INSIGHT INTO TECHNOLOGICALLY VIGILANT LEADERSHIP: SMART SUSTAINABLE CIRCULAR SUPPLY CHAIN MANAGEMENT IN THE ECONOMIC CONTEXT OF INDUSTRY 6.0

Pham Quang Huy *, Vu Kien Phuc **

* Corresponding author, School of Accounting, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam Contact details: Accounting School, University of Economics Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam ** School of Accounting, University of Economics Ho Chi Minh City, Vinh Long City, Vietnam

How to cite this paper: Huy, P. Q., & Phuc, V. K. (2025). Insight into technologically vigilant leadership: Smart sustainable circular supply chain management in the economic context of Industry 6.0. Corporate Governance and Sustainability Review, 9(4), 75–88. https://doi.org/10.22495/cgsrv9i4p7

Copyright © 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/

by/4.0/

ISSN Online: 2519-898X ISSN Print: 2519-8971

Received: 11.02.2025 Revised: 11.07.2025; 10.11.2025

Accepted: 18.11.2025

JEL Classification: O32, Q01, Q56 DOI: 10.22495/cgsrv9i4p7

Abstract

The emergence of Industry 6.0 presents both opportunities and problems for environmental sustainability. Emerging technologies, like artificial intelligence (AI), the Internet of Things (IoT), and blockchain, can improve energy efficiency, maximize resource utilization, and decrease consumption. Conversely, the energy-intensive characteristics of these technologies may result in elevated electricity consumption and increased carbon dioxide emissions if not handled responsibly. In this context, the senior leadership of the relevant organizations plays a pivotal role in facilitating the removal of adoption barriers during the early phase of migration to new technologies. This study proposes a model grounded in resource-based theory and stakeholder theory that examines the relationship between technologically vigilant leadership (TVL) and smart sustainable circular supply chain management (SSCSCM) within the context of Industry 6.0, mediated by the effectiveness of the management accounting information system (EMAIS). This study further delves into the moderating influence of inclusive green growth policy (IGGP) on these relationships. This study assessed the suggested model by partial least squares structural equation modeling to examine the statistical data obtained from a convenience and snowball sample of accountants in small and medium enterprises. The empirical findings indicated a positive correlation between TVL and SSCSCM. This relationship was partially mediated by EMAIS. IGGP positively moderated the connections among TVL. SSCSCM, and EMAIS. These significant insights would assist policymakers in formulating enhanced TVL mechanisms to capitalize on the benefits of EMAIS and therefore fortify SSCSCM.

Keywords: Circular Economy, Environmental Management Accounting, Industry 6.0, Smart Supply Chain, Vigilant Leadership

Authors' individual contribution: Conceptualization — P.Q.H.; Methodology — P.Q.H., Software — P.Q.H. and V.K.P.; Validation — P.Q.H. and V.K.P.; Formal Analysis — P.Q.H. and V.K.P.; Investigation — P.Q.H. and V.K.P.; Writing — Original Draft — P.Q.H.

Declaration of conflicting interests: The Authors declare that there is no conflict of interest.

Acknowledgements: This study is the academic product of Ministerial-level Technology and Science Project sponsored by the Ministry of Education and Training "Integrating Inclusive Green Growth model into building a measurement framework for the level of Circular Economy implementation in Public Entities" with Grant code B2025-KSA-09.

1. INTRODUCTION

Sustainability has become a prominent issue in politics, industry, and science over the past two decades (Karuppiah et al., 2024). The global confronted manufacturing sector is an unprecedented challenge: reconciling economic growth with urgent environmental and societal needs (Alam et al., 2025). Traditional linear production models, which are defined by a "takemake-dispose" approach (Dinda, 2020), are no longer viable in the face of increasing resource depletion (H. Liu, Alharth, et al., 2022), increasing refuse generation (Mihai & Minea, 2021), and the effects of climate change (Yang et al., 2023). In particular, the integration of sustainability-related topics into supply chain management has become a high-volume and swiftly expanding research area (Amir et al., 2023). The circular economy, which replaces linear resource flows with restorative cycles (Morseletto, 2020), has been catalyzed the necessity to transition to more sustainable systems (Cagno et al., 2021). Green supply chains, closed-loop supply chains, reverse supply chains, sustainable supply chains, and, most recently, chains, circular supply have the consequence of this evolution (Jain et al., 2025). The latter addresses concerns such as recycling, reuse, and the zero-waste ideal by integrating circular thinking, which is founded on the circular economy framework, into supply chain management (Carissimi et al., 2023). Circular supply chain management (Hazen et al., 2020) is, in particular, central to the circular economy. This approach strategically integrates practices such as circular product design (Burke et al., 2021), circular procurement (Qazi & Appolloni, 2022), cleaner production, and end-of-life management (Lahane et al., 2020).

Sufficient technological integration and support, such as Industry 6.0, are necessary for the circular supply chain to reach its maximum potential, in addition to scientific and technical advancements. This symbiotic relationship enables organizations to optimize resource use, minimize waste, and improve material recovery and reuse throughout the product lifecycle. Industry 6.0 is a paradigm that, according to scholars, encompasses a considerably broader perspective than any of the previous industrial revolutions (Chourasia et al., 2022). Madsen et al. (2025) anticipate that Industry 6.0 will incorporate new levels innovation and build upon the digital infrastructure Industry 4.0 and the human-centric enhancements of Industry 5.0. It is important to note that Industry 5.0 continues to depict \bar{h} umans and robots coexisting on the shop floor. However, Industry 6.0 anticipates a phase in which cognitive machines autonomously manage numerous processes, with humans providing strategic guidance (directly or indirectly through cognitive interfaces) rather than hands-on control (Madsen et al., 2025). In this study, smart sustainable circular supply chain management (SSCSCM) denotes the integration of circular economy principles and Industry 6.0 technologies inside supply chain management.

