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This study evaluates the effectiveness of tree-based machine 
learning algorithms in predicting personal default risk, with 
a specific focus on commercial banks in Vietnam. By analyzing 
a dataset of 7,500 customers from various financial institutions 
collected between 2015 and 2023, we assess the performance of 
these algorithms using confusion matrix, accuracy, precision, 
sensitivity, specificity, F1 score, and area under the curve (AUC) as 
evaluation metrics. Our findings reveal that while traditional models 
like logistic regression (LR) serve as a baseline, advanced algorithms 
such as random forests (RF) and XGBoost (XGB) significantly 
enhance predictive accuracy and robustness, particularly in 
handling complex and imbalanced datasets (Chen & Guestrin, 2016). 
Among these, XGB stands out as the most effective model, 
demonstrating superior performance across all evaluation metrics 
(Li et al., 2020). Additionally, the feature importance analysis 
highlights the critical roles of loan characteristics, applicant 
financial information, employment and residential information, and 
credit history in default prediction. Notably, loan term, highest 
credit cap, employment tenure, and active accounts number emerge 
as the most influential features, shaping the individual probability 
of default. However, limitations in data availability and 
the directional impact of feature variables within the model may 
reduce the generalizability and interpretability of the predictive 
model. This research provides valuable insights for financial 
institutions aiming to improve their credit risk management 
practices by adopting sophisticated machine-learning models to 
predict personal defaults. 
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1. INTRODUCTION 
 
Accurate estimation of personal default risk is 
a cornerstone of modern credit risk management, 
enabling financial institutions to comprehensively 
assess borrowers’ financial conditions, determine 
appropriate interest rates, and establish well-
informed lending terms. Beyond individual risk 
assessment, accurate predictions also strengthen 
loan portfolio management by enhancing credit 
quality evaluation, optimizing pricing strategies, and 
mitigating financial instability. This capability 
ultimately contributes to the development of more 
resilient credit risk management frameworks, 
helping financial institutions minimize potential 
losses and improve operational efficiency 
(Eyalsalman et al., 2024; Arifaj & Baruti, 2023).  

Several machine learning algorithms, including 
logistic regression (LR), decision trees (DT), random 
forests (RF), and XGBoost (XGB), have been found to 
greatly enhance default prediction accuracy. These 
advanced strategies outperform existing methods 
for dealing with complex data and capturing 
nonlinear relationships between variables (Bao et al., 
2019). LR is a well-known statistical procedure that 
is both simple and easy to understand. It works 
especially well when there is a linear relationship 
between the log-odds of the dependent variable and 
the independent variables (Peng et al., 2002). 
On the other hand, DT is an intuitive, tree-structured 
model that divides data into segments depending on 
feature values, making them simple to visualize and 
comprehend (Lee et al., 2022). RF, an ensemble 
approach, increase decision tree performance by 
averaging many trees’ outputs, reducing overfitting 
and increasing prediction accuracy (Breiman, 2001). 
Meanwhile, XGB, a gradient boosting algorithm, has 
grown in prominence due to its ability to handle 
nonlinear connections robustly and provide 
improved optimization capabilities (He et al., 2024).  

However, numerous academics have expressed 
differing opinions on the efficacy of these models. 
Pate et al. (2023) argue for LR since it is simple and 
successful in linear circumstances. However, 
Dumitrescu et al. (2022) argues that LR’s performance 
deteriorates with non-linear data and complicated 
interactions, implying that even with additional 
interaction terms and polynomial characteristics, 
the model’s interpretability is severely reduced. 
In contrast, Chen and Guestrin (2016) argue that 
XGB is preferable at dealing with big, complex, and 
unbalanced datasets. Li and Chen (2020) back this 
up by showing that XGB routinely outperforms other 
models, including LR and RF, in terms of accuracy 
and area under the curve (AUC). They suggest that 
RF strikes a fair balance between simplicity and 
predictive capability, making it a dependable option 
for complex datasets. Deng and Runger (2013) 
discovered that RF outperforms both LR and DT in 
datasets with high dimensionality and complexity. 
Recent investigations back up these conclusions. 
According to Velarde et al. (2024), XGB surpasses 
other models in predicting accuracy, especially when 
dealing with complicated relationships and 
unbalanced datasets. Furthermore, Shetty et al. 
(2022) found that RF outperformed DT and LR in 
forecasting loan defaults, demonstrating the 
ensemble method’s resilience and generalization 
capabilities. 

Moreover, debate about which feature group 
most significantly impacts personal default risk 
continues, with various perspectives highlighting 

the complexity of credit risk assessment (Goel & 
Rastogi, 2023). Some researchers argue that loan 
characteristics like loan duration and purpose are 
crucial, as they directly affect financial 
commitments and may increase default risk over 
longer periods (Qi, 2023). Conversely, other studies 
suggest that employment and residential stability 
are better predictors of default risk, reflecting long-
term financial health and stability (Naili & Lahrichi, 
2022). Research also points to the importance of 
applicant financial information, such as credit limits 
and income levels, as critical indicators of 
creditworthiness. However, an over-reliance on any 
single factor, such as credit history, might fail to 
capture the full picture of a borrower’s financial 
situation, suggesting the need for a balanced 
approach that integrates various aspects of 
a borrower’s profile in risk assessment (Avery 
et al., 2004). 

Therefore, the purpose of this study is to 
provide an in-depth comparison of tree-based 
algorithms such as DT, RF, and XGB in predicting 
personal default risk. By identifying the most 
effective forecasting model, the article aims to 
determine the most important features influencing 
personal default risk. The results are expected to 
help financial institutions gain deeper insights into 
the performance of these algorithms, helping them 
make more accurate decisions in managing 
credit risk. 

The rest of the article is structured as follows: 
Section 2 provides the theoretical background, 
reviewing the LR, DT, RF, and XGB algorithms along 
with their application in credit risk assessment. 
Section 3 describes the research methodology, 
including research design, tree-based algorithms, 
and performance metrics. Section 4 presents 
experimental results, comparing the performance of 
the models based on different evaluation criteria. 
Finally, Section 5 summarizes the key findings, 
discusses the benefits and limitations of tree-based 
models in personal default prediction, and suggests 
future research directions. 

