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Wind power futures, once a hedging tool in energy-related 
derivatives markets were discontinued due to low liquidity. 
However, recent increases in electricity price spreads have 
introduced new financing challenges for renewable energy projects 
in Europe, leading to heightened price risks and a renewed demand 
for such instruments. Also, the regulation on renewable electricity 
for renewable fuels of non-biological origin (RFNBO) — compliant 
hydrogen production poses a supply uncertainty risk to hydrogen 
developers. As both such project developers seek ways to mitigate 
these risks, this paper reviews the existing literature on modelling 
strategies for hedging wind power production risks. The review, 
based upon a structured literature review following vom Brocke 
et al. (2009), provides a comprehensive overview of arbitrage models 
incorporating seasonal elements and stochastic jump risks, as well 
as equilibrium pricing models. The variations and conclusions of 
these models are analyzed in the context of the altered market 
conditions in 2024. This analysis offers insights into 
the applicability of current models for pricing risk premia and 
identifies gaps under the evolving market realities. 
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1. INTRODUCTION 
 
Risk management is one of the central elements of 
every company, project, or profit-oriented entity. 
In the context of the steadily increasing renewable 

power generation and more specifically wind power 
generation, the weather-induced risks are getting 
increasing attention (Kamani & Ardehali, 2023; 
Masala et al., 2022). In the case of a wind farm, 
the major production parameter is the wind speed 
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or the wind volume, where initial works for 
modelling the risk premium have been done 
(Freudmann, 2011; Bessembinder & Lemmon, 2002; 
Ehrhardt, 2002; Benth & Benth, 2009; Benth et al., 
2008; Benth & Pircalabu, 2018; Härdle et al., 2021). 
Unfortunately, this parameter can neither be 
influenced nor controlled and thus poses 
an uncontrollable risk element for the wind power 
producer in realizing the project financing 
(Thomaidis et al., 2023; Erfani & Tavakolan, 2023). 

Coinciding with the German tariff system shift, 
which changed to an auction model, awarding 
contracts to the cheapest bids up to a set capacity 
threshold, the National Association of Securities 
Dealers Automated Quotation (NASDAQ) and 
European Energy Exchange (EEX) introduced hedging 
tools for wind power, with EEX launching 
“Energiewende Products” in 2016 (discontinued 
in 2020) and NASDAQ offering wind power futures 
in 2015 (delisted in 2023). These derivatives aimed 
to mitigate wind volume risk but had low liquidity, 
leading to their removal. In light of the increasing 
spreads in the European power markets in 2023 
and 2024, with German power markets experiencing 
more than 300 hours with negative prices in 2023, 
and more than 300 hours in 2024 until the end of 
July, a drastic up from around 70 hours in 2022, 
the challenges onto the financing of wind power 
projects increased by the risk in power sales prices. 

Even though the wind power futures were 
delisted just before the electricity price spread took 
off, the wind power developers are now eager to 
derisk their developments more than ever. On top, 
the Delegation Regulation (European Union, 2023) 
enforces the need for temporal and geographical 
correlation in conjunction with the additionality 
requirement on renewable electricity and a direct 
link between the electricity producer and 
the hydrogen producer for the production of 
renewable fuels of non-biological origin (RFNBO) — 
compliant hydrogen from 2028 onwards, poses 
supply uncertainty risk on hydrogen developers 
(Talus et al., 2024). So, this group of developers as 
well is now seeking ways to derisk their electricity 
volume risk. To shed some light onto past derived 
models, we aim to compile an overview of past 
models and compare the existing works with respect 
to their applicability under the changed market 
conditions since pre-2021. The objective is to outline 
the need for an adaptation of the existing models 
and to stimulate the relaunch of either over-the-
counter (OTC) or new wind futures products with 
adapted associated risk models. We, therefore, will 
answer the following research questions: 

RQ1: What models exist to model the volume risk 
for wind power, which have been reflected via wind 
power futures in the past? 

RQ2: How do these models differentiate in their 
findings? 

RQ3: How do the recent changes in market 
spreads reflect within these models and what 
adaptations are required to include these market 
changes in the models? 

The paper is structured as follows. Section 2 
shows our applied methodology of a structured 
literature review to compile an overview of existing 
literature on wind power futures. Thereby we 
identified exclusively pre-2021 works. Sections 3 and 
4 discuss the two main modelling techniques 

identified, the no-arbitrage pricing model and 
the equilibrium pricing model. Section 5 discusses 
the findings from existing models and brings these 
models in the context of changed market conditions 
observed in 2024 compared to pre-2021 wind 
markets. Finally, Section 6 summarizes the findings 
and provides an outlook on the identified gaps. 
 

2. LITERATURE REVIEW 
 
To become familiar with existing findings on 
the modelling of wind power futures a structured 
literature review following vom Brocke et al. (2009) 
formed the basis. The overall focus is to identify 
research outcomes and models reflecting wind 
power production in light of weather uncertainties. 
Following Cooper (1988), the search can be clustered 
as follows. The objective is to identify previously 
discussed ideas and strategies. To ensure broad 
coverage, the search extends to general weather 
risks and wind financing in addition to wind power 
futures. The methodological approach will 
categorize and combine relevant models while 
excluding those not applicable to wind-related 
weather risks. These groups of strategies will then 
be linked to specific examples and discussed. 
A neutral stance will be maintained throughout. 
The outcome will serve as a summary of models for 
future researchers, experts, and businesses, 
providing a representative overview. Complete 
coverage is not the aim, nor is it practically 
achievable given the wide scope of risk and weather 
models. 

With two step forward and backward search, 
we were able to identify seven key literature models: 
Benth and Benth (2009), Benth and Pircalabu (2018), 
Alexandridis and Zapranis (2013), Melzer et al. 
(2017), Hees (2021), Gersema and Wozabal (2017) 
and Härdle et al. (2021). They cluster into jump risk 
and game equilibrium pricing models. 

Among the jump risk models, most models 
build upon initial works by Benth et al. (2007) on 
weather derivatives on temperature. While 
temperature is of less criticality for wind production, 
the methodology still holds. Benth et al. (2007) 
separated the power production risks into 
a seasonal component and a stochastic component. 
Subsequent literature uses these jump-diffusion 
models to reflect wind speeds (Benth & Benth, 2009; 
Benth & Pircalabu, 2018; Alexandridis & Zapranis, 
2013; Melzer et al., 2017; Hees, 2021; Härdle et al., 
2021). In light of the challenge to correctly reflect an 
autocorrelation between the model and reality, the 
frameworks use a combination of intraday and 
spatial modelling, comparing a Gaussian candidate 
model with non-Gaussian alternatives using 
information criteria and model assumption checks 
(Härdle et al., 2021). Following Benth et al. (2007), 
the models thereby combine a long-term seasonal 
effect with a short-term stochastic effect. 