In order to achieve this, the organizational structure must undergo a significant transformation, and the management must be prepared for a fundamental paradigm shift (Abu Afifa & Nguyen, 2023). The management accounting system is a critical component of organizational strategy, as

it provides managers with information that is essential for the translation of anticipated behaviors and outcomes. Organizations employ the management accounting system to enhance system quality and organizational performance by leveraging available resources, both within and outside of their business environment (Abu Afifa & Saleh, 2022). Unfortunately, although emerging technologies, like artificial intelligence (AI), the Internet of Things (IoT), and blockchain, can improve energy efficiency, maximize resource utilization, and decrease consumption (Nyiwul & Koirala, 2024), the energyintensive characteristics of these technologies may result in elevated electricity consumption and increased carbon dioxide emissions if not handled responsibly (Vu, 2025). In this regard, it is crucial for organizations to change their leadership styles to those that are equipped with a specific set of skills and expertise to meet the demands of the digital business environment. This leadership transformation will enable the firms to establish a thriving digital environment and acquire a competitive edge. Leaders are instrumental in the establishment of a digital work environment by eliminating obsolete structures and implementing new business models. Gao et al. (2024) define "vigilant leadership" as the actions of a leader that are intended to motivate individuals to focus on potential obstacles and to respond to unforeseen setbacks. Technologically vigilant leadership (TVL) in this research can be interpreted as a leadership style that prioritizes proactive awareness and responsiveness to technological changes and threats, building upon the suggestion of Gao et al. (2024).

More importantly, there is an ongoing debate over the efficacy of government innovation policies in relation to digital transformation and sustainable transformation. Inclusive green growth is a longterm development approach that emphasizes economic advancement, social equity, human welfare, and energy efficiency (Wu et al., 2024). Inclusive green growth policy (IGGP) denotes tactics and actions that foster economic expansion while guaranteeing environmental sustainability and social inclusion. IGGP assists small and medium-sized enterprises (SMEs) in initiating, expanding, and evolving by directly offering capacity-building management support and indirectly enhancing regulatory, and institutional the economic, framework to better accommodate SME requirements. This will facilitate the green growth of SMEs, promoting their expansion. Government policies are widely recognized for enhancing transformation performance. Not all businesses benefit from adopting digital technologies; only those with digital capabilities specifically, advanced the proficiency to effectively leverage digitally pertinent infrastructure, resources, and platforms to attain entrepreneurial objectives — can realize these advantages (Heredia et al., 2022). Companies must consistently allocate resources to operations management and finance (Huikkola et al., 2022) and pursue governmental support to enhance their digital capabilities (Warner & Wäger, 2019). Nevertheless, the extent of impact and the fundamental mechanisms by which the government enhances company capacity, sustainable transformation, and digital transitions remain little explored. The integration of leadership's function in digital transformation and sustainable transformation is inadequately addressed in the literature, especially within small and medium-sized firms in

developing nations. The concept of vigilant leadership is not novel; nonetheless, TVL remains inadequately incorporated into literature and is still in its infancy. Investigating these pathways represents an urgent gap that necessitates resolution. Therefore, the current research aims to bridge these research gaps by tackling the research questions as follows.

RQ1: What is the effect of TVL on SSCSCM?

RQ2: Does the effectiveness of the management accounting information system (EMAIS) act as a mediator in the relationship between TVL and SSCSCM?

RQ3: Does IGGP act as a moderator in the relationships between TVL, EMAIS, and SSCSCM?

Numerous contributions are offered for both the academic literature and the practical understanding of these topics. Concerning theoretical significance, this study seeks to examine the impacts of TVL on SSCSCM inside SMEs, a relatively underexplored area that serves as the central research challenge of this work. By analyzing the direct and indirect correlations between TVL and SSCSCM, we offer a conceptual and quantitative explanation of how SMEs in emerging economies can rely on both TVL and management accounting information system, which subsequently facilitate the attainment of SSCSCM. For decades, leadership has been a cognitive construct that has been essential to the field of management sciences. It has undergone continuous development, successive modifications, and adaptations to the changing conditions of business operations and organizational transformations (Organa et al., 2024). Leadership is a critical component of the current economic environment (Organa & Sus, 2023). This study offers pioneering contribution by quantitatively analyzing the mediating role of EMAIS in the relationship between TVL and SSCSCM, thus enhancing the developing, albeit still incipient, body of literature at the convergence of management accounting and the circular economy (Aureli et al., 2025).

Research on the influence of management accounting information systems and their role in achieving the Sustainable Development Goals (SDGs) has just lately started to appear in accounting literature. The majority of current studies are generally theoretical (Larrinaga & Garcia-Torea, 2022), and the scant study on the role of accounting in the circular economy mostly comprises literature reviews (Di Vaio et al., 2023). This study emphasizes IGGP's significant moderating function in the correlations between TVL, EMAIS, and SSCSCM. Inclusive green growth is considered a critical approach to achieving sustainable growth, which is a prerequisite for high-quality development (Xu et al., 2024). This establishes a foundation for future research on IGGP amid the current digital and sustainable transformations. Regarding practical significance, a comprehensive examination of the outcomes would assist practitioners by assist practitioners elucidating methods to identify and capitalize on digital opportunities facilitated bv technology. Moreover, government officials and key policymakers are urged to emphasize innovation and cultivate an effective environment facilitates the implementation of new technologies and processes via IGGP.

The rest of this research is structured as follows. Section 2 provides the conceptual framework and theoretical foundations, as well as the

development of hypotheses. Section 3 describes the research methodology used. Section 4 presents and discusses the research outcomes and implications. Section 5 addresses the limitations of the research and offers suggestions for future studies.

2. LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

2.1. Theoretical underpinning

Resource-based view emphasizes the management of resources to improve performance, whereas stakeholder theory underscores the influence of industry norms on organizational practices. The resource-based view and stakeholder theory align in multiple respects, indicating robust connections between the two. Stakeholder theory can enhance the resource-based view through diverse concepts, such as collaboration, sustainability, or human resources (Freeman et al., 2021). As asserted by Luthra et al. (2022), the resourcebased view highlights that an organization's competitive advantage relies on its essential resources and capabilities, while stakeholder theory elucidates that stakeholder integration can lead to innovative business models, enabling the attainment of sustainable objectives through the amplification of substantial resources. These principles indicate that an organization's performance is contingent upon its relationships with relevant stakeholders (Luthra et al., 2022). Through integration into an organization's economic model, stakeholders may become a fundamental component of the organization's production encompassing and patronage. Furthermore, although individuals do not represent resources, they are stakeholders contributing resources (Freeman et al., 2021). These concepts are pertinent to the adoption of Industry 6.0, wherein organizations significantly rely on their leadership; employees' competencies for the development or implementation of digital technologies.

resource-based view the understanding of how a firm's intangible and tangible resources contribute to attaining and sustaining competitive advantage (Zahra, 2021). Resources are defined as factors considered as a firm's strengths or weaknesses, encompassing experienced staff, efficient procedures, brand names, or internal technology expertise (Wernerfelt, resource-based view emphasizes 1984). The the strategic importance of enterprises using their valuable, rare, imperfectly imitable, and nonsubstitutable resources to achieve and maintain competitive advantage. L. Liu et al. (2023) underscored the importance of digital platform skills in augmenting enterprises' capacity to procure both internal and external resources by optimizing the potential of digital technologies. In both instances, by utilizing existing or cultivating internal resources and enhancing them with technologies, companies can generate significant assets that bolster their competitiveness.

Stakeholder theory, grounded in socio-political accounting, underscores the necessity of considering social, environmental, institutional, and political contexts to understand the economic aspects of organizations (Deegan & Blomquist, 2006). Nearly four decades ago, Freeman (1984) defined

a stakeholder as any individual or group that can influence or be influenced by an organization's attainment of its objectives. This conceptualization serves as a cornerstone in the evolution of stakeholder theory, which centers on an organization's management of its interactions with important stakeholders, including employees, consumers, communities, suppliers, and financiers (Freeman & Phillips, 2002). This study corresponds with the viewpoint of stakeholder theory, which asserts that companies cater to stakeholder requirements for strategic advantage (Raimo et al., 2023). Many scholars have examined the role of stakeholders on supply chain sustainability as well as contact with stakeholders, to increase sustainability performance (Gimenez & Tachizawa, 2012).

2.2. Conceptual respects

2.2.1. Smart sustainable circular supply chain management

The capability of a circular economy emphasizes the incorporation of techniques that support the "3-R" principles: recycle, reduce, and reuse (Matarneh et al., 2024). In conjunction with the circular economy, Industry 6.0 has recently acquired prominence as a method to deliver sustainable outcomes and minimize human-machine contact. facilitating the implementation sustainability measures. Industry 6.0 signifies a new era, marked by the convergence of technologies including artificial intelligence, the internet of things, blockchain, and quantum computing (Kaur Industry 6.0 technologies et al., 2024). implement the "smart concept", possessing significant potential to enhance circular economy principles. A smart sustainable circular supply network is engineered for flexibility and adaptability, effectively addressing supply chain issues and disturbances. Supply chains must evolve to align with the current industrial revolution, termed Industry 6.0 and the circular economy, to maintain competitiveness, respond proactively, and sustainable resource management capabilities, thereby yielding environmental, social, and economic benefits. The integration of Industry 6.0 and the circular economy into the supply chain may facilitate the attainment of Industry 6.0 technologies the "smart concept", facilitating the creation of a flexible and versatile smart sustainable circular chain that enhances supply responsiveness, transparency, and sustainable collaboration. In this study, SSCSCM denotes the integration of circular economy principles and Industry 6.0 technologies inside supply chain management. In this context, the four SSCSCM practices are circular product design, circular procurement, cleaner production, and end-of-life product and waste management.

2.2.2. Technologically vigilant leadership

Leadership, as a cognitive construct, has been integral to management sciences for decades, undergoing ongoing development, successive modifications, and adaptations to the evolving conditions of business operations and organizational transformations (Organa et al., 2024). Leadership is an essential aspect in the contemporary economic landscape (Organa & Sus, 2023). It entails

the process of making pivotal decisions motivation fostering requisite among the organization's personnel. The Latin origin of "vigilance" is "vigilia", indicating two interconnected facets: wakefulness and watchfulness (Lewis & Short, 2002). The notion of vigilance was introduced into business research by Day and Schoemaker (2004, 2009). Based on the standpoint of Gao et al. (2024), "vigilant leadership" as leader actions aimed at encouraging people to concentrate on prospective obstacles and to react to unforeseen setbacks. Extending on the recommendation of Gao et al. (2024), TVL in this research can be understood as a leadership style that emphasizes proactive awareness and responsiveness to technological changes and threats.

2.2.3. Effectiveness of the management accounting information system

Management accounting information systems are equivalent to general information systems (Kaplan, 1984). The management accounting information system is defined as a crucial component of an organizational structure, meant to govern, motivate, assess performance, and the organization's goals to facilitate information and feedback participation (Jones, Management accounting systems have significantly evolved to accommodate new technical and environmental conditions (Chenhall & Moers, 2015) and have become the increasingly essential tools for facilitating managers' decision-making processes (Soobaroyen & Poorundersing, 2008). The management accounting information system experienced numerous modifications in the last decade of the 20th century due to significant technological advancements, compelling most businesses to innovate their accounting systems to acquire highquality and timely accounting information (Saleh & 2022). Technology Al-Nimer. can the characteristics of management accounting systems (scope, timeliness, integration, and aggregation) within an organization to align with evolving business operations (Ghasemi et al., 2019). The effectiveness of a management accounting information system is described as the degree to which the system aids in attaining organizational objectives by delivering high-quality information that helps managerial decision-making and elevates business performance. The EMAIS can only be realized if each characteristic of the system (scope, timeliness, integration, and aggregation) attains effectiveness.

