 
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being minimal. As a matter of course, EC and RC do 
differ in quantitative terms, with higher statistical 
confidence level for the latter but more frequent 
updating required for the former. And so 
technological developments with regards to EC 
estimation techniques can be seen to progress along 
side attempts to align RC specification concepts with 
EC results. 

Note how the first 3 model groups (credit 
determinant, rating transition, and default process 
models) at best only produce parametric 
information of loss distribution at the individual 
Credit Item/Credit-Risk Sensitive Asset level 

DistrCreditLossIndividualL CreditIndividual ~ , 

thereby denying the degree of representation and 
realism required to serve as a foundation for the 
capital adequacy framework for financial 
institutions. In fact, it’s generally the case that:  
 

 CreditIndividualfolioCreditPort LL  (12) 

 
But then again, if it is preferable to accept a 

risk model with the property that should it err, it 
should err on the conservative side, then it would 
practical to accept, as a matter of definition:  
 

 CreditIndividualfolioCreditPort LL̂  (13) 

 

1.4 Credit Risk Models in relation to Basel II 
 
At present, contemporary with the Basel Committee 
on Banking Supervision (BCBS)’s release of New 
Capital Accord (Basel II), live implementations of 
credit portfolio models capable of generating 
credible EC/RC figures are few and far between, with 
the majority of credit risk modelling tools still 
devoted to single-obligor PD estimation, never mind 
a complete loss distribution (for PD is but a 
component of EL, and unless EAD and LGD are 
simple numerical constants, PD alone says 
insufficiently little about the value of UL nor the 
type of statistical distribution that should be used). 

Taking all the above into considerations, it is 
no wonder that the heart of Basel II, in particular the 
application of Internal Ratings-Based (IRB) Approach 
in determining capital adequacy with respect to 
credit risk exposures, largely concerns taking results 
from single-obligor credit risk models already in use 
with financial institutions and translating them into 
credit risk contribution to EC estimation, that is, by 
way of a certain device, namely the (Basel II IRB’s) 
Risk-Weight Functions (RWF) 

Summarily, RWF was designed specifically to 
overcome 2 modelling constraints:  

1. To do away with the need to develop a fully-
fledged credit risk portfolio models, as only single-
obligor credit models are widely available. 

2. To go ahead and forge EC/RC/UL/Credit-
VaR calculation even though no 2nd-/higher-order 
moments information is available, as PD estimation 
models can only estimate PD (which when multiplied 
expected EAD/LGD can only produce 1st-moment 
statistics) 

That RWF is able to overcome these 2 
modelling constraints is down to a theoretical 

construct named Asymptotic Single Risk Factor 
(ASRF), whereby:  

1. The ‘asymptotic’ part of the assumption 
enables multiple-obligor credit risk to be calculated 
simply by adding together “correlation-adjusted” 
single-obligor credit risk measures, in other words 
without having to recomputed credit portfolio risk 
every time a credit item is introduced to the 
portfolio, due to credit correlation effects, which 
would otherwise render such an incremental 
calculation highly erroneous. This is exactly what is 
referred to as the special “portfolio invariant” 
property of the risk measure. 

2. The ‘single risk factor’ part of the 
assumption enables the synthesis of 2nd-moment 
statistics (UL) from 1st-moment statistics (EL), that is, 
by transforming “unconditional EL” into “conditional 
EL”, wherein instead an additional parametric 
assumption known as factor correlation had been 
introduced vis-à-vis single-obligor credit quality and 
systematic factor signifying economic duress. 

In any event, even though the credit risk aspect 
of the capital adequacy framework really calls for 
credit portfolio models (4th application area credit 
risk models) as the basis for calculating RC, etc., due 
to practical and technological limitations, i.e. the 
fact that credit portfolio modelling have not 
“matured” in the same way that loan discriminant, 
rating transition, and default process models have, 
Basel II stipulates thus:  
 