A different approach emerges from equilibrium 
models. For this Gersema and Wozabal (2017) 
introduce a two-player game consisting of 
the owners of wind power plants and the owners of 
conventional generation plants. They relate 
the hedging strategies of both players to mitigate 
their respective risks. 
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3. REVIEW OF NO-ARBITRAGE PRICING MODELS 
 
The models discussed in this section, by Benth and 
Benth (2009), Benth and Pircalabu (2018), 
Alexandridis and Zapranis (2013), Melzer et al. (2017), 
and Hees (2021) share a common underlying method 
based on a no-arbitrage pricing model. This model 
establishes a risk-neutral probability measure and 
links it with a market price of risk. However, it does 
not account for the mechanics and interaction with 
the position holder’s business model, leaving risk 
premia unexplained. Consequently, the risk 
premium is inferred as the disparity between actual 
and calculated prices. 

The models thereby, except from Hees (2021), 
consist of a composition of a seasonal effect 𝛬𝑡 plus 

a stochastic short-term variation component 𝑋𝑡. 
 

�̂�𝑡 = 𝑋𝑡 + 𝛬𝑡 (1) 

 
The stochastic short-term variation component 

𝑋𝑡 is thereby modelled either by a Gaussian risk 
factor approach or via a Lévy process with jumps. 
This stochastic portion is detailed in subection 3.3. 
The seasonal effect is discussed in subection 3.2. 
The pricing of the futures then follows 
the respective wind power futures contractual 
definition with the risk-neutral expectation of 
the underlying index, which is normally the wind 
production. 
 

3.1. Underlying index and data for modelling 
 
The models published rely on several sources for 
the raw data. These sources reflect the respective 
wind power futures the individual publications are 
referring to and discussing. 

Benth and Benth (2009) focus on the sole 
existing wind power future at the time of writing, 
the US Futures Exchange wind power futures. They 
utilize wind speed data averaged over New York 
State Region I, sampled every three hours. This data 
was aggregated to a daily average, corrected for leap 
years, covering January 1, 1987, to December 31, 
2011. References are made to New York State 
Regions II and III, showing similar results. The wind 
speed is regarded as the primary factor for wind 
power production, akin to a wind production index, 
though this terminology emerged post-publication. 
Thus, for simplification, the wind speed data 
described is treated as a wind production index. 

Melzer et al. (2017) base their analysis on 
the NASDAQ wind power futures for the German 
market. For the raw data of their model, the starting 
points are realized wind power production and 
installed capacity values as provided by the German 
transmission system operators, which are used to 
derive the wind power utilization 𝑈𝑡, as also used in 
the actual wind power index. 
 

𝑈𝑡 =
𝑊𝑡
𝐶𝑡
100 (2) 

 

where, 𝑊𝑡 is the wind power production at time t, 
𝐶𝑡 is the installed wind power capacity at time t, and 

the time index t. The raw data yield comparable data 

from 2010 until 2016, corrected for leap years, and 
the reported quarterly hour raw data is averaged for 
daily values following the pricing schemes. 

Benth and Pircalabu (2018) focus on NASDAQ 
wind power futures for Germany, briefly mentioning 
EEX-based futures without elaboration. They 
compare NASDAQ data with a synthetic wind power 
production index from MeteoGroup, also underlying 
NASDAQ wind power futures, spanning 37 years 
from January 1, 1979, to December 31, 2015. It is 
equivalent to the index for wind power utilization 𝑈𝑡 
as in Eq. (1) and (2) but relies on different source 
data and thus is expected to yield different values. 

As stated earlier, Hees (2021) is proposing 
a theoretical model without direct application of 
a wind power future on the market. As such, this 
publication is not using any source data for 
quantitative data analysis. 
 

3.2. Seasonal effect 
 
When analyzing the source data for the models, 
irrespective of wind speed data or wind power 
utilization, all publications observe a seasonal effect 

𝛬𝑡, which is one element in the description of 
the wind power utilization function. 

While Benth and Benth (2009), Benth and 
Pircalabu (2018) and Melzer et al. (2017) calculate 
an explicit seasonal effect by means of the below-
mentioned techniques, Hees (2021) limits its 
discussion on seasonality to the existence of 
a seasonal effect within the underlying volatility and 
jump intensity functions, which is not directly 
modelled. Out of the above publications, Melzer 
et al. (2017) is the only one to apply multiple 
seasonality calculation methods and to compare 
them with regard to the best fit. 
 

3.2.1. Seasonality modelling of the underlying index 
 
Various techniques from existing literature are 
available for modelling the underlying index 
function, as adapted in related publications. These 
include truncated Fourier series (TFS), local linear 
smoothing (LLS), and periodic B-splines regressions. 

 

Truncated Fourier series 
 

The TFS in terms of a seasonal component is 
a Fourier-like expansion of cosine parameters 
weighted by phase and scaling factors. In terms of 
seasonality, it is generically defined as: 
 

𝛬𝑡 = 𝑐0 + 𝑐1𝑡 +∑𝑑𝑙 𝑐𝑜𝑠 (
2𝜋(𝑡 − 𝑒𝑙)

𝑙 × 365
)

𝐿

𝑙=1

 (3) 

 
where, 𝑐0 and 𝑐1 represent parameters, more 

specifically 𝑐0 representing the intercept, 

𝑐1 representing the linear trend, and 𝑑𝑙 and 𝑒𝑙 
represent seasonality parameters. 𝑙 = 1,… , 𝐿 defines 
the separate Fourier elements (Melzer et al., 2017). 

Benth and Benth (2009) employ a simplified 
case using sine and cosine functions to capture 
yearly and half-yearly effects. 
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𝛬𝑡 = 𝑐0 + 𝑑1 𝑐𝑜𝑠 (
2𝜋

365
𝑡) + 𝑑2 𝑠𝑖𝑛 (

2𝜋

365
𝑡) + 𝑑3𝑐𝑜𝑠 (

4𝜋

365
𝑡) + 𝑑4𝑠𝑖𝑛 (

4𝜋

365
𝑡) (4) 

 

where, 𝑑1, 𝑑2, 𝑑3, and 𝑑4 represent weighting 
seasonality parameters. Benth and Pircalabu (2018) 
simplify this approach further by considering yearly 
effects only. 
 

𝛬𝑡 = 𝑐0 + 𝑑1 𝑠𝑖𝑛 (
2𝜋

365
𝑡) + 𝑑2 𝑐𝑜𝑠 (

2𝜋

365
𝑡) (5) 

 
The TFS can be considered as the method of 

choice among the different techniques presented 
due to its simplicity, and good fit in direct 
comparison (Melzer et al., 2017). 

 

Local linear smoothing 

 
Local linear regression as used by Melzer et al. 
(2017) is the estimation of a best-fit regression line 
over the respective data points. For the LLS, this 
methodology is complemented by a kernel, which is 
a window function of points to be considered for 
each step. It is computed by solving a weighted least 
square problem: 
 

𝛬𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑒,𝑓

∑{�̅�𝑡 − 𝑓1𝑠 − 𝑓2𝑠(𝑡 − 𝑠)}
2𝐾 (

𝑡 − 𝑠

ℎ
)

365

𝑡=1

 (6) 

 

where, �̅�𝑡 represents the daily average wind power 
utilization over the years, f is a parameter for 

the local linear regression and 𝐾 (
𝑡−𝑠

ℎ
) is a kernel to 

evaluate the squared deviation from the local linear 
regression. 

