1. INTRODUCTION

Variables such as tourism, money supply and construction constitute key factors that contribute towards economic development. The course of the Gross Domestic Product is affected positively or negatively over the course of time. It would be interesting to investigate the relation between the accounting variables mentioned using the VAR testing approach. The positive effect of the economic growth on the other variables and vice versa is generally accepted. Schumpeter (1911) was one of the first researchers who tried to explain scientifically the relation between accounting variables in order to investigate the relations between key economic indicators. The main object of his research was the financial services which are supplied by the intermediaries and he claimed that a necessary condition for the economic development is the promotion of innovations (Ghali, 1999; Floros, 2004).

Mckinnon (1991, 1973) and Shaw (1973) believe that there is a parallel bad effect on the development of the tertiary sector and on the economic growth because of the bank system limitations that were imposed. Focusing on Greece, Delivani and Nikas (2013) argued that the “engine of growth” for Greece was the tourism sector instead of the manufacturing sector. Brida and Pulina (2010) agreed that tourism is one of the factors contributing to economic growth in the short as well as in the long term, which is the so-called tourism-led growth hypothesis.
According to Solow (1957), technological progression is also a driving force that can result in economic development. Several researchers supported the majority of the Cointegration technique based on Engle and Granger (1987), Johansen (1988) who further developed the maximum likelihood test and Johansen and Juselius (1990) in order to investigate the relationship created in the long run between variables. In any case, these techniques have the main disadvantage, namely that it is not suitable for small samples (Narayan, 2005; Odhiambo, 2009). There are many people around the world exploring the relationship between tourism and economic growth. This relationship is explored both in the short and long term. According to Brida and Pulina (2010), the role of tourism in economic growth is important. Especially in emerging countries, such as Greece, the effect the tourism industry has on the country’s development is important as it provides a positive sign to the country’s GDP by increasing the tourist exchange rate and boosting employment.

Tourism provides solutions for potential economic development of the primary sector with the increase of another sector of the economy, the tertiary sector. Delivani (1991) argued that the tourism industry plays a key role in the development of the Greek and Turkish economy that the tourism industry plays a key role in the development of Greece was such that it now has a dominant position among traditional sectors such as construction and agriculture. Indeed, Greece, since the 1970s, has managed to turn from a purely rural economy into an economy with a remarkable service sector.

Different approaches have been used by researchers in order to investigate economic growth. It would be interesting to study the role of construction, money supply and the gross domestic product generated by tourism (tourism- GDP) over a period of time that the country is trying to return to regularity (Garefalakis et al., 2015). The construction sector used to hold a dominant position in the Greek economy. The importance of the construction sector in the economic development of Greece up to the decade of 2000 was undeniable. With the emergence of the global financial crisis, the Greek economy proved to be unprepared to cope with a prolonged economic downturn.

The construction sector was the one most negatively affected in comparison to all the other sectors during the financial crisis in Greece. The country has embarked on a process of fiscal adjustment programs in order to avoid total bankruptcy. Construction and the construction sector, in general, has ceased to be one of the driving forces of the Greek economy (Garefalakis et al., 2016a). The money supply index was totally controlled by the European institutions and the speed of money circulation was extremely limited. Taxation reached the highest levels among the countries of Economic and Monetary Union (Garefalakis et al., 2016b). However, despite the high taxation, the tourism industry continued to grow and increase its contribution to the country’s GDP.

The construction industry has been the “engine of growth” for Greece for over three decades. In Greek (2016), tourism is one of the most prosperous sectors despite the economic downturn of the last decade. The importance of the tourism industry to the economic development of Greece was such that it now has a dominant position among traditional sectors such as construction and agriculture. Indeed, Greece, since the 1970s, has managed to turn from a purely rural economy into an economy with a remarkable service sector.

2. LITERATURE REVIEW

According to Delivani and Nikas (2013), the Greek economy was in the process of economic maturity and had to implement a different economic policy. The choice of industrialization of the country had to be abandoned. The choice of Greek governments was the further development of the tourism industry. Tourism provides solutions for potential economic growth in economies in the midst of a prolonged economic downturn. Delivani (1991) argued that the most rapidly growing sectors of the Greek economy are tourism and agriculture. In particular, the added value of tourism (GDP) and agriculture (GDP of the agricultural sector) was such that these sectors of the Greek economy were rightly identified as a lever for the country of Greece. According to the report of the World Tourism Organization (World Tourism Organization, Annual Report, 2016), tourism is one of the most prosperous sectors despite the economic downturn of the last decade. The importance of the tourism sector to the economic development of Greece was such that it now has a dominant position among traditional sectors such as construction and agriculture. Indeed, Greece, since the 1970s, has managed to turn from a purely rural economy into an economy with a remarkable service sector.
Galani (1993) argues that, since the 1970s, Greece managed to transform from a purely agricultural economy to a country that possesses a remarkable service sector. As a consequence, the development of the service sector has led to the expansion of the banking system, through the money supply, and the total GDP has risen.