 CreditIndividualCreditIndividual

CreditIndividualfolioCreditPort

PDRWFEC

ECEC



 ,
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2. SURVEY 
 
This section shall survey core developments in 
credit risk modelling with respect to the 4 main 
application areas, namely loan discriminant, rating 
transition, default process, and credit portfolio 
models, leaving out of the discussion credit 
derivatives models and various model validation 
tools, progressing along the following credit risk 
model taxonomy:  
1. Credit Determinant Models 

a. Discriminant Analysis–based 
i. Linear Discriminant Analysis – linearly 

separable feature space 
ii. Support Vector Machine – nonlinearly 

separable feature space 
b. Regression Analysis–based 

i. Binary (Logit/Probit) Regression – linear, 
parametric estimation/classification 

ii. Artificial Neural Networks – nonlinear, 
semi-parametric 
estimation/classification 

2. Rating Transition Models 

a. Discrete-Time Finite-State Transition 
i. Stationary Markov Chain (MC) 

ii. Nonstationary/Time-Heterogeneous MC 
iii. Non-Markov Process (w/ Persistence of 

Memory) 
b. Continuous-Time Finite-State Transition 

i. Continuous-Time Markov Process 
ii. Stochastic Transition Intensity Model 

3. Default Process Models 
a. Structural Default (Asset-value) Models 
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i. Merton’s Asset-value Model 
ii. Black & Cox’s First-Passage Model 
iii. PD Calibration vs. Historical Default 

Data 
b. Default Intensity (Reduced-form) Models 

i. Forward Default Intensity/Hazard Rate 
Model 

ii. Doubly Stochastic/Stochastic Default 
Intensity Model 

4. Credit Portfolio Models 
a. Default/Rating Transition Correlation 

Approaches 
i. Bernoulli Mixture Approach 

ii. Multivariate Normal Approach 
iii. Distributional Copula Approach 
b. Stochastic Arrival/Loss Convolution 

Approaches 
i. Poisson/Renewal Arrival Process 

ii. Mixed Poisson/Negative Binomial 
Counting Process  

iii. Extreme-value Losses/Sub-
exponential/Heavy-tailed Distributions 

 
2.1 Credit Determinant Models 
 
2.1.1 Discriminant Analysis - based – Linear 
Discriminant Analysis (LDA) (Fisher, 1936; Duda, 
Hart, and Stork, 2000) posits that there are two 
distinct subpopulations of attribute vectors, all 
distributed according to a Multivariate Normal 
Distribution with the same variance-covariance 

matrix 
nn , but with either of two different 

mean vectors 
n


1

,
0

,
10

 , one for each 

subpopulation. For credit risk application, the two 
subpopulations comprise those that ‘will’ default, 

identified by the indicator (variable) 1y , and 

those that ‘will not’ default, identified by 0y , thus:  

 

 
From this, it emerges that, for each obligor’s 

attribute vector 
naA  }{ , it is possible to 

estimate PD from the computation of matrix inverse 

  11
 as such:  
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LDALDA
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With sufficient amount of empirical default and 

non-default data,   n
jjyDefault aData

1
1|


  and 

  m

iiyNonDefault aData
10|
 , it would be possible 

to use the former to estimate   111
ˆˆ   , the 

latter to estimate   000
ˆˆ   , and both 

datasets to estimate    ˆˆ , from which it is 

then possible to compute  01

1 ˆˆˆˆ   

LDA
 as 

a basis for classifying new obligors. 
 
2.1.2 Regression Analysis-based – Binary 
(Logit/Probit) Regression similarly relies on the 
existence and quality of past data, but instead 

determine regression coefficients Logit̂  or robitP̂  

by performing the following sum of squared errors 
(SSE) minimisation:  
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Note how LDA and binary regression both rely 
on finding the coefficient vector with which to 
perform a scalar product 

 robitPLogitLDA

T as  ,,,   with the 

attribute vector. All subsequent results are either 
monotonically increasing/non-decreasing or 

monotonically decreasing/non-increasing in s , 

but never both. 
This raises two technical issues: scaling and 

linearity. Of these, scaling is the simpler issue, and 
can be dealt with by a judicious choice of pre-
processing procedures, often requiring straight-
forward transformation of variable, such as from the 

binary ‘sex’ indicator into a Boolean variable 

}1,0{sex , or from ‘age’ in years to an ordinal-

scale }7,...,2,1{_ bucketage , and so on. 