The resulting function is smooth and performs 
well for large bandwidths, as smaller bandwidths 
tend to pick up noise from the stochastic portion 
(Melzer et al., 2017). 

 

Periodic B-spline regression 
 

The basis spline curve is a piecewise polynomial 
function with local control points connected at 
knots. This allows for each segment to be 
formulated using simple polynomial functions. 
These polynomials are adjusted to ensure 
differentiability at the knots and adherence to input 
control points. Being a local form, changes in points 
within a segment interval affect only that segment. 
In the periodic case, the last and first knots are 
linked to create a periodic form. This periodic form, 
reflecting seasonality, is referred to as: 
 

𝛬𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼𝑗

∑{�̅�𝑡 −∑𝛿𝑗𝛹𝑗(𝑠𝑡)

𝐽

𝑗=1

}

2
365

𝑡=1

 (7) 

 

where, �̅�𝑡 represents the daily average wind power 

utilization over the years, 𝛹𝑗(𝑠𝑡) is a vector of known 

basis function, 𝛿𝑗 are coefficients, and j is 

the number of knots. 
All in all, the periodic B-spline regression 

shows a good fit to the seasonality component for 
a suitable selection of knots (Melzer et al., 2017). 
 
 

3.2.2. Seasonal variance modelling 
 
In addition to modelling the seasonality of 
the underlying index, addressing seasonal variance 
is crucial. While Benth and Benth (2009) contend 
that residuals of the seasonality-corrected index 
reveal no further seasonality, only the squared 
residuals do, and they address this using a TFS 
method. On the other hand, Melzer et al. (2017) 
introduce smooth inter-expectile range (sIER) and 
smooth inter-quartile range (sIQR) methods for 
modelling seasonal variance. 
 

Truncated Fourier series 

 
Similar to in Eq. (3), the TFS in terms of a seasonal 
variance for the squared residual is given as: 

 

𝜎𝑡
2 = 𝑐𝜎,0 + ∑ 𝑑𝜎,𝑙 𝑐𝑜𝑠 (

2𝑙𝜎𝜋

365
𝑡)

𝐿𝜎

𝑙𝜎=1

 (8) 

 
with 𝑐𝜎,0 and 𝑑𝜎,𝑙 representing parameters, more 

specifically 𝑐𝜎,0 representing the intercept, and 𝑑𝜎,𝑙 
seasonality parameters for the separate Fourier 
elements 𝑙𝜎 = 1,… , 𝐿𝜎 . Benth and Benth (2009) use 

𝐿𝜎 = 3. 
 

Smooth inter-expectile range 
 

The sIER is a measure of the tail variation. 
It coincides with the volatility for alpha levels of 0, 
0.25 and 0.75 and defines the ratio of data points 
which should be below the respective anticipated 
level for the given alpha level. It gives a measure for 
the volatility at specific alpha levels considering 
the distance of the data points above and below 
the chosen alpha levels. Its loss function is defined as: 
 

𝜌𝛼 = |𝛼 − 𝐼{𝑢 < 0}‖𝑢|² (9) 
 
which is an alpha level moment measure, that is 
equivalent to the mean for an alpha level of 0.5. 
The expectiles for alpha levels beside 0.5 are defined 
by means of an arbitrary local model 𝑌𝑡 = 𝜃 + 𝜀𝑡 as 

𝑒(𝛼, 𝜀) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃E𝜌𝛼[𝑌𝑡 − 𝜃|F𝑡]. For the normalized 

seasonal sIER, this relates to the definition as: 
 

𝜎 =
𝑒(𝜏 = 0.75|𝑋) − 𝑒(𝜏 = 0.25|𝑋)

2𝑒−1(𝜏 = 0.75|𝛷)
 (10) 

 
In order to achieve a smooth fit, smoothing 

splines are applied with truncated power basis 
functions, knots at every observation point and 
a roughness penalty approach (Melzer et al., 2017). 

 

Smooth inter-quartile range 
 

The sIQR considers half of the data points only, 
namely the points lying in the centre two quartiles 
and ignores the lower and upper quartiles. By that, 
outliers are not considered. Its loss function is 
defined as: 
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𝜌𝛼 = |𝛼 − 𝐼{𝑢 < 0}‖𝑢| (11) 
 
which is the alpha quantile. Here again, 
the probability measure at alpha level 0.5 
corresponds to the median. 

Similar to the sIER, the normalized seasonal 
sIQR is defined as: 
 

𝜎 =
𝑚𝑒𝑑(|𝑌 − 𝑚𝑒𝑑(𝑌)|)

2𝛷−1(𝛼 = 0.75)
 (12) 

 
with respective smoothing splines and truncated 
power basis functions. 
 

3.3. Stochastic short-term variation using Gaussian 
risk factors 
 
For the modelling of the stochastic short-term 
variation component xt, an Ornstein-Uhlenbeck 
stochastic process with Gaussian risk factors can be 
applied. This demands symmetric data. 
The subsequent Gaussian risk factor approach, 
which follows the Jacobi process, benefits from 
a simple expression for the future price, which can 
be explicit. On the other hand, the model parameter 
estimation is challenging (Melzer et al., 2017). 
 

3.3.1. Symmetrization of data 
 
Contrary to the symmetric data demand, the source 
data on wind power utilization and wind speeds 
reveal a skewed distribution. A data symetrification 
is thus required (Benth et al., 2008; Melzer et al., 2017). 
Following a standard log transformation is 
problematic in light of a missing rationale (Benth 
et al., 2008; Benth & Benth, 2009) and due to 
the narrow band of the source data increasing 
the likelihood of autocorrelation artefacts (Melzer 
et al., 2017). A better option is arguably a Box-Cox 
transformation, which yields (Benth et al., 2008; 
Benth & Benth, 2009): 
 

Û𝑡 = {
𝑈𝑡
𝜆 − 1

λ
, 𝜆 ≠ 0

ln(𝑈𝑡), 𝜆 = 0

 (13) 

 

for �̂�𝑡 as the Box-Cox transformed data and 𝜆 as 
the tunable Box-Cox transformation parameter. 

An alternative is a logit transformation given 
by Melzer et al. (2017): 
 

�̂�𝑡 = 𝑙𝑜𝑔 (
𝑈𝑡

1 − 𝑈𝑡
) (14) 

 

3.3.2. Ornstein-Uhlenbeck stochastic process 
 
The Ornstein-Uhlenbeck stochastic process with 
Gaussian risk factors is introduced by Benth and 
Benth (2009) in the vector form: 
 

𝑑𝑋𝑡 = 𝐴𝑋𝑡𝑑𝑡 + 𝑒𝑝𝜎𝑡𝑑𝐵𝑡 (15) 

 

where, 𝑋𝑡 is the state vector, 𝑒𝑝 is the p’th unit 

vector1, 𝜎𝑡 is the standard deviation of the residual 
at time t, which can be expressed as the seasonal 
variance following Eq. (8), (10) and (12), 𝐵𝑡 is 

a standard Brownian motion and 𝐴 is a p × p matrix 
with: 
 

𝐴 =

[
 
 
 
 
0 1 0 … 0
0 0 1 … 0
… … … … …
0 0 0 … 1
−𝛼𝑝 −𝛼𝑝−1 −𝛼𝑝−2 … −𝛼1]

 
 
 
 

 (16) 

 

where, 𝛼𝑝, 𝛼𝑝−1, 𝛼𝑝−2, and 𝛼1 are constants. 