2.2.4. Inclusive green growth policy

Inclusive green growth integrates conservation, social fairness, and sustainable development, serving as a crucial mechanism for advancing eco-civilization construction sustainability (Zhang et al., 2022). Government policies are crucial in accelerating the promotion of green growth and achieving SDGs. According to Nakku et al. (2020), government assistance programs are designed to assist SMEs in surmounting financial and non-financial obstacles to enhance performance. IGGP denote tactics and actions that foster economic expansion while guaranteeing environmental sustainability and social inclusion. IGGP assists SMEs in initiating, expanding, and evolving by directly offering capacity-building management support and indirectly enhancing the economic, regulatory, and institutional framework to better accommodate SME requirements. This will facilitate the green growth of SMEs, promoting their expansion.

2.3. Hypotheses development

Industry 6.0 prioritizes renewable energy, machine autonomy, interplanetary resource exploitation, aerial platforms, biological upgrades, and quantum regulation, offering substantial advancements and novel prospects (Das & Pan, 2022). The integration of Industry 6.0 and the circular economy within the supply chain may facilitate the attainment of SDGs. The emergence of Industry 6.0 presents both opportunities and problems for environmental sustainability. Emerging technologies, like artificial intelligence, the Internet of Things, and blockchain, can improve energy efficiency, maximize resource utilization, and decrease consumption (Nyiwul & Koirala, 2024). Conversely, the energy-intensive characteristics of these technologies may result in elevated electricity consumption and increased carbon dioxide emissions if not handled responsibly (Vu, 2025). In this context, the senior leadership of the relevant organizations plays a pivotal role in facilitating the removal of adoption barriers during the early phase of migration to new technologies (Mora Cortez & Johnston, 2018; Asif et al., 2020). Leaders exhibit a robust dedication to vigilance by continually observing technological developments and prospective risks. Technologically vigilant leaders are change-driven, emphasizing promotion of transformation through the articulation of a persuasive future vision and demonstrating readiness to act swiftly necessary. The first hypothesis in the current research is conjectured as follows.

H1: TVL directly and positively impacts SSCSCM. A management accounting system is a valuable asset for the efficient operation of an organization (Campos et al., 2023). To better plan, monitor, and control the various organizational activities, optimize the use of resources, support decisionmaking, and evaluate performance, management accounting systems could gather, process, and analyze non-accounting, financial, and operational accounting data, both internal and external. Presently, the ongoing technological advancement has resulted in an increasing number of studies emphasizing the integration of accounting systems with technological innovations that facilitate accounting the transition of financial management accounting (R. Liu, Wang, et al., 2022). The management accounting information system is essential for assessing risk, reducing uncertainty in managerial decision-making, and aiding in risk management activities (Abu Afifa & Saleh, 2022). accounting data employs expectations, empowering people to determine their own methods of execution. Moreover, supervisors with a technologically vigilant style will employ accounting information in their engagements with subordinates to create and manage systems; they often advocate for and delegate decision-making responsibilities to their subordinates. The hypothesis in the current research is conjectured as follows.

H2: TVL directly and positively impacts EMAIS.

SSCSCM is a sophisticated methodology that amalgamates smart technology, sustainability tenets, and circular economy principles within supply chain management to foster more sustainable, efficient, resilient supply networks. Based the perspectives of Pieroni et al. (2019), companies must evolve from generating solely economic value to a comprehensive model of value proposition; with a single actor to multiple engaging stakeholders; and shifting from a firm-centric to a network-centric or ecosystem operational framework. Accordingly, implementing modifications necessitates a robust management accounting system that facilitates managers' embrace of a sustainable circular business model (Elgie et al., 2021). The research conducted by Ahmad and Al-Shbiel (2019) demonstrated that a management accounting information system is essential for improving organizational performance. Businesses employ management accounting information systems as a framework to improve the collection, storage, and management of their financial data by providing managers with up-todate information on internal operations (Muskat et al., 2021). Thus, a management accounting information system is a component of a system intended for the measurement and collection of financial and operational data, which aims to guide motivational behaviors and administrative actions to fulfill the organization's strategic objectives by enhancing and cultivating cultural Management accounting solutions are essential for promoting smart, sustainable, and circular supply chain management by delivering vital information, decision-making, facilitating and performance collaboration and throughout the supply chain. Admittedly, the amalgamation of management accounting information system with sophisticated technology enhances these advantages, rendering supply chains more efficient. transparent, and sustainable. The hypothesis in the current research is conjectured as follows.

H3: EMAIS directly and positively impacts

SSCSCM is not merely an option, but a strategic necessity in the current highly competitive company environment. Improving productivity and efficiency is essential, and SSCSCM addresses this requirement through the utilization of advanced technology and automation. SSCSCM enhances efficiency eliminating bottlenecks, reducing manual errors, and optimizing resource allocation. Strategic decisionmaking involves acquiring and analyzing relevant data, identifying key opportunities, evaluating potential risks, and ultimately determining the most effective approaches to attain future objectives (Alahmed et al., 2024). A crucial element of this rapid environment is real-time decision-making, and SSCSCM provides the essential capabilities through its real-time data analytics and insights, allowing enterprises to respond swiftly and decisively, thereby gaining a competitive advantage. Effective strategic decision-making necessitates meticulous evaluation of resources, capabilities, market trends, competitive dynamics, and other variables that could outcomes, affect alongside a comprehensive understanding of internal and external factors influencing the organization's capacity to attain its objectives (Ibeh et al., 2024; Alkhaldi et al., 2024). Leaders must utilize comprehensive and prompt information from management accounting systems to mitigate the risk of failures (Abu Afifa & Nguyen, 2023). Vigilant leadership is an influential technique that directs followers' focus towards prospective hazards and motivates them to adopt preventive measures to mitigate those threats (Gao et al., 2024). A technologically vigilant leader is an essential figure inside an organization, possessing the knowledge, abilities, and experience to adeptly utilize digital technology to foster innovation, improve processes, and attain strategic objectives. The hypothesis in the current research is conjectured as follows.