 

2. LITERATURE REVIEW 
 
Advanced models like neural networks, evolutionary 
algorithms, and ensemble methods are increasingly 
adopted by banks and financial institutions to 
enhance the accuracy of credit assessments and 
decision-making processes (Addo et al., 2018). LR 
remains a popular method for binary classification 
tasks, such as predicting loan defaults. Liu et al. 
(2024) demonstrate LR’s effectiveness with linear 
relationships. However, its limitations become 
evident in non-linear and complex data structures. 
Fitzpatrick and Mues (2021) highlight that while 
interaction terms can enhance LR’s predictive 
capabilities, they may increase model complexity 
without significant accuracy improvements in 
complex scenarios. Pan et al. (2024) proposed that 
the efficiency of LR can be improved by reducing 
the dimensionality of the data using the principal 
component analysis technique. DT is valued for its 
simplicity and transparency, making it useful for 
initial data exploration and feature selection (Lee 
et al., 2022). However, Sagi and Rokach (2018) warn 
against their propensity to overfit, especially with 
noisy data. Ensemble methods like RF can mitigate 
these risks and improve model resilience (Sun 
et al., 2024). 
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RF addresses the overfitting issue inherent in 
DT by averaging the results of multiple trees, 
thereby increasing robustness and generalizability. 
Breiman (2001) and Iranzad and Liu (2024) 
demonstrated that RF reduces variance and 
effectively handle high-dimensional data. Ghatasheh 
(2014) found that RF outperforms both LR and DT in 
complex datasets, making it a robust choice for 
various credit risk prediction tasks. 

XGB is renowned for its exceptional 
performance with large, complex, and imbalanced 
datasets. Chen and Guestrin (2016) emphasize XGB’s 
ability to handle missing data and capture complex 
variable interactions. Studies by Uddin and Rahman 
(2017) and Suhadolnik et al. (2023) consistently 
show XGB outperforming models like LR and RF in 
terms of accuracy and AUC, establishing it as 
a preferred choice for credit risk management. 

Recent research supports these findings. Zhou 
(2023) notes that RF outperforms DT and LR in 
forecasting loan defaults, highlighting ensemble 
methods’ resilience and generalizability. Barua et al. 
(2021) compared XGB with CatBoost, finding XGB 
superior in several instances despite CatBoost’s 
promising results. However, in the study of Nguyen 
and Ngo (2025), it was shown that XGB did not show 
superiority over LightGBM and CatBoost in 
predicting customer bankruptcy risk. 

While LR is praised for its simplicity and 
interpretability, it often falls short in complex and 
non-linear situations compared to advanced models 
like XGB and RF. XGB stands out as the most robust 
and accurate model for predicting personal loan 
defaults, particularly in challenging datasets, though 
RF also performs well due to its resilience and 
capability to handle complex data structures 
effectively. The ongoing debate about which features 
most significantly impact personal default risk 
highlights the complexity of credit risk assessment. 
Researchers are divided on the importance of 
different variables in predicting defaults. 

Some studies emphasize the critical role of loan 
characteristics, such as duration and purpose, as 
they directly affect financial commitments and 
lenders’ risk exposure. Prolonged loan terms may 
increase default risk due to extended financial 
obligations (Qi, 2023). Alternatively, other studies 
argue that employment stability and socio-economic 
factors are more accurate predictors of default risk, 
reflecting long-term financial health and stability. 
Stable employment and homeownership are 
associated with lower default risks, indicating 
financial stability (Naili & Lahrichi, 2022). Applicant 
financial information, including credit limit, income, 
and debt levels, is also crucial in evaluating 
creditworthiness. Higher income generally correlates 
with lower default risk, though focusing solely on 
financial metrics may overlook broader socio-
economic factors (Jiang, 2022). Credit history 
provides insights into financial behavior and 
reliability, but over-reliance on it can ignore current 
financial situations (Avery et al., 2004).  

Other critical factors include job stability and 
asset ownership are consistently linked to better 
financial health and lower default rates (Fay et al., 
2002). Additionally, the loan’s purpose, monthly 
obligations, credit history duration, and number of 
open accounts are important. Income-generating 
loans and well-managed credit profiles reduce 
default risk (Qi, 2023). Longer intervals since the last 
default and smaller credit balances indicate better 
credit behavior (Hussin Adam Khatir & Bee, 2022). 

Effective management is crucial to mitigating these 
risks, despite the financial benefits of large credit 
limits (Lu et al., 2024). 

The review of the research results above 
indicates that there are still certain debates 
about the effectiveness of tree-based algorithms. 
Additionally, determining which feature groups play 
an important role in predicting personal default risk 
remains an issue that requires further clarification. 

 

3. METHODOLOGY 
 

3.1. Research design 
 
The study focusses on creating and testing multiple 
machine learning models for forecasting personal 
loan defaults, using a systematic approach from 
data preparation to model deployment. The models 
being considered include XGB, RF, DT, and LR. 
The methodological framework follows a structured 
process to ensure data integrity, model robustness, 
and reliable evaluation metrics. The research design 
is illustrated in Figure 1, outlining key analytical 
stages. 

The first stage is data preparation, ensuring 
the dataset is of high quality and suitable for 
training predictive models. The dataset, which 
comprises financial and credit information from 
Vietnam’s commercial banks, undergoes multiple 
preprocessing steps: 

1. Data cleaning: Duplicate entries are 
identified and removed to prevent redundancy and 
ensure analysis integrity. Missing values are handled 
using multiple imputation techniques, such as mean, 
mode, or median imputation, depending on 
the distribution of missing data. For non-normally 
distributed variables, K-nearest neighbors 
imputation is applied to preserve data structure. 

2. Handling class imbalance: Since loan default 
datasets often exhibit imbalance, the synthetic 
minority over-sampling technique (SMOTE) with 
Tomek links is used. SMOTE generates synthetic 
examples for the minority class, while Tomek links 
remove ambiguous borderline samples from 
the majority class, leading to a more distinct 
decision boundary and reducing overfitting to the 
dominant class. 