By means of the Itô formula (Karatzas & Shreve, 
1991), this leads to: 
 

𝑋𝑠 = 𝑒𝑥𝑝 (𝐴(𝑠 − 𝑡))𝑋𝑡 + 

+∫ 𝑒𝑥𝑝 (𝐴(𝑠 − 𝑢))
𝑠

𝑡

𝑒𝑝𝜎𝑢𝑑𝐵𝑢 
(17) 

 

for the time 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇, with T being the upper 
limit of the data source. 

Under consideration of a risk premium 𝜃, 
Eq. (15) and (17) are rewritten as: 
 

𝑑𝑋𝑡 = (𝐴𝑋𝑡 + 𝑒𝑝𝜎𝑡𝜃𝑡)𝑑𝑡 + 𝑒𝑝𝜎𝑡𝑑𝐵𝑡
𝜃 (18) 

 

𝑋𝑠 = 𝑒𝑥𝑝(𝐴(𝑠 − 𝑡))𝑋𝑡 + 

+∫ 𝑒𝑥𝑝 (𝐴(𝑠 − 𝑢))
𝑠

𝑡

𝑒𝑝𝜎𝑢𝜃𝑢𝑑𝑢 + 

+∫ 𝑒𝑥𝑝 (𝐴(𝑠 − 𝑢))
𝑠

𝑡

𝑒𝑝𝜎𝑢𝑑𝐵𝑢
𝜃 

(19) 

 

where, 𝐵𝑡
𝜃 = 𝐵𝑡 − ∫ 𝜃𝑠𝑑𝑠

𝑇

0
 is the Esscher transform 

and relates to the risk premium 𝜃 under 
the assumption of θs being a square-integrable 
function with the integral from 0 to T being a real 
value (Benth et al., 2008; Melzer et al., 2017). 

The corresponding mean is: 
 

𝜇𝜃(𝑡, 𝑠, 𝑋𝑠) = 𝑒1
⊺𝑒𝑥𝑝 (𝐴(𝑠 − 𝑡))𝑋𝑡 + 

+∫ 𝑒1
⊺𝑒𝑥𝑝 (𝐴(𝑠 − 𝑢))

𝑠

𝑡

𝑒𝑝𝜎𝑢𝜃𝑢𝑑𝑢 
(20) 

 
and its variance 
 

𝛴2(𝑡, 𝑠) = ∫ 𝜎𝑢
2 (𝑒1

⊺𝑒𝑥𝑝 (𝐴(𝑠 − 𝑢)) 𝑒𝑝)
2𝑠

𝑡

𝑑𝑢 (21) 

 
For further simplification, a continuous-time 

autoregressive (CAR(4))-model based on a fourth-
order autoregressive model (AR(4)) was identified as 
a suitable fit for the deseasonalized wind speed data 
representation (Benth et al., 2008; Benth & Benth, 2009). 

When applying a Logit transformation as then 
the process is given by the inverse transformation 
combination of the seasonal effect 𝛬𝑡 as well as 
the derived values from Eq. (20) and (21) as: 
 

 

1 The p’th unit vector is given as: 𝑒 = [

0
…
0
1

]. 
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𝑈𝑡 =
1

1 + 𝑒𝑥𝑝 (−𝛬𝑡 − 𝜇𝜃(𝑡, 𝑠, 𝑋𝑡) − 𝛴
2(𝑡, 𝑠)𝑍)

 (22) 

 
with Z being white noise. The special case of a log 
transfer yields (Benth & Benth, 2009): 
 

𝑈𝑡 =

{
 
 

 
 (𝜆(𝛬𝑡 + 𝜇𝜃(𝑡, 𝑠, 𝑋𝑡) + 𝛴

2(𝑡, 𝑠)𝑍) + 1)
1
𝜆,

 𝜆 ≠ 0
𝛬𝑡𝑒𝑥𝑝 (𝑋1𝑡),
 𝜆 = 0 

 (23) 

 

3.3.3. Wind power future pricing 

 
As per the definition of the wind power future, for 
all, the US Futures Exchange, the NASDAQ and 
the EEX wind power futures, the futures are settled 
against the actual performance of a defined index 

for the period from 𝜏1 to 𝜏2 and will be financially 

settled at the time 𝜏2. The price for the future 𝐹𝑡,𝜏1,𝜏2 

at time t for the period from 𝜏1 to 𝜏2 is as such 

assumed as the expectation value 𝐸𝑄 of a risk-

neutral probability Q. 
 

𝐹𝑡,𝜏1,𝜏2  ∶= 𝐸𝑄[𝑈𝜏1,𝜏2|ℱ𝑡] (24) 

 

where, ℱ𝑡 is a filtration comprising all information 

up to time t and 𝑈𝜏1,𝜏2 is the underlying index from 

a period 𝜏1 to 𝜏2 (Benth & Benth, 2009). 
Applying the beforementioned formulations for 

seasonal correction and Gaussian risk modelling 
(Benth & Benth, 2009), the US Futures Exchange price 
is stated as:  

 

𝐹𝑡,𝜏1,𝜏2 =

{
 
 

 
 �̅�𝜏1,𝜏2  + 𝑀1/𝜆 (𝜆(𝛬𝑡 + 𝜇𝜃(𝑡, 𝑠, 𝑋𝑡)) + 1,  𝜆²𝛴

2(𝑡, 𝑠)) , 𝜆 ≠ 0

�̅�𝜏1,𝜏2  +∑𝑒𝑥𝑝 

𝜏2

𝜏1

(𝛬𝑡 + 𝜇𝜃(𝑡, 𝑠, 𝑋𝑡) +
1

2
𝛴2(𝑡, 𝑠)) , 𝜆 = 0

 
(25) 

 

with �̅�𝜏1,𝜏2 being the summed daily wind speeds 

during the time period from 𝜏1 to 𝜏2 subtracted from 
100 to reflect the underlying index. 𝑀𝑧(𝑥, 𝑦) is z’th 
moment of a normal random variable with mean x 
and variance y2, which is already depicted in Eq. (25) 
by the corresponding values. 