H4: TVL indirectly and positively impacts SSCSCM through EMAIS.

Inclusive green growth is a sustainable development strategy that seeks to harmonize economic expansion, ecological integrity, and social equity, thereby addressing issues of environmental degradation and uneven economic development during industrialization (Qian & Ji, 2022). Inclusive green growth promotes economic advancement, social fairness, and sustainable production, closely aligning with the contemporary development philosophy characterized by innovation, coordination, sustainability, openness, and shared benefits (Zhang et al., 2022). Prior studies on governmental assistance have demonstrated its potential to yield various beneficial results at the organizational level, encompassing performance, globalization, innovation, entrepreneurial orientation. and capability enhancement (Buffart et al., 2020; Yi et al., 2021).

IGGP seeks to reconcile economic development with the conservation of natural resources, the mitigation climate change, and the advancement of environmental stewardship. Simultaneously, IGGP endeavors to guarantee that the advantages of growth are distributed equally among various socioeconomic groups, particularly marginalized communities. The government exerts significant influence on a firm's innovativeness by implementing laws and initiatives that promote the adoption of innovative projects. Governments can foster innovation through the provision of subsidies (Xia et al., 2022; Xinle et al., 2022). Policy support denotes the regulations and statutes that substantially facilitate the adoption of novel technology and innovative concepts. When support is plentiful, adoption generally occurs swiftly (Wong et al., 2020). The hypotheses in the current research are conjectured as follows.

H5a: IGGP moderates the relationship between TVL and SSCSCM.

H5b: IGGP moderates the relationship between TVL and EMAIS.

H5c: IGGP moderates the relationship between EMAIS and SSCSCM.

All the aforementioned hypotheses and variables are illustrated in Figure 1:

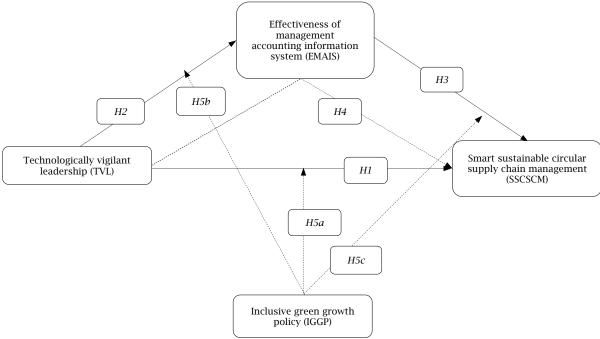


Figure 1. Research model and hypotheses

Source: Authors' elaboration.

3. RESEARCH METHODOLOGY

3.1. Measurement scale development

A cross-sectional design was employed, and a structured questionnaire was created to systematically assess how TVL promotes SSCSCM within the context of Industry 6.0. This study employed established and verified measures from prior research, utilizing five-point Likert scales from 1 (strongly disagree) to 5 (strongly agree). The measurement items were first translated into Vietnamese and then translated back into English by

two proficient translators. Both versions were examined for discrepancies during the translation process to guarantee conceptual comparability with the original English sources (Paulraj et al., 2017). academic experts and three industry professionals were interviewed to execute content Following analysis. the implementation modifications based on expert recommendations, we commenced a preliminary testing phase with 15 managers who acted as both evaluators and participants. We adjusted and enhanced the survey to produce the definitive version based on their feedbacks.

Measures for TVL were adapted from Gao et al. (2024). Measures for IGGP were adapted from Heshmati et al. (2019), Dufrénot (2023), and Zhang et al. (2022). Measures for EMAIS, which comprised of broad scope, timeliness, aggregation, and integration, were adapted from Soobaroyen and Poorundersing (2008), Zaleha Abdul Rasid et al. (2014), and Mazi and Ebere (2019). Measures for SSCSCM, which comprised circular product design, circular procurement, cleaner production, end-of-life product and waste management. More concretely, measures for circular product design were adapted from Zhu et al. (2011), den Hollander et al. (2017), Kayikci, Kazancoglu, Gozacan-Chase, et al. (2022), and Kayikci, Kazancoglu, Lafci, et al. (2022). Measures for circular procurement were adapted from Carter and Carter (1998), Zhu et al. (2011), Zhu et al. (2013), Kayikci, Kazancoglu, Gozacan-Chase, et al. (2022), and Kayikci, Kazancoglu, Lafci, et al. (2022). Measures for cleaner production were adapted from Sousa-Zomer et al. (2018), Zeng et al. (2010), Kayikci, Kazancoglu, Gozacan-Chase, et al. (2022), and Kayikci, Kazancoglu, Lafci, et al. (2022). Measures for end-of-life product and waste management were adapted from Carter and Ellram (1998), Hsu et al. (2013), Kayikci, Kazancoglu, Gozacan-Chase, et al. (2022), and Kayikci, Kazancoglu, Lafci, et al. (2022).

3.2. Sampling and data collection

The research utilized data obtained from a survey of prospective respondents from SMEs. The survey sample comprised accountants selected from SMEs across various industries and regions in Vietnam. Before doing the survey, participants were informed of the study's aims and their rights to refuse withdraw participation or at The researchers confirmed that this study adhered to ethical standards for human subjects and that the identity and confidentiality of the participants were preserved throughout the investigation. questionnaires Targeted were distributed to accountants of SMEs to collect empirical data utilizing a combination of convenience and snowball sampling methods. The sample size conformed to the "10 times rule" methodology, a commonly utilized approach for establishing the minimum sample size in PLS-SEM. This method was based on the principle that the sample size should be a minimum of ten times bigger than the highest number of links among latent variables in either the inner or outer model (Sarstedt et al., 2022). The survey was conducted offline from August 2024 to January 2025. A response rate of 73.14% yielded 512 valid responses for the empirical analysis. Table 1 included a comprehensive summary of the demographic data collected throughout the survey.