The real limitation with LDA and binary 

regression is the fact that aT  is an essentially 

linear expression in the vector-valued variable, so 
that they can only work if it is possible/acceptable 
to draw a linear hyper-surface (generalization of a 
line in multi dimensions) delineating populations in 
their attribute (vector) space. In other words, they 
can only solve Linearly Separable Classification 
Problems. Dealing with Nonlinearly Separable 
Classification Problems (Ошибка! Источник ссылки не 

найден.) calls for a higher level of modelling 

      10111000 ,~|&,~|  yy AA
 

(2) 
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sophistication, respectively, from LDA to Support 
Vector Machine (SVM) (Boser, Guyon, and Vapnik, 

1992), and from binary regression to Artificial 
Neural Networks (ANN) (Pao, 1989). 

 
Figure 1. Linearly vs. Nonlinearly Separable 2-Population Data 

 

  
(Cleanly) Linearly Separable 2-Population Data (Poorly) Linearly Separable 2-Population Data 

  
(Cleanly) Nonlinearly Separable 2-Population Data (Poorly) Nonlinearly Separable 2-Population Data 

 

2.2 Rating Transition Models 
 
2.2.1 Discrete-Time Finite-State Transition – For 
debt issues and issuers with agency credit ratings, 
the analysis of downgrade risk (which subsumes 
default risk as a special case) begins with a 1-year 

transition probability matrix, i.e. with 8g  grades 

(7 non-defaults + 1 default) 

 DefaultCCCBBBBBBAAAAAA ,,,,,,, , use 
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To work with such a transition probability matrix, devise a rating state vector:  
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It’s then possible to extract 1-year rating probability vector from any current rating grade, for example ‘BBB’:  
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Moreover, in practice suppose there were a set 

of 1-year forward term structures of interests, one 
for each credit-rating grade (all except ‘Default’), 
computing a credit risk-adjusted bond pricing could 
be done in a straightforward manner. First discount 
all future cashflows according to the 1-year forward 

rates for each credit-rating grade. Then multiply the 
forward prices corresponding to each grade with the 
probability of transiting to that grade and add up 
the weighted sum (for ‘Default’, substitute recovery 
value instead), for instance: 
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Moreover, should such a transition probability 

matrix remain constant from one year to the next, a 
stochastic-process property known as stationarity 

(particularly relevant for the through-the-cycle 
credit-rating regime), rating probability vectors can 
be calculated beyond just 1 year thus: 
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(9) 

 
All these theoretical/computational niceties 

subsume under a Stationary (Finite-State) Markov 
Chain (MC) model. On the other hand, should it be 
preferable to reflect short-term dynamics 
(particularly relevant for the point-in-time credit-
rating regime), then it becomes necessary to give up 
the stationarity property, thereby allowing the 
transition probability matrix, not merely to update, 
but to change meaningfully from one year to the 
next. Moreover, the Markov (Memorylessness) 
property may not hold in reality, such as when 
empirical studies suggest that debt issues/issuers 
sharing the same current grade may transit 
according to different transition probability vectors, 
depending on last year’s  rating grades, therefore 
distinguishing those who came from a higher grade 
(credit deterioration), those who remain in the same 
grade, and those who came from a lower grade 

(credit improvement). This requires modelling with 
Non-Markov/Process with Memory. 
 
2.2.2 Continuous-Time Finite-State Transition – 
Note how MC is akin to a situation whereby credit 
ratings are adjusted all at once, once a year. But in 
reality, credit-rating agencies change rating grades 
whenever the circumstances warrant, so that a more 
realistic downgrade risk model should be based on 
Continuous-Time Markov Process, where instead of 

citing the transition probability matrix 
gg  

as the starting point of analysis, the modelling 
process would begin with the specification of the 

parametric transition intensity matrix
gg , 

i.e. which contains information concerning the 
annualised average rate of emigrating from any 
credit-rating grade to another thus: 
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With this one generator matrix it would be 

possible to derive transition probability matrix over 

any time horizon 0 tT  (that is from 0t to 

tT  , in years) using the matrix exponential 

formula:  
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As such   is said to generate  . Indeed,   

is not required to staty constant. For instance, it 
could itself be random, such as in a Stochastic 
Transition Intensity Model (Lando, 1998) which also 

stipulates that the eigenvalues of t  be a linea 

function of yet another stochastic process 

 0, tYt , hence:  
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12) 

 

2.3 Default Process Models 
 
Evidently as a simple default event corresponds to 
Bernoulli random variable, its complete description 

requires only one statistical parameter )1,0(p , 

known specifically as PD within the default risk 
context. So with sufficient historical default/non-
default data for each group of credit assets, 
estimating PD should be a straightforward case of 
dividing the number of defaulted cases by the total 
number of cases, say, within a year. This would 
provide statistically consistent point estimate for the 
underlying PD. 