Melzer et al. (2017) adapt the wind power 
futures price to the NASDAQ-based futures, where 
the prices are determined by the average wind power 
utilization within the future’s contract period as: 
 

 

𝐹𝑡,𝜏1,𝜏2 =
1

𝜏2 − 𝜏1
∫ (1 + 𝑒𝑥𝑝 (−𝛬𝑡 − 𝜇𝜃(𝑡, 𝑠, 𝑋𝑡)−

1

2
𝛴2(𝑡, 𝑠)))

−1
𝜏2

𝜏1

 (26) 

 

3.3.4. Risk premium 
 
The modelling approach using no-arbitrage pricing 
does not incorporate a strategic element for the risk 
premium directly. It is possible to have a risk 
premium factor 𝜃 included to reflect an explicit term 
for risk premia. Under no-arbitrage pricing models, 
this risk premium is derived analytically as 
the difference between observed and modelled 
values (Gersema & Wozabal, 2017; Benth & Benth, 2009): 
 

𝑅𝑡,𝜏1,𝜏2 = 𝐹𝑡,𝜏1,𝜏2
𝑄

− 𝐹𝑡,𝜏1,𝜏2
𝑃  (27) 

 

3.4. Stochastic short-term variation using Lévy 
process type jump risks 
 
An alternative method is a Lévy process-based jump 
risk. Unlike the Gaussian risk approach, the state 
vector xt results from the uncorrected wind power 
utilization 𝑈𝑡 = 𝑋𝑡 + 𝛬𝑡, as symmetry is not a base 
requirement for this approach. The Lévy process 
approach has the advantage over the Brownian 
motion approach or a Jacobi process in that 
the model parameter estimation is straightforward 
and the marginal distribution is fixed to the beta 
distribution (Melzer et al., 2017). 

The Ornstein-Uhlenbeck stochastic process 
follows the approach analogous (Melzer et al., 2017): 
 

𝑑𝑋𝑡 = 𝐴𝑋𝑡𝑑𝑡 + 𝑒𝑝𝑑𝐿𝑡 (28) 

 

where, 𝑒𝑝 is the p’th unit vector and 𝐴 is a p × p 

matrix following Eq. (16) with adapted constants 
𝛼𝑝..1. 

The Lévy process 𝐿𝑡 can therein be represented as: 
 

𝐿𝑡 = ∫ ∫ 𝑧𝑁𝐿 𝑑𝑠 𝑑𝑧
∞

0

𝑡

0

 (29) 

 
where, t is defined to be a time between 0 and T, and 

𝑁𝐿 is a Poisson random measure (PRM) with l as 

a Lévy measure that fulfils ∫ 𝑧𝑙𝑑𝑧
∞

0
< ∞. The integral 

from zero to infinity thereby dictates the jump 
amplitudes and can be limited to a desired range on 
the interval from zero to infinity. 

Under the assumption that all eigenvalues of 

the matrix 𝐴 have a negative real part of a stationary 
solution (Melzer et al., 2017): 
 

𝑋𝑡 = ∫ 𝑒𝑥𝑝 (𝐴(𝑡 − 𝑠))
𝑡

−∞

𝑒𝑝𝑑𝐿𝑠 (30) 

 
The above can be further expressed as 

a CARMA(p,q) — continuous-autoregressive-moving-
average process without stochastic volatility by 
Melzer et al. (2017): 
 

𝑌𝑡 = ∫ 𝑏𝑇𝑒𝑥𝑝 (𝐴(𝑡 − 𝑠))
𝑡

−∞

𝑒𝑝𝑑𝐿
𝑠 (31) 
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with the state equality 𝑌𝑡 = 𝑏
⊺ 𝑋𝑡, 𝑋𝑡 being 

the stationary solution. 𝑌𝑡 is the stochastic short-
term part in the uncorrected wind power utilization 

𝑈𝑡 = 𝑌𝑡 + 𝛬𝑡 and a vector 𝑏 of p-length2. 
The wind power utilization index results from 

the CARMA(p,q) solution 𝑌𝑡 from plus the seasonal 

effect 𝛬𝑡: 
 

𝑈𝑡 = 𝛬𝑡 +∫ 𝑏𝑇𝑒𝑥𝑝 (𝐴(𝑡 − 𝑠))
𝑡

−∞

𝑒𝑝𝑑𝐿𝑠 (32) 

 
The wind power futures price now yields 

(Melzer et al., 2017): 
 

𝐹𝑡,𝑇 =

𝛬𝑇 +∫ 𝑏𝑇 𝑒𝑥𝑝 (𝐴(𝑇 − 𝑠))
𝑡

−∞

𝑑𝐿𝑠 +

+𝐸𝑄(𝐿1)∫ 𝑏𝑇𝑒𝑥𝑝 (𝐴(𝑇 − 𝑠))
𝑇

𝑡

𝜃𝑠𝑑𝑠

 (33) 

 
for a future at time t with delivery at time T, with 
0 < 𝑡 < 𝑇. 
 

3.4.1. Representation with scaling term in linear form 
 
The approach via a Lévy process can also be 

modified including a linear scaling constant 𝜇 for 
the stochastic function portion, and by a linear 
approach. Composing the wind power production 
index in an exponential and multiplication form 
produces (Benth & Pircalabu, 2018). 
 

𝑈𝑡 = 𝛬𝑡𝑒𝑥𝑝 (−𝑋𝑡) (34) 
 

This modifies Eq. (28) to: 
 

𝑑𝑋𝑡 = 𝐴(𝜇 − 𝑋𝑡)𝑑𝑡 + 𝑑𝐿𝑡 (35) 
 

Under same assumptions as above, the solution 
from Eq. (30) then is rewritten to: 
 

𝑋𝑡 = 𝜇 + ∫ 𝑒𝑥𝑝 (𝐴(𝑡 − 𝑠))
𝑡

−∞

𝑑𝐿𝑠 (36) 

 
where, the scaling term 𝜇 is chosen to reflect 
the upper and lower limits by: 
 

𝑚𝑎𝑥(𝛬𝑡) 𝑒𝑥𝑝(−𝜇) = 1
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝜇 = 𝑙𝑛 (𝑚𝑎𝑥(𝛬𝑡)) (37) 

 
The underlying wind power utilization index is 

again the conjecture of the solution 𝑋𝑡 from Eq. (36) 

plus the seasonal effect 𝛬𝑡 the corresponding wind 
power future price reads (Benth & Pircalabu, 2018): 
 
𝐹𝑡,𝑇 = 𝛬𝑇 + 𝑒𝑥𝑝(−𝜇(1 − 𝑒𝑥𝑝(−𝐴(𝑇 − 𝑡))) ×  

× (
𝜅 − 𝜃 + 𝑒𝑥𝑝 (−𝐴(𝑇 − 𝑡)

𝜅 − 𝜃 + 1
)

𝜆𝜅
𝐴(𝜅−𝜆)

 
(38) 

 
 
 

 

2 The vector b can be represented as 𝑏 =

[
 
 
 
 
𝑏0
𝑏1
…
𝑏𝑝−2
𝑏𝑝−1]

 
 
 
 

. 