Table 1. Demographic characteristics of survey respondents

Items	Frequency	Percentage					
Gender of respondent							
Male	277	54.10					
Female	235	45.90					
Age of respondent							
30-under 40	126	24.61					
40-under 50	279	54.49					
Over 50	107	20.90					
Experience of respondent (years)							
10-under 20	166	32.42					
20-under 30	248	48.44					
Over 30	98	19.14					
Education	•	•					
Undergraduate	495	96.68					
Postgraduate	17	3.32					

Source: Authors' elaboration.

4. RESEARCH ANALYSIS

4.1. Common method bias

Common method bias (CMB) arises when identical respondents supply data for both independent and dependent variables, potentially exaggerating connections. Procedural and statistical procedures were adopted to resolve CMB. Respondent anonymity and question randomization were implemented to mitigate social desirability and response pattern biases. Ensuring anonymity enhances involvement. Ultimately, a pilot test was executed to enhance the survey prior to its comprehensive distribution. The Harman one-factor technique was used and highlighted that the first factor explained around 15.769% of the variance, which was below the 50% criterion. The variance inflation factor (VIF) scores, which ranged from 1.000 to 2.460, were lower than the recommended cutoff of 3.3. According to Kock (2015), these values highlighted that CMB did not pose any substantial problems in the sample. In a nutshell, there was no apparent presence of CMB in our study.

4.2. Model fit

The confirmatory factor analysis (CFA) was conducted using the maximum likelihood technique, and the support of AMOS 28.0. The CFA outcomes were influenced by five main indices, namely the chisquare/df ratio, goodness-of-fit index (GFI), comparative fit index (CFI), Tucker-Lewis index (TLI), and root mean square error of approximation (RMSEA). All indicators for model fitness of the proposed model in Figure 2 adhered to the specific criteria recommended by Kline (2023), rendering the model acceptable across all aspects. Consequently, the chi-square/df was 1.281 (\leq 3), RMSEA was 0.023 (< 0.080); GFI was 0.943 (> 0.9), CFI was 0.983 (> 0.9), TLI was 0.979 (> 0.9).

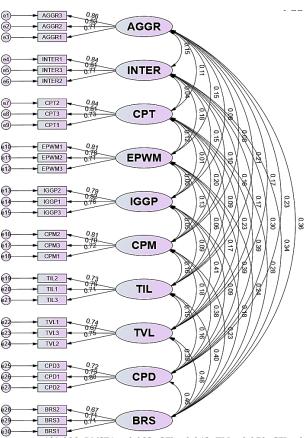


Figure 2. CFA result

Note: Chi-square/df = 1.281; Chi-square = 461.098; RMSEA = 0.023; GFI = 0.943; TLI = 0.979; CFI = 0.983; Df = 360; P = 0.000. Source: Authors' elaboration.

4.3. Measurement model

Table 2 demonstrated the reliability and convergent validity of the construct. Cronbach's alpha (α) , reliability (rho_c), and composite composite utilized reliability (rho_a) were to assess the constructs' reliability. Hair et al. (2024) advised that a threshold exceeding 0.70 was deemed appropriate for Cronbach's alpha (α) and composite reliability (rho_c). Dijkstra and Henseler (2015) asserted that a threshold of over 0.70 was deemed acceptable for composite reliability (rho_a). Additionally, outer loading and average variance extracted (AVE) methods were utilized to assess convergent validity. AVE threshold over 0.50 and outer loadings surpassing 0.7 were considered appropriate for subsequent investigation.

In this research, Cronbach's alpha (α) values fluctuated from 0.740 to 0.860, and the composite reliability (rho_c) values fluctuated from 0.852 to 0.914, which were greater than 0.7 (Hair et al., 2024). Alternatively, the composite reliability (rho_a) values were assessed, and the values the constructs fluctuated from 0.741 and 0.888, which were greater than 0.7 (Dijkstra & Henseler, 2015). In this research, the outer loadings of each item fluctuated from 0.798 to 0.899, which was greater than 0.7. The AVE values of the constructs in the current investigation fluctuated from 0.658 to 0.781, which were more than 0.5. Significantly, Table 2 demonstrated that all constructs in this investigation had above the established minimum threshold values.

Table 2. Results summary of construct reliability and convergent validity

	Convergent validity		Construct reliability			
Constructs and operationalization	Factor loadings	AVE	Cronbach's Alpha	Composite reliability (rho_c)	Composite reliability (rho_a)	Result
Technologically vigilant leadership (TVL)	0.807-0.832	0.675	0.760	0.862	0.760	Retained
Effectiveness of the management accounting information system (EMAIS)						
Broad scope (BRS)	0.798-0.826	0.658	0.740	0.852	0.741	Retained
Timeliness (TIL)	0.822-0.854	0.694	0.780	0.872	0.785	Retained
Aggregation (AGGR)	0.869-0.899	0.781	0.860	0.914	0.860	Retained
Integration (INTER)	0.853-0.888	0.768	0.849	0.908	0.854	Retained
Smart sustainable circular supply chain management (SSCSCM)						
Circular product design (CPD)	0.834-0.858	0.709	0.795	0.880	0.798	Retained
Circular procurement (<i>CPM</i>)	0.813-0.862	0.698	0.783	0.874	0.784	Retained
Cleaner production (CPT)	0.849-0.883	0.753	0.836	0.901	0.836	Retained
End-of-life product & waste management (<i>EPWM</i>)	0.858-0.868	0.747	0.830	0.898	0.831	Retained
Inclusive green growth policy (IGGP)	0.807-0.894	0.750	0.838	0.900	0.888	Retained

Source: Authors' elaboration.