One of the main problems faced in actual 
application involves so-called low-default portfolio, 
such as a portfolio of AAA-rated bonds, none of 
which, throughout history, has yet to default within 
a 1-year horizon. Another involves estimating PD for 
credit items with highly individual characteristics, 
not amenable to classification to any class of credit 
assets for which PD has been estimated beforehand. 
On the other hand, there might be other sources of 
information that could be brought to bear on the 
statistical analysis of creditworthiness and business 
potentials of a particular obligor. Or there could be 
modelling methodologies that better reflect the 
default process in some details, as opposed to 
having just the annual PD as the summary statistics. 
At any rate the idea is to begin by modelling the 
default process as realistically as possible, from 
which the PD estimate could then be derived 
whenever desired. Principally there are 2 groups of 
such approaches, based on how the default process 
is to be modelled:  
 
2.3.1 Structural Default (Asset-value) Models – 
begins with identifying equity position’s limited 
liability as a long call option in firm assets, 
whereupon the application of Black-Scholes-Merton 
(Black & Scholes, 1973; Merton, 1973) options 
pricing theory yields, in addition to the modeled call 
price, the risk neutral probability by which the call 
option will expire ‘in the money’, this probability 
thus equates to ‘1 - PD’ estimation for default risk 
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application. The model specifies the Asset Value 

Process  0, tSt  of an obligor, using the well-

known Geometric Brownian Motion (GBM) (Karatzas 
& Shreve, 1991):  
 

),0(~, dtdWdWdt
S

dS
tt

t

t  

 

(13) 

 
Further assume, for the sake of simplicity, that 

the rhs of the obligor’s balance sheet consists of 2 

items, namely the equity capital tC  and a single 

liability in the form of a bullet bond with remaining 

maturity tT   and face value K , so that at 

maturity the equity will be valued:  
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(14) 

 
Should the default event is defined simply as:  
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Then at any time Tt  , it would be possible to 

estimate the value of the PD parameter 
(approximately, since real investors do not make 
decisions under ‘risk neutrality’) from the Black & 
Scholes’ Call Pricing Formula, which specifies Call 
Delta thus:  
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But should default event be defined thus:  
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such as when the bond covenant contains some 

sort of default acceleration clause over and above 

simply KST  , then the situation would resemble 

pricing a Knock-out Call which loses all its value (the 
call option is cancelled, with no outstanding 
obligation left) whenever and as soon as the asset 

value falls below K  within the period 

Tt 0 . Such is referred to as (Black & Cox’s) 1st 

passage approach (Black & Cox, 1976). 
At any rate, in actual applications the point is 

hardly ever about calculating 1d  (whose calculation 

requires not just the marked-to-market value of firm 

assets, but also an accurate estimation of the   
parameter governing the asset value process), but 
the true contribution of this model is to iterate the 
concept that PD is a function of a ‘distance’ between 
asset and liability, weighted in units of asset 
volatility  , whereby such a statistical quantity 

based on   KSt   has been termed the 

distance-to-default (D2D) (Avellaneda & Zhu, 2001). 
For example, one may perform a sort of statistical 
calibration between ex ante D2D and ex post default 
event in order to come up with a statistically 
verifiable mapping between D2D and PD estimate. 