3.4.2. Representation with multiple zero-reverting 
Ornstein-Uhlenbeck processes 
 
Hees (2021) approaches the wind power production 
index modelling by a stochastic process 𝑌𝑡 alone 
without a direct seasonal component: 
 

𝑌𝑡 = 𝜇𝑡 +∑𝑎𝑘𝑋𝑘,𝑡

𝑛

𝑘=1

 (39) 

 
here, a𝑘 are weights for the respective processes 𝑋𝑘,𝑡 

and 𝜇𝑡 is a continuous real-valued deterministic 
function, which defines the floor value of 
the process 𝑌𝑡. (Hees, 2021) suggests to represent 

𝜇𝑡 ∶= 𝑎 𝑠𝑖𝑛(𝑏𝑡 + 𝜑) + 𝛿, where 𝑎, 𝑏, 𝜑 and 𝛿 are chosen 
constants to yield a floor value function with varying 
amplitude, which should be close to zero. 

This adapts Eq. (28) to: 
 

𝑑𝑋𝑘,𝑡 = −𝜆𝑘𝑋𝑘,𝑡𝑑𝑡 + 𝜎𝑘,𝑡𝑑𝐿𝑘,𝑡 (40) 

 
where, 𝜆𝑘 are the constants for the mean-reversion 

velocities, 𝜎𝑘,𝑡 are the volatility functions and 𝐿𝑘,𝑡 is 

a Poisson Lévy process with 𝐿𝑘,𝑡 = ∫ ∫ 𝑧𝑑𝑁𝑘,𝑠,𝑧
∞

0

𝑡

0
, 

where, 𝑁𝑧 is PRM. 
Considering the above, the solution as in 

Eq. (30) then rewrites to: 
 

𝑋𝑘,𝑡 = 𝑥𝑘𝑒𝑥 𝑝(−𝜆𝑘𝑡) + 

+∫ ∫ 𝑒𝑥𝑝 (−𝜆𝑘(𝑡 − 𝑠)𝜎𝑘,𝑠𝑧 𝑑𝑁𝑘,𝑠,𝑧

∞

0

𝑡

0

 
(41) 

 
The resulting wind power production index is 

then simplified by setting a𝑘 = 1, ∀𝑘 and 𝜇𝑡 = 0, 
yielding: 
 

𝑌𝑡 = ∑𝑋𝑘,𝑡

𝑛

𝑘=1

 (42) 

 
In the absence of an explicit seasonal effect, 

the wind power production index 𝑌𝑡 bound within 
the definition limits reads as: 
 

𝑈𝑡 = 𝑚𝑖𝑛 (𝑌𝑡, 1) (43) 
 

Applying this to the wind power future price 
yields (Hees, 2021): 
 

𝐹𝑡,𝑇 =1 −∫
1 − 𝑖𝑢 − 𝑒𝑥𝑝(−𝑖𝑢)

2𝜋𝑢2

∞

0

𝑒𝑥𝑝 (𝐴𝑡(𝑢, 𝑇))𝑑𝑢 (44) 

 
with a defined function 𝐴𝑡(𝑢, 𝑇) as depicted in 
the publication. For the time dynamics 𝑑𝑓, 
Hees (2021) derives: 
 

𝑑𝑓𝑡,𝑇 =∑∫ 𝛾𝑘(𝑡, 𝑧, 𝑇)𝑑�̃�𝑘
𝑄(𝑡, 𝑧)

𝐷𝑘

𝑛

𝑘=1

 (45) 

 

where, �̃�𝑘
𝑄(𝑡, 𝑧) are the Q compensated PRMs and 

gamma is a stochastic process defined as 𝛾𝑘(𝑡, 𝑧, 𝑇) =

 ∫ 𝑒𝐴𝑡(𝑢,𝑇)
1−𝑖𝑢−𝑒−𝑖𝑢

2𝜋𝑢2
[1 − 𝑒𝑖𝑢𝜃𝑘(𝑡,𝑧,𝑇)]𝑑𝑢

∞

0+
 within the time 

interval 0 ≤ 𝑡 ≤ 𝑇. 
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3.4.3. Risk premium 
 
Equation (27) holds true also for the Lévy process 
approach. In the special representation by 

Hees (2021), the risk premium 𝑅𝑡,𝑇 is analytically 

derived as: 
 

𝑅𝑡,𝑇 = ∫
1 − 𝑖𝑢 − 𝑒−𝑖𝑢

2𝜋𝑢2
[𝑒𝐻𝑡(𝑢,𝑇) − 𝑒𝐴𝑡(𝑢,𝑇)]𝑑𝑢

∞

0+

 (46) 

 

3.4.4. Pricing of options 
 
On top of the modelling of the derivatives, Benth 
and Benth (2009) and Benth and Pircalabu (2018) 
expand the models by including the pricing of 
options. The call option price is then derived as: 
 

𝐶𝑡,𝐾,𝜏1,𝜏2,𝜏𝐾 = 𝑒𝑥𝑝(−𝑟(𝜏𝐾 − 𝑡))𝐸(𝑚𝑎𝑥(𝐹𝑡,𝜏1,𝜏2)

− 𝐾, 0|ℱ𝑡) 
(47) 

 

where, 𝐾 is the strike price, 𝜏1 and 𝜏2 defines 
the start and the end of the contractual period for 
the derivative, 𝜏𝐾 is the exercise time for the wind 

power future, and 𝑟 is the risk-neutral interest rate. 
Obviously, the time elements shall obey 
𝑡 < 𝜏𝐾 < 𝜏1 < 𝜏2. 
 

4. EQUILIBRIUM PRICING MODEL 
 
Equilibrium models capture the fundamental 
economics of rational risk-averse market 
participants and explain their trading behaviour 
based on a risk premium size, structure and driver. 
As such the underlying strategies for risk premia can 
be assessed. For this Gersema and Wozabal (2017) 
introduce a game with two different players, 
the owners of wind power plants and the owners of 
conventional generation plants. The goal of 
the model is to investigate the hedging strategy of 
both players to mitigate their respective risks. 
 

4.1. Equilibrium price market model 
 
Gersema and Wozabal (2017) propose a model with 
the assumption of a homogeneous group for both 
players, which is valid under pure hedging 
and neglecting individual factors. Furthermore, 
the expected utility by each player is linearly related 
to the expected profits and variance. The utility 𝑈(�̅�) 
of a player with respect to the average profit �̅� is 
defined as: 
 

𝐸(𝑈(�̅�)) = 𝐸(�̅�) − 𝜆/2 𝑉𝑎𝑟(�̅�) (48) 
 
where, 𝜆 is the risk aversion with zero representing 
neutrality and positive values scaling the risk 
aversion. 𝑉𝑎𝑟(𝑥) represents the function to obtain 

the variance of x and 𝐸(𝑥) yields the expectation 
value of x. 