The next stage is model training phase involves 
developing and fine-tuning the four selected models. 
Each model is initialized with baseline 
hyperparameters, which are optimized using 
an iterative tuning process. During training, 
the models iteratively alter their parameters to 
minimise the loss function, and the process is 
continuously monitored to guarantee effective 
learning while avoiding overfitting. A validation set 
is used to fine-tune each model’s hyperparameters. 
Grid search and random search are used to find 
the ideal collection of hyperparameters that 
maximise the model’s performance on 
the validation set. 

After training, model evaluation is conducted 
on a separate test set using seven performance 
metrics such as confusion matrix, accuracy, 
sensitivity, specificity, precision, F1 score, and AUC. 
These measures give a thorough evaluation of each 
model’s ability to accurately forecast personal loan 
defaults. 

Finally, the deployment phase ensures that 
trained models are preserved and ready for real-
world application. The models are serialised and 
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saved in a way that allows for easy reloading and use 
in future forecasts. This includes preserving 
the model’s architecture, weights, and any necessary 
preprocessing processes. This project intends to 
create strong prediction models that can help 
financial institutions identify persons at risk of 

default by utilising advanced data preparation 
techniques and cutting-edge machine learning 
algorithms. This comprehensive approach 
guarantees that the models remain accurate, reliable, 
and ready for practical deployment.  

 
Figure 1. Description of research design 

 

 
Source: Gao et al. (2021). 
 

3.2. Forecasting methods based on tree-based 
machine learning models 
 
The class of machine learning models based on tree 
structures includes methods that use hierarchical 
tree topologies to perform supervised learning tasks 
such as classification and regression. These models 
work by splitting the dataset into increasingly 
smaller subgroups using decision rules generated 
from attribute feature values. Tree-based algorithms 
are regarded as simple, interpretable, and capable of 
handling a wide range of data types. Popular models 
in this field include DT, RF, XGB. The extensive use 
of these models can be ascribed to their ability to 
uncover important patterns and make accurate 
predictions from complicated datasets.  
 

3.2.1. Decision tree 
 
DT is an essential classification tool in machine 
learning, particularly useful for identifying personal 
default risk based on customer attributes. 
In predicting personal bankruptcy, DT utilizes 
metrics such as entropy or the Gini index to 
optimize classification, effectively distinguishing 
between high-risk and low-risk customers. This 
research selects the Gini index due to its ease of 
calculation and its ability to make DT more 
computationally efficient. This approach enhances 
the precision and effectiveness of identifying 
individuals likely to default, providing valuable 
insights for financial institutions managing 
credit risk. 

The Gini index, also referred to as Gini 
impurity, is a metric used to quantify the likelihood 
of a randomly chosen sample being misclassified if 
it were assigned a label at random based on the label 
distribution within that subset. The Gini index is 
defined for a dataset S as follows: 
 

𝐺(𝑆) =  1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

 (1) 

 

In this measure, 𝑝𝑖 represents the proportion of 
samples that belong to class i within set S (in this 
case, class i could be “default” or “non-default”). 
The lower the Gini value, the more homogeneous 
the dataset becomes. 

In DT, the selection of features for data 
splitting at each node is guided by the objective of 
achieving the lowest Gini impurity post-split. 
The Gini gain, which quantifies the reduction in Gini 
impurity, is a crucial metric used in the construction 
of DT to evaluate the improvement (or reduction) in 
impurity following the division of data based on 
a specific feature. The Gini gain is computed by 
subtracting the weighted average of the Gini 
impurities of the subsets resulting from the split 
from the initial Gini impurity of the dataset: 
 

𝐺𝑖𝑛𝑖 𝑔𝑎𝑖𝑛 (𝑆, 𝐴) =  𝐺(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝑣 𝜖 𝑉𝑎𝑙𝑢𝑒(𝐴)

𝐺(𝑆𝑣) (2) 

 

In this context, 𝑆𝑣 is the subset of S when 
the feature A takes the value v. 

Gini gain measures the extent to which each 
feature contributes to reducing heterogeneity 
within the dataset when employed to split data at 
a node. The feature with the highest Gini gain is 
deemed the most optimal for forming 
the subsequent split node, as it generates subsets 
with the highest degree of homogeneity. 

The tree-building process is iteratively repeated 
across the data features until one of the following 
conditions is met: 1) each leaf node attains 
a specified level of homogeneity, or all transactions 
at a node belong to a single class, either “default” or 
“non-default” (Gini = 0); 2) the tree reaches 
a predefined depth; 3) the number of transactions at 
a node falls below a certain threshold. This 
systematic methodology ensures that the decision 
tree optimally categorizes the data, minimizing 
impurity at each stage of the split.  
 
 
 

Preprocessing 
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3.2.2. Random forest 
 
RF is an ensemble technique that combines multiple 
DT to reduce the risk of overfitting, enhance 
accuracy, and improve the model’s generalizability. 
In the context of predicting personal bankruptcy, 

a RF consists of several DT 𝑇𝑏(X), where each tree b 
is a function of the training dataset X, constructed 
from a bootstrap sample of X. This approach 
leverages the power of multiple trees to produce 
a robust predictive model that is less prone to 
the biases and variances inherent in individual DT. 
The number of trees B and the operational 
methodology of each tree within the forest are 
defined as follows: 

 

𝑅𝐹 =  {𝑇1(𝑋), 𝑇2(𝑋), … , 𝑇𝐵(𝑋)} (3) 
 

In the RF model, each tree 𝑇𝑏(X) is constructed 
following these guidelines: 

1) each tree 𝑇𝑏 is developed from a bootstrap 

sample of the original dataset X, denoted as 𝑋𝑏 

(where 𝑋𝑏 = BootstrapSample(X));  
2) during the construction of each node within 

the tree, a random subset m of the attributes is 
selected from the total p attributes of the dataset 
(m ≤ p). These attributes are then evaluated based on 
the Gini impurity index to determine the optimal 
splitting point. 

In the context of predicting personal 
bankruptcy, the prediction made by the RF model 
for a new customer 𝑥 is determined by aggregating 
the majority vote from the ensemble of trees. This 
collective decision-making process leverages 
the strengths of multiple DT to enhance 
the accuracy and reliability of predicting default 
risk. By combining the predictions from several 
trees, the RF model mitigates the influence of 
individual tree biases and variances, resulting in 
a more robust and dependable assessment of 
an individual’s likelihood to default. 
 