Such a data calibration-based mapping can then be 
encapsulated and sold as a commercial software 
 
2.3.2 Default Intensity (Reduced-form) Models – 
begins with identifying corporate default process 
with human mortality, production faults, etc., which 
focuses expediently on the rate by which infrequent 
events arrive, known in default risk application 
context as the (Forward) Default Intensity/Hazard 

Rate 0  (Duffie & Singleton, 2003), where an 

interval of time over which the default intensity is 
relatively high will correspond to a relatively high PD 
value. This default intensity may be a simple 
numerical constant, a means parameter governing 
the distribution of some random variable, a function 
of time or other variables, or itself a random 
variable. Indeed the latter case, known as (Doubly) 
Stochastic Default (Intensity) Models, may borrow 
heavily from various elements within the Term 
Structure of Interests Modelling framework build 
around the instantaneous forward/short rate 
(evolution of an idealised rate of interest over an 
instantaneous moment in time) concept, for 
example, in using the Cox-Ingersoll-Ross (CIR) (Cox, 
Ingersoll, and Ross, 1985) type of stochastic process 
to drive stochastic default intensity thus: 

 

   ),0(~, dtdWdWd ttttt    (18) 

 

2.4 Credit Portfolio Models 
 
2.4.1 Default/Rating Transition Correlation 
Approaches – for a credit portfolio, i.e. 

simultaneous, partial exposures to credit risks of 

1n  obligors, begin, as per single-obligor case, to 

define individual default events with Bernoulli 
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random variables, when the objective of the exercise 
is to find the total number of default events over a 
period of time for a particular credit portfolio:  
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As such, the statistical description of 
PortfolioD   

requires 2 elements, namely 1. the individual PD 

parameters nipi ,,1,  , and 2. the correlation 

structure that exists amongst the random variables 

niDi ,,1,   themselves. Initially, consider the 

following special cases 
- The case with Homogeneous + Perfect 

Default Correlation: For a homogeneous portfolio, 
specify that every obligor shares the same PD value, 

pPDPDPD ni  1  (In practice, 

banks may even use PD values to partition a loan 
portfolio into sub-portfolios). Then hypothetically if 
every obligor has perfect default correlation with 
one another, sharing a common ‘fortune’, the result 
is simple, but also useless as it is completely 
unrealistic:  
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(20) 

 
- The case with Homogeneous + Zero Default 

Correlation: Again start with a homogeneous 
portfolio, but instead proceed to assign zero default 
correlations among all the obligors, whence implying 
default events are independent identically 
distributed random variables ( i.i.d.r.v.). This results 
in a reasonable model for uses with ‘fully 
diversified’ retail loan portfolios, with the total 

number of defaults 
PortfolioD  distributed according 

to the Binomial distribution:  
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- The case with Homogeneous + Zero Rating 

Correlation: For situations involving obligors with 
agency credit-rating grades (assuming there are 

2g  grades in all), should the i.i.d.r.v. property be 

preserved, then the result would be similar to above, 
except there will be instead a credit-rating grade 
vector distributed according to the Multinomial 
distribution: 
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(22) 

 
The case with Heterogeneous + Zero Rating 

Correlation: Instead of working with a rating 
probability vector for a given credit-risky bond, one 
can work with a joint rating probability matrix for 

2n  credit-risky bonds (but no more, as a matrix 

is a 2-dimensional object, beyond which the 

mathematical handle comes in the form of n -
dimensional tensor). With zero correlation, such a 

matrix could be obtained by straightforward 
performing an ‘outer’ multiplication between the 
two rating probability vectors. Consider, for 
example, a portfolio of one ‘BB’ bond and one ‘A’ 
bond, the difference accounts for why such a 
combination is said to form a heterogeneous 
portfolio (strictly pedagogical example, as no real-

life bond portfolio is likely to be of size 2n ): 
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(23) 

 
In reality, however, default correlation will 

neither be perfect (default correlation of one) nor 
totally absent (zero default correlation), but will be 
something in-between the two polar opposites, 
making portfolio-level analysis of credit risk rather 
difficult. This is in stark contrast to modelling 
return correlations among equity shares, where 

individual returns are generally normally distributed 

  niR iii ,,1,,~ 2    to begin with, and 

with well-defined, statistically estimable correlation 
parameters, it is straightforward to generalise into 

1n dimensional returns thus: 

 



Journal of Governance and Regulation / Volume 5, Issue 4, 2016 

 
79 

  


































ji

ji

R

R

R

R
jiijij

i

ij

n

i





2

1

,,~





 

(24) 