Therein the profit is composed of a component 

from the average general business profits �̅� 3 and 

the profits from the wind power futures 𝑄(𝐹𝑡 − 𝐹𝑇), 

 
3 General business profits in this instance mean operational profits that are 
generated by the wind or conventional power generation. Any financial 
market instrument related profits as by the wind power futures are explicitly 
excluded. 

with the volume of the futures Q, the futures start 
price 𝐹𝑡 and the future’s price at maturity 𝐹𝑇, as: 
 

�̅� = �̅� + 𝑄(𝐹𝑡 − 𝐹𝑇) (49) 
 

By maximizing the overall utility of each player 
via a first-order condition, the optimal quantity of 
wind power futures is received as: 
 

�̂� =
𝐹𝑡 − 𝐸(𝐹𝑇) 

𝜆𝑉𝑎𝑟(𝐹𝑇)
+
𝐶𝑜𝑣(�̅�, 𝐹𝑇) 

𝑉𝑎𝑟(𝐹𝑇)
 (50) 

 
The first term is a speculative position, which 

is valid for both players and dependent on 
the volume of futures with their price difference 
between start and maturity. Its profit relates directly 
to the change over time in the future. To maintain 
a stable futures market, the quantity of wind power 
futures for both wind power producers and 
conventional generators must be balanced. 
The hedging position, represented by the correlation 
between operational profits �̅� and futures prices at 
maturity remain independent of risk aversion. 

The resulting equilibrium price is then given as: 
 

𝐹𝑡 = 100 𝐸(�̅�) − 𝜉((𝐶𝑜𝑣(�̅�𝑊, �̅�) + (𝐶𝑜𝑣(�̅�𝐶 , �̅�)) (51) 
 
with the indices W and C representing the wind 
power producers and the conventional generators 
respectively, the factor 𝜉 represents the risk aversion 
ratio with: 
 

𝜉 = 100
𝜆𝑊𝜆𝐶
𝜆𝑊 + 𝜆𝐶

 (52) 

 

and the average wind capacity factor �̅� over 

the measurement period 𝑇 is: 
 

�̅� =
1

𝑇
∑�̅�ℎ

𝑇

ℎ=1

 (53) 

 
The first term in Eq. (51) is a risk-neutral 

expectation value, while the second term comprises 
the risk premium. The risk premium is thereby 
steered by the sign and amount of the covariance of 
the average wind capacity factor and the respective 
operational profits of each player. 

To evaluate this covariance, the operating 
profits are derived for the wind power producer as: 
 

𝜌𝑊̅̅ ̅̅ = 𝑃∑𝐾ℎ𝑊ℎ̅̅ ̅̅

𝑇

ℎ=1

 (54) 

 

where, 𝑃 is the constant power market price and 𝐾ℎ 
is the total wind generation capacity of 
the producer’s assets. This assumption is justified 
based on the feed-in tariff-based and auction-based 
pricing. 

For the conventional generator, the corresponding 
general business profits are: 
 

𝜌𝐶̅̅ ̅ = ∑𝑃𝐶ℎ𝑅ℎ −

𝑇

ℎ=1

𝑏
𝑅ℎ

E(𝑅ℎ)
𝜁−1

 (55) 
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where, 𝑃𝐶ℎ is the fluctuating power market price at 

the power exchange and 𝑅ℎ is the residual load. 
The second term is the cost function with 
an exogenous chosen scaling parameter 𝑏 to match 

historical data, and the parameter 𝜁 controlling 
the convexity of the cost function. 
 

4.2. Economic model by simulation of variables 
 
The outlined model is based on four random 

variables: the wind capacity factor �̅�, the solar 

generation 𝐺, system-wide demand 𝐷 and spot 

power price 𝑃𝐶ℎ. It is hourly-based (Gersema & 
Wozabal, 2017). These variables are modelled using 
a stochastic model in two steps. Firstly, the seasonal 
trend component is captured through kernel 
regression, forecasting capacity factors for wind and 
solar power production, adjusted for capacity 
additions. Wind forecasts are daily-based, while 
solar forecasts consider 24 distinct values per day to 
address intra-day variance. Hourly realizations are 
then modelled through block-wise bootstrapping of 
hourly deviations from a deterministic trend, with 
random residuals selected in weekly blocks to 
preserve serial correlation across three seasons 
(summer, winter, transition). Day-ahead prices are 
modelled in a linear regression with the parameters 
of daily temperature, daily prices for natural gas, 
and minutes between sunrise and sunset (Gersema & 
Wozabal, 2017). 
 

5. FINDINGS FROM EXISTING MODELS 
 
The present models all relate their model results to 
real-world data and derive conclusions relevant to 
the market. This section summarizes these findings, 
noting any differences where applicable. Overall this 
gives an overview of the critical elements that need 
to be reflected in any model. 
 
 

5.1. Wind utilization 
 
The wind capacity factor exhibits a seasonal trend, 
with winter months having higher utilization 
compared to summer. In January, utilization 
averages 24.9%, while in July sees only 11.8%. April 
and October fall in between. Winter has the highest 
standard deviation, indicating higher absolute and 
relative risk compared to summer. Symmetrization 
of Gaussian risk factors shows a positive skewed 
function, with the median smaller than the mean 
(Gersema & Wozabal, 2017). The seasonality as such 
has to be reflected in any model. 
 

5.2. Wind power future prices 
 
Future prices closely match forecasted values from 
models by Benth and Pircalabu (2018), Melzer 
et al. (2017) and Gersema and Wozabal (2017) 
indicating the effectiveness of these models in 
describing wind power futures. Expected future 
prices show a linear increase for wind power 
producers and a linear decrease for conventional 
generators. With wind power producers bearing 
a risk premium, the intersection of price and 
demand for wind power futures is anticipated to 
shift towards higher prices and lower quantities. 

Notably, the overall traded volume remains constant 
across months, with variations primarily in prices 
affecting market volume (Gersema & Wozabal, 2017). 
 

5.3. Risk premium 
 
The publications by Benth and Pircalabu (2018) and 
Melzer et al. (2017) analyze wind power futures 
using a no-arbitrage pricing model, comparing actual 
prices with predicted ones to determine the risk 
premium. Disagreement arises on whether the risk 
premium is perceived as positive or negative. Melzer 
et al. (2017) find a decreasing negative risk premium 
for longer contractual times and maturity, while 
Benth and Pircalabu (2018) suggest an inter-annual 
and contract-specific dynamic. They also note 
an increasing risk premium for short-term deliveries 
due to low market liquidity and short-term weather 
forecasts, which are not modelled. The risk premium 
for weekly and monthly contracts tends towards 
zero towards the time of maturity when the weather 
forecast for the delivery period gets sufficiently 
accurate to neglect wind volume risks. 
The seasonality of the risk premium of weekly 
contracts is positive in winter and negative in 
summer. In contrast, in energy futures, the risk 
premium is increasing and even reaches a positive 
value for times close to delivery (Benth & Pircalabu, 
2018). A similar trend can be expected and seen for 
wind power futures. This would yield an even higher 
risk premium in times of high volatility, meaning 
during winter times. 

The risk premium is influenced by factors such 
as the convexity of the cost function for 
conventional generators and wind compensation and 
capacity increase for wind power producers 
(Gersema & Wozabal, 2017). In terms of the power 
demand, it is indirectly related to the hedging 
discount. This is based on the proportionality of 
the conventional generator’s volume and profit on 
the power demand. Further a higher demand likely 
also yields higher market prices for power and thus 
higher profits for conventional generators. 