�̂�  =  𝑚𝑜𝑑𝑒𝑙{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)} (4) 

 

3.2.3. XGBoost 
 
XGB is an advanced variant of gradient boosting 
machines (GBM) designed to optimize performance 
and speed while effectively managing large-scale 
data, particularly in predicting personal bankruptcy. 
XGB incorporates several technical enhancements to 
improve efficiency and practical applicability in this 
context. 

XGB extends the capabilities of GBM by 
introducing a more precise loss function and more 
efficient optimization techniques. It typically 
employs a log-likelihood loss function, similar to 
GBM, but includes additional regularization 
components to enhance model training and prevent 
overfitting. These enhancements contribute to its 
robustness and accuracy in predicting the likelihood 
of personal default, making it a powerful tool for 
financial institutions looking to assess credit risk 
and manage potential defaults effectively. 

 

𝐿(𝑦, 𝑓(𝑥)) = ∑ 𝑙(𝑦𝑖 , 𝑓(𝑥𝑖))

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 (5) 

 

where, 

• 𝑙(𝑦𝑖 , 𝑓(𝑥𝑖)) represents the logistic loss 

function; 

• Ω(𝑓𝑘) denotes the regularization function for 

each tree 𝑓𝑘 in the model, typically including both 
L1 (lasso) and L2 (ridge) regularization:  

 

Ω(𝑓) = 𝛾𝑇 +  ½𝜆 ∑ 𝑤𝑗
2

𝑇

𝑗=1

 (6) 

 

with 𝛾 and 𝜆 are the regularization parameters and T 

is the number of leaf nodes in the tree, 𝑤𝑗 is 

the value at the leaf node. 
XGB offers enhanced control through its 

regularization parameters, allowing its models to 
better resist overfitting and typically deliver 
superior performance on large and complex 
datasets. This capability ensures that XGB remains 
highly effective in diverse analytical scenarios, 
particularly when managing data-rich environments 
related to personal bankruptcy prediction. Such 
control is instrumental in maintaining model 
robustness and accuracy, making XGB a preferred 
choice for advanced predictive modeling tasks 
involving credit risk assessment and default 
prediction. Its ability to handle large datasets with 
complex patterns makes it a valuable tool for 
financial institutions seeking to accurately identify 
individuals at risk of default. 
 

3.2.4. Logistic regression  
 
LR is not a tree-based machine learning model, it is 
a linear classification model that uses sigmoid 
function to estimate the probabilities of classes. 
With the advantages of simplicity, ease of 
interpretation, and great suitability for binary 
classification problems such as default risk 
prediction, the LR model has become the standard 
for efficiency that other models need to surpass. 

Assuming 𝑋1,…𝑋𝑛 are a set of features 
reflecting the financial characteristics of 
an individual, the probability of personal default 
(Y = 1) will be determined through the sigmoid 
function as follows: 
 

𝑃(𝑌 = 1|𝑋) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛)
 (7) 

 
where,  

• 𝑃(𝑌 = 1|𝑋) is the probability of personal 
default, which ranges from 0 to 1; 

• 𝛽0 is the intercept coefficient; 

• 𝛽1 , 𝛽2, … 𝛽𝑛  are the regression coefficients that 

reflect the influence of the feature variables 𝑋1,…𝑋𝑛 
on the probability of personal default. 
 

3.3. Performance measures for evaluating 
the model’s ability to predict default risk 
 
Models for predicting defaults are evaluated using 
a variety of performance measures, including 
the confusion matrix, accuracy, sensitivity, 
specificity, precision, F1 score, and AUC:  
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3.3.1. Confusion matrix 
 
The confusion matrix presented in Table 1 is 
an important tool for assessing the performance of 
classification models. It provides a complete 
examination of the model’s accurate and wrong 
predictions, allowing for a better understanding 
of its performance across several classes. 
The confusion matrix, which compares projected 

values to actual outcomes, indicates the model’s 
strengths and places for development, which is 
especially useful in financial applications like 
estimating default risk. This thorough analysis 
assists in identifying particular areas where 
the model excels or requires development, allowing 
for better informed credit risk management 
decisions. 

 
Table 1. Confussion matrix 

 
 Predicted class 

Actual 
class 

Classes Non-default Default 

Non-default 

True negative (TN) 
Instances where the model predicts that the 

enterprise will not default, and it indeed does not 
default 

False positive (FP) 
Instances where the model predicts default, but 

in reality, the enterprise does not default. 

Default 

False negative (FN) 
Instances where the model predicts that the 

enterprise will not default, but in reality, it does 
default. 

True positive (TP) 
Instances where the model predicts that the 
enterprise will default and, in fact, it does 

default. 
Source: Ying (2018). 
 

3.3.2. Other measurement indicators: accuracy, 
sensititvity, specificity, precision, F1 score, AUC 
 
Other important criteria measuring the effectiveness 
of models, such as accuracy, sensitivity, specificity, 

precision, F1 score, and AUC, are clearly described in 
Table 2 as follows: 
 
 

 
Table 2. Groups of indicators to evaluate the reliability of a model 

 

Indicators Definition Formula 

Accuracy ratio 
The overall accuracy of the model is determined by 
comparing all accurate predictions to the total predictions. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑁 +  𝑇𝑃

𝑇𝑁 +  𝐹𝑁 +  𝑇𝑃 +  𝐹𝑃
 

Sensititvity ratio 
This indicates that the model can accurately identify default 
consumers. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity ratio 
Evaluates the model’s ability to appropriately detect non-
default clients. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision ratio 
Out of all projected default customers, this metric reflects 
the model’s accuracy in predicting customers. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

F1 score 
Balances precision and sensitivity, resulting in a single score 
that takes into account both erroneous positives and false 
negatives. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 
 

AUC 
AUC, or area under the curve, measures the area beneath 
the receiver operating characteristic (ROC) curve and depicts 
the trade-off between true positive and false positive rates. 

 

Source: Ying (2018). 
 

4. RESEARCH RESULTS 
 

4.1. Data research 
 
The dataset utilized in this study to predict personal 
defaults comprises data from 7,500 customers 
sourced from several commercial banks and 
financial institutions across Vietnam, collected over 

the period from 2015 to 2023. It is provided by 
the Finance and Banking Research and Training 
Center at Ho Chi Minh University of Banking, which 
supports both research and educational initiatives. 
The dataset includes encrypted customer data to 
adhere to data protection laws, encompassing 
financial details and credit statuses at the time of 
data gathering.  