 
Nonetheless methods for analysing correlated 

credit risks do exist; they come in 3 flavours:  
- Homogeneous Bernoulli Mixture – attempts 

to achieve realism that lies between perfect and zero 
default correlation. This it does by enabling the PD 
parameter to change randomly, on the one hand, 
and letting individual default events be i.i.d., on the 
other, but only once the value of the PD parameter is 
determined. So individual obligor defaults 

independently, all the while utilising the same 
stochastic parameter, that perhaps reflects different 
stages of the business cycle, i.e. low PD for cycle 
peaks, and so on. Since the distribution of the sums 
of i.i.d. Bernoulli random variables is in fact the 
Binomial distribution, the result is equivalent to 
taking a number of binomial distributions and 
‘mixing’ them up in the following manner:  
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For example:  
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(26) 

 
Note that by comparing with the extreme (perfect or zero correlation) cases at the same mean:  
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It is clear how the Binomial Mixture model 

yields a standard deviation which is somewhere 
between the two extreme cases. Shape-wise, the 
Bernoulli mixture distribution is also somewhere 
between the bi-valued shape of the Bernoulli and the 
hill-like shape of the binomial: 
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Figure 2. Portfolio Default Correlation – Perfect Correlation vs. Independent vs. Bernoulli Mixture 
 

 

 

 
 

Latent-Variate Joint Distribution (details and 

example calculation for the case of 2n  obligors 

to be found in (Crouhy, Galai, and Mark, 2000) – 
begins with the observation that generalizing from 
univariate to multivariate Normal simply involves 
introducing the correlation parameters to within the 
variance-covariance matrix, but an extension from 
univariate Bernoulli to “multivariate Bernoulli” 
distribution is not available. So the approach here is 
to convert univariate Bernoulli distribution into 
univariate Normal distribution first, extend to 

multivariate Normal distribution by incorporating 
the correlation parameters, then convert back to a 
sort of “multivariate Bernoulli” distribution, 
furnished with a hidden correlation structure. In 
practice it’s arguably acceptable to proxy this type of 
credit-risk related correlation structure with market-
risk related structure of equity-return correlations, 
citing the same sort of arguments used by structural 
default models to link market risk factors with 
credit risk factors: 
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What is good about this is that extending from 
multi-obligor default to multi-obligor rating 
correlation is straightforward. The downside is that 
in practice, it’s impossible to calculate directly the 
joint default/rating probability for a portfolio of size 

2n  

Distributional Concordance Copula (Nelson, 
1999) – Whereas Homogeneous Bernoulli Mixture 
and Latent-Variate Joint Distribution introduce 
correlation-inducing parameters in the beginning of 
the analysis, Distributional Concordance Copula 
cleverly allows the obligors’ individual probability 
distributions to be integrated together at the end of 
the analysis: 
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(29) 

 
As normally these types of models will require 

complex computations to obtain numerical result for 
which there is often no closed-form mathematical 
expression, the use of Numerical Methods 

(Brandimarte, 2001) and/or Monte Carlo Simulation 
(Glasserman, 2004) will be necessary. 
 
2.4.2 Stochastic Loss Arrival/Convolution 
Approaches – involves 2 modelling steps: modelling 
(Default) Count and (Default) Severity, followed by 
synthesising the two into the total loss distribution 
the aggregate, whereby individual default severities, 
one from each default event, are added up to 
register a single value, the essential feature here 
being that the number of defaults is given by default 
count, a random quantity. 

For default counts, start with time 0t , then 

‘wait’ for the moment any obligor in said credit 
portfolio defaults first. Define the interval taken for 

this to occur as the first random variable 01  . 

Then define the time interval between this and the 
moment of the second default event as the second 

random variable 02  , and so on, whence the 

series forms the stochastic process interarrival times 

 ,0,0 21   , where each individual intervals 

are generally assumed to be independently 
distributed of one another, i.e. 
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The default count over ],0( t  can simply be defined 

in terms of the following counting process:  
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As for default severity, given that default count 

turns out to be },1,0{,)(  nntN : if 0n
, then there is no default severity to consider; if 

1n , then there is one random variable 

corresponding to the singular default severity; and if 

1n , then there would be a stochastic process 

depicting a series of default severities 

 0,,0,0 21  nLLL  , where each individual 

loss is generally assumed to be independently 
distributed, i.e. 

     jiji LLLLjinji  ,},,,1,0{,  . 