On the one hand, the growth of the construction sector looks like an endless process since the introduction of new production methods, technology and innovation, high specialization, expanding markets and strong forward and backward linkages, all considered as industry’s exclusive privileges. On the other hand, the ongoing economic crisis in Greece did not prevent the tourism sector from expanding (WTTC Economic Impact, 2016).

It would be interesting to study the relationship that exists among economic development, construction, money supply and tourism in a country like Greece due to its particular characteristics. The country has implemented three fiscal adjustment programs since 2010 and has been restricted by capital controls on the Banking system since 2015. The construction sector has been unable to react under these circumstances, but the tourism industry has shown that it is developing despite the economic downturn in Greece.

3. METHODOLOGY

In order to reach a safe conclusion, the time period selected for investigation was between 1965 and 2015 for particular reasons. The construction sector, during the study period, was evidently flourishing and held a dominant position among the political leadership choices. The supply of money to an economy like Greece is of particular interest because the country changed its constitution at that time, entered the European Economic Community, transformed from a purely agricultural to a service economy and entered the Eurozone. Finally, the country’s tourism industry began to develop in the late 1960s and since then, it continued to grow in relation to the other sectors of the economy. For the reasons mentioned above, the specific time period and also the variables of our model were chosen. In this study we are trying to investigate the relationship among GDP in Greece, net value added generated by the tourism receipts, money supply and construction sector. The data was produced by the World Bank for the time period between 1965-2015. Additionally, the time series projecting constructions, the receipts by tourism and money supply used as a proxy for GDP generated by tourism are derived by the Organization for Economic Co-operation and Development (OECD). The following triplex-variable VAR model is used in order to analyze the causal relationships among them:

\[GDP = f(Tour, M3, Constr) \]

Where:
- \(GDP \) is the Gross Domestic Product,
- \(Tour \) is the net value added generated by the tourism receipts,
- \(M3 \) is the Construction of buildings, houses in general.

\[\ln(GDP) = a_1\ln(GDP_{tour}) + a_2\ln(GDP_{M3}) + a_3\ln(GDP_{constr}) \]

\[(2) \]

Sims (1980) proposed a vector autoregressive VAR model with the vector \(U \) defined in Equation 3. Engle and Granger (1987) and Granger (1988) have pointed out that a VAR model in levels with non-stationary variables may lead to spurious results and a VAR model in first differences with co-integrated variables is misspecified.

A Vector Error Correction Model can be written as:

\[\Delta U_t = A_0 + A_1 \Delta U_{t-1} + \delta EC_{t-1} + \mu_t \]

\[(3) \]

Where the \(EC \) is the error correction term, \(\mu \) is a 3x1 vector of white noise errors.

In order to continue the analysis of the VAR, the stationarity existence of the given accounting variables must be examined. A unit root test, namely the Augmented Dickey-Fuller (ADF) test, was used for this purpose. According to the VAR model theory, if the variables are established as stationary at the first difference through the ADF, a Cointegration test and vector error-correction model (VECM) should be used. If variables are found to be cointegrated, the Granger causality tests can then be used. About the analysis of the multivariate time series that include stochastic trends, the Augmented Dickey-Fuller (1979) (ADF), Phillips-Perron (1988) unit root tests were used to estimate individual time series, with the intention of providing evidence of instances when the variables are integrated. Our variables are expressed in logarithms in order to include the proliferating effect of time series and are indicated by the ‘ln’ preceding each variable name.