 
Table 3. Dataset features 

 
Variables Groups Variables Description 

Explanatory 
variables 

Loan 
characteristics 

Principal amount (LC1) The amount currently approved for the loan 
Loan term (LC2) The term length of the loan (short-term or long-term) 

Financing objective (LC3) The reason for taking the loan 

Applicant 
financial 

information 

Annual earnings (FI1) The annual income of the applicant 
Monthly obligations (FI2) The total monthly debt obligations 
Highest credit cap (FI3) The highest amount of credit ever extended to the applicant 
Outstanding credit (FI4) The current outstanding balance on all credit accounts 

Employment 
and residential 

information 

Employment tenure (ER1) The number of years the applicant has held their current job 

Residential status (ER2) The type of home ownership (own, mortgage, or rent) 

Credit history 

Credit tenure (CH1) The total number of years the applicant has had credit 

Months since last default (CH2) 
The number of months since the applicant last missed 

a payment 
Active accounts number (CH3) The total number of open credit accounts 

Target 
variable 

 Default Indicates whether the applicant is currently in default or not 

Source: Authors’ elaboration.  
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The dataset consists of 12 feature variables 
divided into four groups: loan characteristics, 
applicant financial information, employment and 
residential information, and credit history, as 
detailed in Table 3. Besides, the target variable, 
Default, described in Figure 2, is divided into two 
categories: 0 (non-default) and 1 (default).  

The default rate is 13.15%, which is typical of 
default risk prediction datasets because there are 
fewer defaulting clients than non-defaulting ones. 
This is clearly illustrated in the provided bar chart 
and summary table provided in Figure 2, where 
86.85% of the dataset (6,514 instances) are non-
defaults, and only 13.15% (986 instances) are 
defaults. Such a pronounced class imbalance 
underscores the challenge of accurately predicting 
defaults and necessitates specialized techniques to 
address potential biases in predictive models. 

 
Figure 2. Default distribution 

 

 
Source: Authors’ calculations. 

Table 4. Client default and non-default rates in 
the dataset 

 
Default Count Percentage 

0.0 6514 86.65% 

1.0 986 13.15% 

 
The dataset was thoroughly analysed with 

Python and powerful machine learning frameworks. 
XGB, known for its speed and accuracy, was created 
using ‘XGBClassifier()’, which handles complicated 
data with ease. The ‘DecisionTreeClassifier()’ and 
‘RandomForestClassifier()’ functions were used, both 
of which are capable of managing big datasets and 
categorical data. LR, implemented using 
‘LogisticRegression()’, was used as a basic 
comparison, emphasizing its simplicity and 
interpretability. These models jointly produced 
reliable forecasts for personal loan defaults, 
providing vital insights for credit risk management. 
Moreover, to guarantee robustness and reliability, 
the dataset was divided into training (90%) and 
testing (10%) subsets, allowing for thorough training 
and effective evaluation of the models’ 
generalization capabilities. These strategies, when 
paired with thorough data preparation and robust 
model training and assessment, seek to improve 
forecast accuracy and give significant insights for 
financial institutions controlling credit risk.  
 

4.2. Comparison results on the predictive ability of 
the models 
 
The out-of-sample test results of the boosting 
algorithms including XGB, RF, DT, and LR are 
presented in detail in Table 5. 
 

 
Table 5. Default prediction results of models on out-of-sample data sets 

 
No. Model Accuracy Precision Sensitivity Specificity F1 score AUC 

0 Logistic regression (LR) 0.699920 0.700754 0.699920 0.668262 0.699622 0.771430 

1 Decision tree (DT) 0.855547 0.855658 0.855547 0.846890 0.855537 0.855554 

2 Random forest (RF) 0.925778 0.925788 0.925778 0.928230 0.925778 0.981775 
3 XGBoost (XGB) 0.947326 0.947399 0.947326 0.953748 0.947324 0.988525 

Source: Authors’ calculations. 

 
Accuracy assesses the model’s overall accuracy. 

LR has the lowest accuracy (69.99%), implying that it 
accurately predicts defaults and non-defaults less 
frequently than other models. DT improves greatly, 
with an accuracy of 85.55%, indicating a large gain in 
total correctness. RF improves performance with 
an accuracy of 92.58%, indicating its resilience. XGB 
has the best accuracy at 94.73%, making it the most 
trustworthy model for correct predictions. 

Precision is defined as the ratio of accurately 
predicted positive observations to all expected 
positives. LR has a precision of 70.08%, indicating 
that it is moderately good at accurately predicting 
defaults among all projected defaults. DT 
outperforms this with an accuracy of 85.57%, 
lowering the number of false positives. RF 
outperforms with a precision of 92.58%, suggesting 
great reliability in labeling defaults. XGB has the best 
precision (94.74%), demonstrating its excellent 
ability to eliminate false positives efficiently. 

Sensitivity assesses the model’s ability to 
recognize all instances of the default class. LR has 
a sensitivity of 69.99%, showing that it fails to find 
default situations. DT improves significantly with 

a sensitivity of 85.55%, increasing its capacity to 
detect defaults. RF performs remarkably well, with 
a sensitivity of 92.58%, showing great efficacy in 
detecting genuine default scenarios. XGB has 
the maximum sensitivity (94.73%), making it 
the most effective model for reducing financial 
losses caused by unreported defaults. 

Specificity refers to the fraction of genuine 
negatives that are accurately detected. LR has 
a specificity of 66.83%, showing modest efficacy in 
detecting non-default instances. DT improves with 
a specificity of 84.69%, indicating higher 
effectiveness in distinguishing non-defaults. RF also 
performs well with a specificity of 92.82%, 
demonstrating a good capacity to eliminate false 
positives. XGB excels with the highest specificity 
(95.37%), indicating higher efficacy in reliably 
recognizing non-default scenarios. 