Canonically:  
Compound Poisson Process Model – 

corresponds to the well-known and widely-used 
“classic” model in non-life insurance, namely the 
Cramér-Lindberg Model (Mikosch, 2004), which 

stipulates the interarrival times  ,2,,1, ii  to 

be i.i.d.r.v. which are distributed according to the 
following Exponential distribution: 
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This is equivalent to saying that default arrivals 

follows a Poisson Process, so that the default count 
is consequently distributed according to the 
following Poisson distribution: 
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For example, by letting default severities 

 nkLk ,,2,,1,   be i.i.d.r.v. with Gamma 

distribution:
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As a second example, suppose that in the event 

of default, there is a probability 01    of full 

recovery, and a probability 0  of partial 

recovery at fixed 0  default severity, then the 

total loss would be 0  multiple of Bernoulli 

random variables thus: 
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But of course whenever it’s determined that 

ntN )( , such a sum of Bernoulli i.i.d.r.v. would be 

distributed according to a simple Binomial 
distribution hence: 
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For a numerical example, let }000,50;9.0;5{ THBt   :  

 
Figure 3. Cramer-Lundberg Total Loss Distribution with i.i.d.r.v. Bernoulli Individual Loss Severity 
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Note how this ends up essentially with 

5.4,)(~,)(    PoissonLLtLPortfolio
. In 

other words, specifying 1.0  as the probability 

of full recovery equates to reducing the default 

arrival rate from 5t  (with no possibility of a 

full recovery) to 
 5.4)1(
5

9.0

 tt 


 , as theory would 

have it. (Johnson, Kotz, and Balakrishnan, 1994; 

Meintanis & Koutrouvelis, 1999). So theoretically this 
example is strictly demonstrative, as it represents no 
advance in modelling realism. 

Renewal Model (Embrechts, Klüppelberg, and 
Mikosch, 1997) – slightly expands the scope of 
applications from the compound Poisson process 
model by enabling interarrival times 

 ,2,,1, ii , still i.i.d.r.v., to be distributed 

more generally, so long as the means is finite: 
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3. CONCLUDING REMARKS 
 
It can be said that the ultimate aim of modelling 
financial risks, be they credit, market/price, or 
operational, is to establish individual and portfolio-
level gain/loss distributions. Quick comparisons 
reveal that for market/price risks: (i) gain/loss 
distribution is on the whole symmetric, with nearly 
as much upside as downside opportunities (ii) this 

gain/loss distribution always exhibits itself (due to 
continuous marking-to-market) and (iii) in the 
aggregate, correlation structure plays the key role in 
shaping the risk profile at the portfolio level. For 
operational risks: (i) there is only severity (of loss) 
distribution, with no upside to speak of,  (ii) this 
severity distribution, by the very nature of ‘high 
impact’ risk, materialises once in a long while, and 
(iii) in the aggregate, correlation structure is nearly 
meaningless. In this light, credit risks lie somewhere 
in between: (i) loss distribution is mostly about 
downside potentials, with occasional upside 
potentials in the form of credit-rating upgrades, or 
surprised gains from collateral disposals, (ii) this 
loss distribution manifests itself regularly, not 
updating as frequently as for market/price risks, nor 

as elusive as in the case of operational risks, unless 
one focuses strictly on low default portfolio, and (iii) 
in the aggregate, correlation structure plays a 
crucial, but not overwhelming role in the analysis of 
portfolio-level exposure. Indeed credit correlation 
structure is crucial as a basis for a thorough process 
of credit risk analysis, yet while the technology is 
not so widespread, proxy mechanisms, such as Basel 
II’s IRB RWF, may be forced into service, using little 
more than information involving just single-obligor 
loss distribution. 

This article surveys and organises credit risk 
models, specifically the loan discriminant, rating 
transition, and default process models of single-
obligor credit risks, which are most relevant to the 
capital adequacy framework a la Basel II, as well as a 
number of credit portfolio levels, which henceforth 
shall form the backbone of credit risk modelling and 
analysis for financial institutions. 
 