4. RESULTS AND DISCUSSION

In order to examine the stationarity of our variables, the methodology used was proposed by Dickey-Fuller (ADF) test and Phillips and Perron (PP) test. Nelson and Plosser (1982) had pointed out that time series contain unit roots dominated by stochastic trends. The existence of a stochastic trend is determined by testing the presence of unit roots in time series data. The augmented ADF test refers to the t-statistics of \(\delta \) coefficient and the regression is the following:

\[\Delta X_t = \delta_0 + \delta_1 t + \delta_2 X_{t-1} + \sum_{i=1}^{k} a_i \Delta X_{t-1} + u_t \]

\[(4) \]

Dritsakis and Adamopoulos (2004) argued that we can rely on the index’s results of the Akaïke (Akaïke, 1973) information criterion (AIC) in conjunction with what was proposed by Engle and Yoo (1987), to define the optimal specification of Equation 4. Additionally, the distribution of the augmented Dickey-Fuller is non-regular and the critical values are suggested by Mackinnon (1991).

The Phillips and Perron (PP) technique is an alternative (nonparametric) methodology. According to this methodology, the serial correlation can be
controlled when testing for a unit root. The PP method estimates the non-augmented DF test equation and modifies the t-ratio of the coefficient so that serial correlation does not affect the asymptotic distribution of the test statistic. The combined results from both tests (ADF and PP) suggest that all the series under consideration are integrated to the order of 1, 1(1).

Table 1. Variables and root tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF Unit Root Test</th>
<th>Phillips Perron Root Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dt-stat 1</td>
<td>Dt-stat 2</td>
</tr>
<tr>
<td>LGDPR</td>
<td>-1.902</td>
<td>-12.919</td>
</tr>
<tr>
<td>LTOUR</td>
<td>-2.737</td>
<td>-2.276</td>
</tr>
<tr>
<td>LCSTR</td>
<td>-1.966</td>
<td>-17.045</td>
</tr>
<tr>
<td>LM3</td>
<td>-4.422</td>
<td>-4.335</td>
</tr>
</tbody>
</table>

Notes: Dt-stat**-, Pr-stat* are the t-statistic for testing the level of significance with intercept, no trend and with trend and intercept respectively. All the calculation made according to Dickey-Fuller (1981) and Phillips-Perron (1988). The calculated statistics are those reported in Dickey-Fuller (1981). The critical values at 1%, 5% and 10% are -3.588, -2.929 and -2.618 for Pr-stat, -2.618, -1.948 and -1.612 for Dt-stat, -2.61, -1.94 and -1.61 for Dt-stat respectively. The critical values at 1%, 5% and 10% are -3.584, -2.928 and -2.602 for Pr-stat, -2.618, -1.948 and -1.612 for Pr-stat, -4.18, -3.513 and -3.188 for Pr-stat respectively. The lag selection is determined using the AIC Criterion.

***, **, * indicate significance at the 1%, 5% and 10% respectively.

Since the variables were found to be stationary at the first difference, we were able to proceed with the Cointegration test. The Cointegration test was proposed by Johansen (1988, 1991; 1992) and Johansen and Juselius (1990). According to the econometric theory, if the selected variables are established as stationary at the first difference through the ADF, a Cointegration test and vector error-correction model (VECM) should be used. The Johansen (1988, 1991, 1992) and the Johansen and Juselius (1990) technique was used following the maximum likelihood procedure in order to test the existence of Cointegration. VAR model is used to analyse the long-run relationship that might exist between the accounting variables. They proposed the trace test and the maximum eigenvalue test in order to calculate the number of co-integrating vectors in the VAR model.

Table 2. Co-integration test based on Johansen maximum likelihood procedure

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Trace Statistic</th>
<th>Critical Value 0.05</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.006823</td>
<td>6.078,859</td>
<td>4.785,613</td>
</tr>
<tr>
<td>At most 1</td>
<td>0.309014</td>
<td>1.971,483</td>
<td>2.979,707</td>
</tr>
<tr>
<td>At most 2</td>
<td>0.008945</td>
<td>3.961,628</td>
<td>1.349,471</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.0035658</td>
<td>0.249638</td>
<td>3.841,466</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Max-Eigen Statistic</th>
<th>Critical Value 0.05</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.006823</td>
<td>4.107,376</td>
<td>2.758,434</td>
</tr>
<tr>
<td>At most 1</td>
<td>0.309014</td>
<td>1.575,120</td>
<td>2.113,162</td>
</tr>
<tr>
<td>At most 2</td>
<td>0.008945</td>
<td>3.713,991</td>
<td>1.426,460</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.0035658</td>
<td>0.249638</td>
<td>3.841,466</td>
</tr>
</tbody>
</table>

The results of Table 2 allow us to support that the null hypothesis of no Cointegration is rejected by the Max-Eigen statistics and the trace test for the entire period. We cannot reject the long-run homogeneity and, thus, we can support that our variables are cointegrated. When the variables are cointegrated, it means that these variables move together in the macro environment. In other words, this means that the GDP as a function of Tourism, Construction and money supply is homogeneous to one degree.