Risk aversion parameters affect the absolute 
size of the risk premium but not its sign. Calculated 
risk levels are significantly higher than expected 
profits, indicating high risk aversion in the market 
(Gersema & Wozabal, 2017). The calculated risk 
levels for each euro of variance are weighted in 
the range of two to seven times as high as 
the expected profit (Gersema & Wozabal, 2017). This 
is in line with risk aversion on relative returns and 

yields a risk aversion in the range of 𝜆~10−8. This is 
in line with the size of the risk aversion factor in 
other areas of research. 
 

5.4. Challenges of wind power futures 
 
The equilibrium model by Gersema and Wozabal 
(2017) demonstrates asymmetric risk volumes for 
wind power producers and conventional generators 
due to differences in operational profit correlations. 
This inequality in risk leads to varied demand for 
wind derivatives. Hedging efficiency, as highlighted 
by Gersema and Wozabal (2017), depends heavily on 
the correlation between a producer’s utilization and 
the overall utilization, affecting the suitability of 
wind power futures as hedging tools. Custom-made 
OTC contracts may be preferable in cases of low 
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correlation. The inefficiency of current wind 
derivatives markets, attributed to the lack of 
an accurate evaluation model, discourages investor 
participation compared to temperature derivatives 
markets, contributing to low market capitalization 
and limited interest from financial institutions in 
wind power derivatives. 

The hedging efficiency is a major driver for 
the acceptance and spread of the respective wind 
power futures. It depends heavily on the correlation 
of the producer’s utilization with the overall 
utilization, as the currently traded wind power 
futures by NASDAQ and EEX are based on an 
aggregated index. In the example of EEX in Germany, 
this would be the utilization in Germany and 
the utilization by the individual wind power 
producers in Germany. As derived for the Amprion 
zone the correlation between the overall EEX index 
and the Amprion utilization is at 0.79, for Tennet 
at 0.97, for 50Hertz at 1.00 and for Transnet at 0.58. 
This trend is confirmed by a comparison of 
the actual wind power production to a synthetic 
index representing the NASDAQ underlying index as 
done by Benth and Pircalabu (2018). In contrast, 
a wind power producer located in the Transnet zone 
would not see the EEX wind power futures as 
a suitable hedging tool, as it does not correlate well 
with the wind volume risks in its area and OTC 
is preferable. For a wind power producer in 
the 50Hertz zone, the EEX wind power futures would 
be an excellent option due to a perfect correlation. 

In the case of the US Futures Exchange’s wind 
power futures, this effect was especially dominant 
as the underlying index represented discrete areas in 
New York state and Texas. While this is of benefit 
for these respective represented discrete areas, 
the hedging efficiency can be believed to be low for 
any other wind power producers. This can also be 
seen as one of the reasons for its collapse 
(Alexandridis & Zapranis, 2013). As a way out of this 
dilemma, location-specific pricing could be applied, 
at the expense of a simple structure. 

While there is demand for wind power and 
hedging tools to manage wind volume risk, investors 
appear hesitant to engage in wind derivatives, unlike 
the positive growth trend observed in temperature 
derivatives. One contributing factor to this 
reluctance among financial institutions could be 
the absence of a widely accepted model for 
accurately and reliably evaluating these derivatives, 
leading to low market capitalization and diminished 
interest in wind power derivatives (Alexandridis & 
Zapranis, 2013). 
 

5.5. Changes in the power market not reflected in 
models 
 
All models presented in prior literature are based on 
data prior to 2021. The electricity spot market in 
Europe has undergone several changes since then. 
On an observable note, the price spread is 
increasing. As an example, Germany experiences 
an increase in the number of hours with negative 
prices and more and more curtailment of renewable 
power assets. On the negative prices, 2021 showed 
140 hours, 2022 — 69 hours, 2023 — 301 hours and 
the first half of 2024 (until July) had already 
305 hours. Grid constraints and renewable 
production exceeding demand led to a record high 

of 10 TWh of curtailed renewable energy in 2023 in 
Germany (EEX, n.d.). 

These changes were partially also induced by 
the rapid growth in solar power generation assets in 
the European and especially the German grid 
(Schöniger & Morawetz, 2022). German solar 
capacity increased from 60 GW to over 80 GW 
between 2021 to 2023 (Bundesnetzagentur, 2024). 
This is a rapid increase compared to the relatively 
shallow additions in the timeframe of the model’s 
observations. 

Taking these into consideration, an updated 
model would need to properly reflect 
the curtailment risk and the negative price risk. 
The negative hours and the as-produced solar 
generation show a high correlation (Biber et al., 2022; 
Prokhorov & Dreisbach, 2022). The model is 
proposed to formulate the indirect effects of solar 
generation and the induced risk of curtailment 
based on overproduction and negative prices. 
The production from solar would thus have 
a negative effect on the price potential for the wind 
assets. 
 

6. CONCLUSION 
 
The motivation for wind power futures originally 
stemmed from changes in the wind market 
regulations, especially in Germany. It was intended 
as a hedging tool for developers and generators to 
derisk the production risks of wind farms. Following 
this, also literature on wind power futures emerged 
with models describing the real production cases 
and presenting an analytical result of the risk 
premium. These models included no-arbitrage 
pricing models, using a seasonal element and 
a stochastic short-term term. Notably, the TFS 
approach and the Lévy process are popular due to 
their modelling efficiency and ability to handle 
skewed data. Another unrelated approach is 
the equilibrium price approach to derive optimal 
strategies for wind power producers and 
conventional generators. 

Analysis of actual wind power data by 
the existing models in a pre-2021 setup on 
the NASDAQ futures reveals inconclusive findings 
on risk premiums, with some studies observing 
seasonal variations in the risk premium. 
For instance, a positive risk premium is noted in 
winter, and a negative one in summer, due to 
differing production risks and volatility hedging 
needs. These risk premiums also vary 
asymmetrically between wind power producers and 
conventional generators. 

With changed market characteristics since 
2021, which culminate in increased price spreads 
and more negatively priced hours, the modelling 
without such reflections limits the future risk 
reflection to real market data. The existing models 
are hence suggested to be expanded by 
incorporating such effects, which are indirectly 
linked to the weather uncertainties for solar power 
generation. We hope that upcoming research will 
ensure this expansion and derive direct applications 
under these new market conditions. On top of 
the above, no-arbitrage models currently do not 
account for information gained as the maturity of 
the future approaches, which affects risk premiums. 
Incorporating factors like accurate weather forecasts 
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could address this. Applying the adapted models to 
EEX data, which hasn’t been covered yet, could 
confirm the adapted model’s accuracy, especially for 
the focus markets in Europe. 

On the side of equilibrium price models, it was 
identified that the absence of investors in the 
models poses limitations. Investors as a potential 
player shall be included in subsequent models to 

fully cover their incentives and drives, which are yet 
unexplored. Unlike the no-aritrage models, 
the equilibrium price models are agnostic — in 
principle — to the market characteristics of added 
solar power and increase fluctuations., Hence, 
the recent market changes do not require 
adaptatons in the model, but require a recalculation 
of the model under revised input conditions.  
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