REFERENCES 
 

1. Altman, Edward I. (1968), “Financial Ratios, 

Discriminant Analysis and the Prediction of 

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

฿0 ฿100,000 ฿200,000 ฿300,000 ฿400,000 ฿500,000 ฿600,000 ฿700,000 ฿800,000 ฿900,000 ฿1,000,000

Cramer-Lundberg Loss Distribution with Bernoulli Severity outline



Journal of Governance and Regulation / Volume 5, Issue 4, 2016 

 
84 

Corporate Bankruptcy”, Journal of Finance, 

September: 589-609. 

2. Avellaneda , M. & Zhu, J. (2001), “Modeling the 

Distance-to-Default Process of a Firm”, working 

paper, available online via 

http://www.defaultrisk.com/pp_model_57.htm. 

3. Black, F. & Cox, J. (1976), “Valuing Corporate 

Securities: Liabilities: Some Effects of Bond 

Indenture Provisions”, Journal of Finance, 31: 351-

367. 

4. Black, F. & Scholes, M. (1973), “The Pricing of 

Options and Corporate Liabilities”, Journal of 

Political Economy, 81 (3): 637-654. 

5. Boser, Guyon, and Vapnik (1992), “A training 

algorithm for optimal margin classifiers”, in 

Haussler, D. (ed.), 5th Annual ACM Workshop on 

COLT, 144-152, Pittsburgh: ACM Press. 

6. Brandimarte, Paolo (2001), “Numerical Methods in 

Finance: A MATLAB-Based Introduction”, Wiley-

Interscience. 

7. Cox, Ingersoll, and Ross (1985), “A Theory of the 

Term Structure of Interest Rates”, Econometrica, 

53: 385-407. 

8. Chaplin, Geoff (2005), Credit Derivatives: Risk 

Management, Trading and Investing, Chichester: 

John Wiley & Sons. 

9. Crouhy, Galai, and Mark (2000), “A Comparative 

Analysis of Current Credit Risk Models”, Journal of 

Banking & Finance, 24: 59-117. 

10. Duda, Hart, and Stork (2000), Pattern Classification 

(2nd ed.), Wiley Interscience. 

11. Duffie, D. & Singleton, K.J. (2003), Credit Risk: 

Pricing, Measurement, and Management, Princeton: 

Princeton University Press. 

12. Embrechts, Klüppelberg, and Mikosch (1997), 

Modelling Extremal Events for Insurance and 

Finance, Berlin: Springer. 

13. Fisher, R.A. (1936), “The Use of Multiple 

Measurements in Taxonomic Problems”, Annals of 

Eugenics, 7: 179-188. 

14. Glasserman, Paul (2004), Monte Carlo Methods in 

Financial Engineering (Applications of Mathematics 

No. 53), New York: Springer. 

15. Johnson, Kotz, Balakrishnan (1994), Continuous 

Univariate Distributions Volume 1 (2nd ed.), New 

York: Wiley-Interscience Publication. 

16. Karatzas, I. & Shreve S.E. (1991), Brownian Motion 

and Stochastic Calculus (2nd ed.), New York: 

Springer. 

17. Lando, David (1998), “Cox Processes and Credit-

Risky Securities”, Review of Derivatives Research, 2: 

99-120. 

18. Lando, David (2004), Credit Risk Modelling, 

Princeton: Princeton University Press. 

19. McFadden, Daniel L. (1974), Applied Logistic 

Regression (2nd ed.), New York: Wiley. 

20. Meintanis, S.G. & Koutrouvelis, I.A. (1999). “Chi-

Squared Tests of Fit for Generalized Poisson 

Distributions Based on the Moment Generating 

Function”, InterStat, May Issue, 1-19. 

21. Meissner, Gunther (2005), Credit Derivatives: 

Application, Pricing, and Risk Management, Malden, 

MA: Blackwell Publishing. 

22. Merton, Robert C. (1973), “Theory of Rational 

Option Pricing”, Bell Journal of Economics and 

Management Science, 4 (1): 141-183. 

23. Mikosch, Thomas (2004), Non-Life Insurance 

Mathematics: An Introduction with Stochastic 

Processes (Universitext), Berlin: Springer. 

24. Nelson, Roger B. (1999), An Introduction to Copulas 

(Lecture Notes in Statistics No. 139), New York: 

Springer. 

25. Pao, Yoh-Han (1989), Adaptive Pattern Recognition 

and Neural Networks, New York: Addison-Wesley. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 