The F1 score is the harmonic mean of precision 
and sensitivity, offering a single metric that balances 
both objectives. LR has an F1 score of 69.96%, 
indicating modest competence in both accuracy and 
sensitivity. DT increases greatly with an F1 score 
of 85.55%, showing a better mix of precision and 

Default 

C
o
u

n
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sensitivity. Random forest earns an exceptional 
F1 score of 92.58%, indicating that it is a well-
balanced and successful model overall. XGB has 
the greatest F1 score (94.73%), confirming its status 
as the most balanced and successful model in this 
investigation. 

AUC indicates the model’s ability to 
differentiate across classes. It is very useful for 
testing binary classification models. LR has an AUC 
of 77.14%, showing that it is moderately good at 
discriminating between default and non-default 
scenarios. DT improves with an AUC of 85.55%, 
suggesting higher discrimination abilities. With 
an AUC of 98.18%, RF outperforms other 
classification methods. However, XGB has 
the greatest AUC (98.85%), demonstrating its greater 
ability to differentiate between default and 
non-default scenarios. 

These measures demonstrate clear disparities 
in model performance. LR, while straightforward and 
easy to understand, is the least successful model, 
particularly in terms of accuracy and sensitivity. 
DT improves significantly, achieving a better balance 
between detecting defaults and non-defaults. 
However, the advanced models, RF and XGB, surpass 
LR and DT on all measures. RF strikes a good 
balance, with excellent accuracy, precision, 
sensitivity, specificity, and AUC, making it a solid 
choice for predicting personal defaults. However, 
XGB outperforms all other models, with the greatest 
metrics across the board, making it the most 
successful model for default prediction in this 
research. 

Several research papers back up 
the conclusions of this analysis. For example, Chen 
and Guestrin (2016) emphasized XGB’s efficiency 
and good performance in classification tasks, 
displaying a higher AUC than other models. 
Similarly, Gumus and Kiran (2017) discovered that 
XGB frequently outperforms other machine learning 
algorithms for predicting defaults, especially in 
financial scenarios. Chen and Guestrin (2016) found 
that XGB’s scalability and flexibility enable it to 
easily handle huge datasets, resulting in greater 
accuracy and AUC scores. They demonstrated that 
XGB’s ability to optimize trees using a gradient 
boosting framework produces superior performance 
metrics than typical machine learning models. This 
is especially significant in financial applications 

because differentiating between default and 
non-default scenarios requires great precision. 
Barboza et al. (2017) conducted a thorough analysis 
of several machine-learning models for default 
prediction. Their findings revealed that XGB not only 
had the greatest accuracy and AUC but also 
displayed resilience across several datasets. 
The study emphasized that XGB’s regularization 
approaches serve to reduce overfitting, making it 
a dependable option for financial risk modeling. 

Moscatelli et al. (2020) provide more supportive 
evidence by comparing the effectiveness of several 
machine-learning models in forecasting business 
defaults. Their findings revealed that XGB regularly 
outperformed other models in terms of both 
precision and sensitivity. They ascribed XGB’s higher 
performance to its capacity to detect complicated 
patterns in data using boosting rounds. Additionally, 
Li et al. (2020) investigated the use of XGB in credit 
rating and default prediction. Their findings 
revealed that XGB’s sophisticated boosting 
algorithms improve predicted accuracy and 
the management of unbalanced datasets. They 
remarked that XGB’s feature significance scores give 
useful insights into the elements impacting default 
risk, allowing for better-informed decision-making. 

The study of the confusion matrices in Figure 3 
clearly indicates the XGB model’s improved 
performance in forecasting personal loan defaults 
when compared to LR, DT, and RF. The LR model 
produced 419 accurate predictions for non-defaults 
and 458 correct predictions for defaults, as opposed 
to 208 erroneous predictions for non-defaults and 
168 incorrect predictions for defaults. The DT model 
improved, with 531 accurate predictions for 
non-defaults and 541 for defaults, compared to 
96 wrong predictions for non-defaults and 85 for 
defaults. RF did even better, with 582 right 
predictions for non-defaults and 578 correct 
predictions for defaults, as well as fewer wrong 
predictions (45 for non-defaults and 48 for defaults). 
However, the XGB model outscored all other models, 
with 598 correct non-default predictions and 589 for 
defaults. It had the fewest erroneous predictions, 
with just 29 for non-defaults and 37 for defaults. 
In conclusion, XGB stands out for its greater capacity 
to handle complicated datasets and deliver the most 
accurate predictions with the fewest mistakes. 

 
Figure 3a. Prediction results of models on the confusion matrix: Logistic regression 

 

 
Source: Authors’ calculations. 
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Figure 3b. Prediction results of models on the confusion matrix: Decision tree 
 

 
Source: Authors’ calculations. 

 
Figure 3c. Prediction results of models on the confusion matrix: Random forest 

 

 
Source: Authors’ calculations. 

 
Figure 3d. Prediction results of models on the confusion matrix: XGBoost 

 

 
Source: Authors’ calculations. 

 
Figure 4 shows the ROC curve and AUC data, 

which clearly reflect the XGB model’s improved 
performance. XGB scored an AUC of 0.99, showing 
that it has remarkable classification capabilities and 
can reliably discriminate between default and 
non-default instances. In comparison, the RF model 

performed wonderfully, with an AUC of 0.98, closely 
matching XGB in terms of performance. The DT 
model performed well, with an AUC of 0.86, but fell 
behind the ensemble techniques. LR showed 
the lowest performance of the models, with an AUC 
of 0.77, indicating its limits in dealing with 
complicated, non-linear connections in the data.  
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Figure 4. Prediction results of models on the ROC curves 
 

 
Source: Authors’ calculations. 

 
After comparing the performance of models in 

predicting personal default, the XGB model emerged 
as the most outstanding, completely outperforming 
the others across all evaluation criteria. Therefore, 
to gain a more profound understanding of how 
the XGB model operates, the next section will focus 
on discussing the importance of the selected 
features in this model. 

 
 

4.3. Discussion on feature importance in the XGB 
model 
 
Zheng et al. (2017) demonstrated that understanding 
feature importance values provides valuable insights 
into how each feature impacts the prediction results, 
which helps in comprehending the decision-making 
process of the model. In Figure 5, the analysis 
highlights the significant importance of each feature 
group in predicting personal default risk through 
the XGB model.  