This research assessed discriminant validity employing the Fornell-Larcker criterion (Table 3) and the Heterotrait-Monotrait ratio (HTMT) (Table 3). Table 3 unequivocally demonstrated that all bolded values along the diagonal, indicative of the square root of AVE values, exceeded the interconstruct correlation values. This satisfied the

Fornell-Larcker criteria (Fornell & Larcker, 1981). This study also utilized the HTMT approach to assess discriminant validity, as provided by Henseler et al. (2015). Table 3 indicated that all HTMT values in this investigation remained below the 0.85 threshold, hence affirming the discriminant validity among the constructs.

Table 3. Results summary of discriminant validity

				Fornell-Larc	ker process				
	AGGR	BRS	CPD	CPM	CPT	EPWM	IGGP	INTER	TIL
AGGR	0.884								
BRS	0.297	0.811							
CPD	0.198	0.356	0.842						
CPM	0.067	0.182	0.315	0.835					
CPT	0.105	0.216	0.323	0.185	0.868				
EPWM	0.130	0.183	0.313	0.103	0.093	0.864			
IGGP	0.070	0.141	0.079	0.032	0.014	0.001	0.866		
INTER	0.131	0.276	0.241	0.086	0.031	0.145	0.130	0.876	
TIL	0.172	0.304	0.124	0.131	0.081	0.052	0.070	0.133	0.833
			Н	leterotrait-M	onotrait ratio)			
	AGGR	BRS	CPD	CPM	CPT	EPWM	IGGP	INTER	TIL
AGGR									
BRS	0.371								
CPD	0.239	0.463							
CPM	0.082	0.239	0.399						
CPT	0.124	0.274	0.393	0.228					
EPWM	0.153	0.234	0.382	0.130	0.112				
IGGP	0.079	0.174	0.094	0.047	0.037	0.023			•
INTER	0.152	0.346	0.292	0.106	0.046	0.173	0.143		•
TIL	0.210	0.398	0.162	0.166	0.097	0.074	0.082	0.158	•

Source: Authors' elaboration.

4.4. Structural model

The VIF values for all constructs in the current research were below the threshold of 3.3, showing that collinearity did not alter the estimations (Kock, 2015). Subsequently, the significance and relevance of the interconnections inside the structural model were evaluated. The significance was evaluated by employing a bootstrapping with 10,000 resamples and utilizing the percentile bootstrapping technique as the mechanism for determining the confidence interval.

Direct effect: Building on the bootstrapping results in Table 4, SSCSCM was confirmed to be influenced by TVL ($\beta=0.284$; t-value = 6.581; p-value = 0.000) and EMAIS ($\beta=0.268$; t-value = 6.473; p-value = 0.000). Similarly, TVL was validated to exhibit a substantial and positive impact on EMAIS ($\beta=0.361$; t-value = 8.496; p-value = 0.000). Consequently, H1-H3 were empirically supported.

Indirect effect: The mediating effect of *EMAIS* was assessed. The indirect impact of *TVL* on *SSCSCM* through *EMAIS* was initially assessed for its significance. The relationship between *TVL* and *SSCSCM* was partially mediated by *EMAIS*, as

the direct effect of TVL on SSCSCM was also supported (β = 0.284; t-value = 6.581; p-value = 0.000), and the indirect effect was significant (β = 0.097; t-value = 5.145; p-value = 0.000) (Hair et al., 2024). As a consequence, the results suggested partial mediation.

Moderating effect: This study evaluated the moderating effect of IGGP on the relationships among TVL, EMAIS, and SSCSCM. The statistical results shed light on the fact that IGGP favorably moderated the direct effect of TVL on SSCSCM ($\beta=0.196$; t-value = 4.741; p-value = 0.000), and TVL on EMAIS ($\beta=0.245$; t-value = 6.585; p-value = 0.000). Furthermore, IGGP significantly moderated the direct effect of EMAIS on SSCSCM ($\beta=0.153$; t-value = 3.445; p-value = 0.001). Consequently, H5a-H5c were empirically supported.

The R 2 values were 0.256 for *SSCSCM* and 0.161 for *EMAIS*. The score of f 2 in Table 4 put an accent on the fact that *TVL* and *EMAIS* demonstrated small impacts on *SSCSCM* (0.074 and 0.079, respectively). Likewise, *TVL* illustrated a small impact on *EMAIS* (0.129). The Q 2 values were 0.073 for *SSCSCM* and 0.044 for *EMAIS*, which were above zero.

Table 4. Results summary of hypotheses acceptance

Relevant path	Path coefficient	SE	95% confidence interval	VIF	t-value	p-value	Result			
Direct effect										
TVL → SSCSCM	0.284	0.043	[0.197-0.366]	1.461	6.581	0.000	Supported			
TVL→ EMAIS	0.361	0.042	[0.273-0.442]	1.202	8.496	0.000	Supported			
EMAIS → SSCSCM	0.268	0.041	[0.186-0.346]	1.225	6.473	0.000	Supported			
	Indirect effect									
TVL→EMAIS→SSCSCM	0.097	0.019	[0.063-0.137]		5.145	0.000	Supported			
Moderating effect										
IGGP × TVL→SSCSCM	0.196	0.041	[0.116-0.277]	1.292	4.741	0.000	Supported			
$IGGP \times TVL \longrightarrow EMAIS$	0.245	0.037	[0.173-0.319]	1.091	6.585	0.000	Supported			
IGGP × EMAIS─► SSCSCM	0.153	0.044	[0.068-0.242]	1.145	3.445	0.001	Supported			
\mathbb{R}^2	$R_{SSCSCM}^2 = 0.256; R_{EMAIS}^2 = 0.161$									
f^2 $f^2_{\text{TVL} \Rightarrow \text{SSCSCM}} = 0.074; f^2_{\text{TVL} \Rightarrow \text{BMAIS}} = 0.129; f^2_{\text{EMAIS}} \Rightarrow \text{SSCSCM} = 0.079$										
Q^2										

Source: Authors' elaboration.