To continue our analysis, the lag length criterion it must be found and the next table shows the results of the precise analysis.

Table 3. Results

<table>
<thead>
<tr>
<th>LAG</th>
<th>LAG</th>
<th>LR</th>
<th>FPE</th>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.129617</td>
<td>8</td>
<td>2.20e+37</td>
<td>9.733,029</td>
<td>9.815,773</td>
<td>9.763,359</td>
</tr>
<tr>
<td>1</td>
<td>-2.023,936</td>
<td>1.861,993</td>
<td>1.58e+39</td>
<td>1.016,008</td>
<td>1.017,663</td>
<td>1.016,615</td>
</tr>
<tr>
<td>2</td>
<td>-1.991,683</td>
<td>50.688,986</td>
<td>1.04e+47</td>
<td>9.635,631</td>
<td>98.945,257</td>
<td>97.102,257</td>
</tr>
<tr>
<td>3</td>
<td>-1.972,643</td>
<td>2.629,277</td>
<td>9.50e+46</td>
<td>96.410,97</td>
<td>98.36,297</td>
<td>97.20,015</td>
</tr>
<tr>
<td>4</td>
<td>-1.963,079</td>
<td>9.065,315</td>
<td>1.35e+47</td>
<td>9.681,326</td>
<td>98.962,661</td>
<td>97.84,448</td>
</tr>
</tbody>
</table>

LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion

<table>
<thead>
<tr>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.016,008</td>
<td>1.017,663</td>
<td>1.016,615</td>
</tr>
<tr>
<td>98.945,257</td>
<td>97.102,257</td>
<td>97.20,015</td>
</tr>
<tr>
<td>98.36,297</td>
<td>97.84,448</td>
<td></td>
</tr>
</tbody>
</table>

Notes: * indicates lag order selected by the criterion.

Having validated the existence of Cointegration, we estimate the Unrestricted Error Correction Model (UECM) and if we take into account the Equation 3, we can strongly support that if we use Gross Domestic Product as an endogenous variable then we can conclude that the δ coefficient is statistically significant since the VAR system results in one Error Correction term.

According to the econometric theory, if the speed of adjustment is negative and statistically significant, then the long run relationship with the endogenous variable is acceptable. In the next table, we can observe the endogeneity of GDP along with other variables of our VAR model.
According to Table 4, the speed of adjustment has the expected sign, meaning negative and statistically significant, which indicates that any deviation from the long run equilibrium between variables is corrected with an annual rate of about 3.6%. There is no short run causality among the variables of our system because the null hypothesis of the Wald test had been accepted.

\[
\begin{align*}
\text{Null:} & \quad H_0: C_1 = C_2 = C_3 = C_4 = 0. \\
\text{Alt:} & \quad H_1: C_1 \neq C_2 \neq C_3 \neq C_4 \neq 0.
\end{align*}
\]

5. CONCLUSION

The Greek economy seemed unprepared to manage an economic crisis. The reaction of the Greek economy was not immediate. The main cause is the organization of the country's production sectors as well as the growth model that had been applied in previous years. The prolonged economic downturn, the lack of capital resources and rigorous banking controlled to a dramatic decline in the country's GDP. At the same time, the disposable income of citizens and businesses declined dramatically through the increase in taxation. Traditional sectors of the Greek economy lost their momentum and reduced their contribution to the country's GDP. Negative GDP growth continued for more than nine years. The implementation of fiscal policies had a short-term horizon, and the results were a 40% shrinking of the Greek economy in about eight years.

The upturn of the Greek economy was a matter of concern and the role of certain sectors of the economy in this direction had to be analyzed. With the help of the VAR model process, in order to come to a safe conclusion with the VAR technique, we followed the VAR method. According to the results of the Vector Authentication Estimate, the existence of the Fusion was confirmed. The long-term relationship between the variables exists because the ECT has the right mark and is statistically important. The long-term relationship between the variables exists because the ECT has the right mark and is statistically important. In economies such as Greece, there is a long-term relationship and at the same time absence of a short-term relationship between the variables examined by this study.

REFERENCES