 
Figure 5. Feature importance values in predicting personal default risk 

 

 
Source: Authors’ calculations based on the study of Zheng et al. (2017).  
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Table 6. Ranking of feature importance values from 
high to low 

 

Variables 
Feature importance 

values 
Loan term (LC2) 11.85% 

Active accounts number (CH3) 11.62% 
Highest credit cap (FI3) 10.88% 

Financing objective (LC3) 9.51% 

Employment tenure (ER1) 9.29% 
Residential status (ER2) 9.07% 

Outstanding credit (FI4) 7.60% 
Credit tenure (CH1) 7.12% 

Months since last default (CH2) 7.10% 

Principal amount (LC1) 5.71% 
Annual earnings (FI1) 5.41% 

Monthly obligations (FI2) 4.85% 

 
First, the applicant financial information group 

holds the largest weight at 28.74%, indicating that 
financial capabilities such as annual earnings, 
monthly obligations, highest credit cap, and 
outstanding credit are critical factors in assessing 
default risk. Second, the loan characteristics group 
accounts for 27.06%, emphasizing that factors such 
as loan term, financing objective, and principal 
amount all impact the borrower’s ability to repay. 
The credit history group, with 25.84%, also plays 
a vital role, as elements like the number of months 
since the last default, the number of active accounts, 
and credit tenure are closely linked to predicting 
credit risk. Finally, the employment and residential 
information group, at 18.36%, shows that employment 
tenure and residential status are also influential 
factors affecting debt repayment capability. This 
analysis demonstrates that grouping features by 
similar characteristics not only organizes data 
systematically but also provides insights into how 
these features interact and affect personal default risk. 

The feature importance values provide insights 
into how different characteristics influence 
the prediction of personal default risk. These values 
are ranked based on their contribution to 
the predictive model, offering a clear picture of 
which features are most impactful. 

Loan term (11.85%): This feature, from the loan 
characteristics group, is the most important overall, 
indicating that the length of the loan is a significant 
determinant of default risk. Longer loan terms might 
be more difficult for individuals to handle over time, 
increasing the risk of financial instability. Shortening 
loan terms or providing flexible repayment options 
may help borrowers manage their debt more 
successfully, lowering the probability of default. 
Jappelli and Pagano (2002) and Qi (2023) also found 
that longer loan periods increased the likelihood of 
default, emphasizing the need to carefully consider 
loan terms. 

Active accounts number (11.62%): Within 
the credit history group, this feature has a high 
importance value. A larger number of open accounts 
is associated with an increased risk of default, 
probably due to the complexity and financial burden 
of handling many credit lines at the same time. 
Financial institutions should evaluate a borrower’s 
total number of active accounts when determining 
creditworthiness. A larger number of open accounts 
may suggest overextension, and lenders should be 
careful before granting extra credit to such 
customers (Elhoseny et al., 2025).  

Highest credit cap (10.88%): As the most 
important feature in the applicant financial 
information group, this indicates that the maximum 
credit limit plays a crucial role in determining 

a borrower’s financial strength and potential risk of 
default. Higher credit limits are connected with 
a higher chance of default, most likely because 
people with high credit limits are more inclined to 
use credit, putting them under more financial 
hardship. Lenders may also explore establishing 
more conservative credit restrictions for customers 
with less reliable financial backgrounds. Gross and 
Souleles (2002) found that larger credit limits can 
lead to more borrowing and a higher chance 
of default, particularly among financially 
disadvantaged people. 

Financing objective (9.51%): This feature from 
the loan characteristics group emphasizes that 
the purpose of the loan can significantly affect 
default risk. Loans for high-risk purposes might 
have higher default probabilities compared to those 
with stable and secure purposes. Different lending 
objectives may have distinct risk profiles. 
For example, loans for critical purposes such as 
house repair may be less hazardous than loans for 
frivolous expenditures. When analyzing credit risk, 
financial institutions should take into account 
the loan’s purpose. This is corroborated by Avery 
and Samolyk’s (2004) research, which shows that 
the purpose of the loan has a considerable influence 
on the chance of default. 

Employment tenure (9.29%): This is the most 
critical feature in the employment and residential 
information group, underscoring the importance of 
job stability in assessing default risk. Longer job 
tenures are connected with a decreased probability 
of default, highlighting the relevance of work 
stability in financial health. Financial institutions 
might profit by emphasizing job stability during 
the loan application process. Applicants with longer 
job histories are more likely to have consistent 
earnings, which reduces the chance of default. 
Siddique et al. (2022) found that employment 
stability considerably decreases credit risk. 

Residential status (9.07%): Also in 
the employment and residential information group, 
this feature shows that homeownership or stable 
residency may positively influence repayment 
capacity and reduce default risk. Homeowners are 
often regarded as more stable because of the equity 
in their house. Financial institutions should include 
house ownership as a major factor in loan decisions. 
Michalak and Uhde (2012) discovered that 
homeownership is a reliable predictor of financial 
stability and creditworthiness. 

Outstanding credit (7.6%): This feature 
highlights the importance of existing debt levels in 
the applicant financial information group. Higher 
outstanding credit could increase the risk of default 
if it indicates over-leveraging. It may signal that 
a borrower is already experiencing financial 
hardship, making it more difficult to satisfy further 
financial commitments. To avoid defaults, financial 
institutions should regularly monitor credit balances 
and offer financial counseling or help to borrowers 
with large credit amounts. Borrowers can better 
manage their debt by taking proactive actions like 
debt consolidation or payback arrangements. This 
observation is supported by research from Kim et al. 
(2018), who found that high credit balances are 
strong indicators of financial distress and 
default risk. 

Credit tenure (7.12%): Within the credit history 
group, the length of time a borrower has held credit 
accounts is important for predicting default, 
as longer credit histories may demonstrate 
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creditworthiness. A well-managed, extended credit 
history is a good sign. During the credit rating 
process, financial institutions should take into 
account a borrower’s credit history’s length and 
quality. Avery et al. (2009) found that a lengthy and 
positive credit history is a substantial predictor of 
excellent credit performance. 

Months since last default (7.1%): This feature 
from the credit history group indicates that recent 
defaults are a strong predictor of future default risk. 
More recent delinquencies indicate a larger chance 
of default, emphasizing the relevance of current 
credit behavior in risk evaluations. Financial 
institutions should rigorously scrutinize borrowers’ 
recent credit histories. Dinh and Kleimeier (2007) 
found that recent delinquencies are a strong 
predictor of credit risk. 

Principal amount (5.7%): Although relatively 
less important, the principal loan amount in the loan 
characteristics group still affects default risk, as 
larger loans might be harder to repay. Larger loan 
amounts enhance the borrower’s financial stress, 
which directly correlates with the probability of 
default. Financial institutions should determine if 
the proposed loan amount is within the borrower’s 
ability to repay. Riddiough and Wyatt (1994) found 
that bigger loan amounts are related to a higher risk 
of default, especially in non-collateralized loans. 

Annual earnings (5.41%): This feature shows 
the significance of income levels in the applicant 
financial information group, with higher earnings 
generally reducing default risk. Annual earnings give 
additional resources for debt management, but they 
must be assessed in conjunction with total financial 
commitments and costs. Financial institutions 
should properly assess a borrower’s annual earnings 
and compare them to their entire financial 
commitments to ensure repayment capability.  

Monthly obligations (4.85%): The least important 
feature, monthly financial obligations still play a role 
in determining default risk, as high obligations can 
strain a borrower’s repayment ability. Monthly 
obligations, which represent recurring monthly 
commitments such as rent or mortgage payments, 
have a substantial influence on a borrower’s capacity 
to service extra debt. When assessing credit risk, 
financial institutions should carefully consider 
a borrower’s monthly liabilities. According to 
Campbell and Cocco (2015), significant monthly 
obligations might have a detrimental impact on 
a borrower’s capacity to repay debt. 

The analysis of feature importance in the XGB 
model provides significant theoretical and practical 
contributions to credit risk management. 
Theoretically, the research findings further reinforce 
the critical role of key feature groups in predicting 
personal default risk, including applicant financial 
information, loan characteristics, and credit history. 
Among these, loan term, which belongs to the loan 
characteristics group, is identified as the most 
influential factor, as longer loan durations can 
increase financial pressure and the probability of 
default. Active accounts number, within the credit 
history group, is also an important feature that 
reflects credit utilization levels and a borrower’s 
ability to manage financial obligations. Additionally, 
highest credit cap, from the applicant financial 
information group, plays a decisive role in risk 
assessment, as excessively high credit limits may 
lead to over-borrowing and repayment difficulties. 

From a practical perspective, financial 
institutions need to regulate loan terms 

appropriately, monitor the number of active credit 
accounts, and flexibly adjust credit limits based on 
customers’ financial capacity and repayment 
willingness. For instance, granting long-term loans 
should be accompanied by risk control measures 
such as setting reasonable loan term limits or 
applying flexible repayment plans, enabling 
borrowers to maintain their repayment ability 
without prolonged financial pressure. It is also 
essential to limit the number of credit accounts 
a borrower can open simultaneously and closely 
monitor customers with multiple active accounts but 
unstable cash flows. Furthermore, credit institutions 
should not only assess a customer’s access to credit 
limits but also evaluate their actual credit 
utilization. A flexible credit policy that adjusts limits 
based on financial behavior rather than solely on 
income could help mitigate the risk of default. 
 

5. CONCLUSION  
 
This study demonstrates the effectiveness of various 
tree-based machine-learning models, such as DT, RF, 
and XGB, in predicting personal default risk. Among 
these, XGB consistently outperforms the other 
models across seven key evaluation metrics: 
confusion matrix, accuracy, precision, sensitivity, 
specificity, F1 score, and AUC. XGB also shows its 
ability to manage large, multidimensional financial 
datasets and capture complex nonlinear 
relationships between features. The gradient 
boosting mechanism of XGB enables the aggregation 
of weak classifiers into a strong predictive model, 
resulting in superior accuracy, robustness, and 
computational efficiency. These advantages are 
particularly crucial for financial institutions that 
require precise and scalable credit risk assessment 
models to optimize lending decisions and mitigate 
financial losses. 

The feature importance analysis highlights 
three dominant predictors of default risk: loan term, 
active accounts number, and highest credit cap. Loan 
term stands out, emphasizing the significance of 
loan term duration in calculating default risk. 
The active accounts number shows the number of 
active credit accounts a borrower has, which might 
represent their credit management abilities and 
general financial behavior. A larger number of open 
accounts can indicate strong credit utilization, but it 
can also put the borrower in danger of becoming 
over-leveraged. Similarly, highest credit cap indicates 
the entire credit accessible to a borrower. a greater 
credit limit may signify strong creditworthiness, but 
it also raises the potential for excessive borrowing 
and financial strain. 

Although this study makes significant 
contributions by providing empirical evidence on 
the effectiveness of machine learning models in 
predicting personal default risk, certain limitations 
remain that need to be addressed in future research. 
First, the study focuses solely on comparing 
the performance of basic tree-based machine 
learning algorithms and does not explore more 
complex approaches, such as hybrid models 
combining tree-based methods with deep learning. 
This limitation may restrict a deeper understanding 
of the effectiveness of tree-based algorithms across 
different methodological approaches. Second, while 
the study identifies the most important features 
influencing default risk prediction, it does not 
determine the direction of the impact of these 
features on the prediction outcome. Third, 
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the findings are derived from analyzing personal 
financial data within the Vietnamese market, which 
may limit the generalizability of the results when 
applied to different economic and financial 
environments. 

Therefore, to address these limitations, future 
research can explore the following directions. First, 
integrating tree-based models with deep learning 
algorithms should be considered to enhance 
the predictive performance of tree-based models in 
credit risk management. This can be achieved 
through models such as deep neural decision forests 
(DNDFs), neural-backed decision trees (NBDTs), or 
deep gradient boosting machines (DeepGBM). 

Additionally, to better understand the impact of 
feature variables on prediction outcomes, techniques 
such as SHAP (shapley additive explanations) 
and LIME (local interpretable model-agnostic 
explanations) should be utilized. Moreover, to 
regulate the relationship between feature variables 
and the target variable in the predictive model, 
monotonic constraints should be tested on the XGB 
model. Finally, to improve the generalizability of 
the study and ensure that the model can be applied 
across different markets, future research should 
consider testing on datasets from various financial 
markets or applying cross-validation across different 
markets.  
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