T 0.894 (0.000) **IGGP** BRS1 0.586 0.654 → CPD2 0.826 (0.000 0.834 (0.000) CPD3 BRS3 0.809 (0.000) **EMAIS** → CPM2 SSCSCM СРМ3 TIL СРМ 0.268 (0.000) AGGR1 CPT1 0.869 (0.000) 0.849 (0.000) AGGR2 ← 0.403 → CPT2 - 0.882 (0.000) - 0.899 (0.000) 0.245 (0.000) 0.196 (0.000) AGGR3 CPT3 AGGR CDT INTER1 EPWM1 0.887 (0.000) INTER2 - 0.853 (0.000) → EPWM2 0.361 (0.000) 0.284 (0.000) INTER3 EPWM3 INTER **EPWM** 0.832 (0.000) TVL1 TVL2 TVL3

Figure 3. Structural model

Source: Authors' elaboration.

5. CONCLUSION

The statistical results indicate that TVL exerts a positive and statistically significant influence on SSCSCM. To our knowledge, this may be one of the few studies examining the influence of TVL on SSCSCM in SMEs in a developing country. This research enhances the existing literature on vigilant leadership (Day & Kruse, 2021; Gao et al., 2024; Mitson et al., 2024). TVL is crucial for firms to manage the intricacies of the digital era. It guarantees that executives are cognizant of technology improvements and are equipped to these modifications for organizational accomplishment. leadership This approach cultivates a culture of perpetual learning, flexibility, and proactive management of technological risks and opportunities.

Consistent with the researchers' anticipations. EMAIS is confirmed to partially mediate the link between TVL and SSCSCM. To the best of the researchers' knowledge, this may be one of studies emphasizing the potential significance of EMAIS in assisting technologically vigilant leaders in managing smart sustainable circular supply chains. TVL frequently entails overseeing risks associated with the sustainability of the supply chain, including interruptions in the availability of sustainable resources, adherence to environmental standards, or fluctuations in the market. A management accounting information system can deliver significant risk management insights through predictive analytics, enabling the anticipation of potential risks in the circular supply chain and facilitating proactive measures for mitigation. A management accounting information system can monitor resource flows across the supply chain, enabling leaders to oversee and manage the movement of materials, products,

and waste. It aids in recognizing chances for minimizing material usage, repurposing products, or converting trash into new items, so guaranteeing that the supply chain endorses sustainable practices. A technologically vigilant leader can utilize this knowledge to make decisions that minimize waste and enhance resource circularity.

Furthermore, IGGP is revealed to positively modulate the links among TVL, EMAIS, and SSCSCM. To the researchers' knowledge, this study may be one of the few that underscores the potential significance of IGGP in enhancing technologically vigilant leaders' ability to effectively leverage management accounting information system for success in managing smart, sustainable circular supply chains. Based on the perspectives of Shobande et al. (2024), a circular economy is consistent with the tenets of inclusive green growth, fostering socially inclusive and environmentally sustainable economic development. IGGP is essential in developing smart, sustainable circular supply chain management by fostering green innovations, improving circular capabilities, offering regulatory support, and guaranteeing economic and social advantages.

The obtained findings of this research provide actionable advice for practitioners and policymakers in the implementation of SSCSCM. Our findings suggest that it is essential for companies to comprehend the influence of Industry 6.0 on the management of sustainable circular supply chains. In this context, SMEs must ascertain the capabilities and resources that facilitate the implementation of SSCSCM processes. Our research indicates that TVL and management accounting information system are critical tools and capabilities that facilitate SMEs in implementing smart sustainable circular supply chain practices. Practitioners and SME managers should promote

the cultivation of TVLskills within their organizations to monitor the environment for impending threats, avert potential issues, and stimulate ongoing improvement and innovation, all of which are essential for enhancing organizational readiness for change and ensuring sustained success. Consequently, SMEs must integrate training and coaching for their leaders' skill enhancement to guide effectively their organization's transformation process. The findings of this study indicate that SMEs can efficiently obtain valuable information to enhance SSCSCM, hence improving sustainable performance, by utilizing a management accounting information system. Therefore, SME managers must emphasize the establishment. growth, and enhancement of organizational learning capabilities by investing in resources and assets, while also heightening their understanding of the significance of the management accounting information system. To enhance the efficient and systematic learning of employees, managers should integrate, collaborate, and coordinate the knowledge and experiences gained from the implementation of the management accounting information system within the firm. They should also provide training and apprenticeship programs that the attainment of comprehensive sessions emphasize the attainment expertise in management, accounting, information

systems, and digital technologies. Policymakers must assess the legislative and policy implications of inclusive green growth, ensuring that regulations promote rather than hinder organizational efforts to leverage digital technology for sustainable inclusive green growth.

Notwithstanding its theoretical and practical contributions, this work possesses numerous limitations. The research was mostly limited to SMEs in Vietnam, hence restricting the applicability of the findings to other countries. Future research should examine these findings across diverse types of SMEs and cultural contexts, particularly in regions with varying regulatory and economic conditions. The self-reliance-reported data from accountants may introduce biases. Thus, future studies may tackle this issue by employing multiple data sources and approaches, such as qualitative interviews or case studies, to gain deeper insights. The study's cross-sectional design recorded a singular instant, constraining causal inference. Future longitudinal studies are required to assess the influences of TVL, EMAIS, and IGGP on SSCSCM over time. Such studies might assess the long-term impacts of these components on SSCSCM and examine how SMEs transition to implement circularity initiatives for sustainable inclusive green growth achievement.

REFERENCES

- Abu Afifa, M., & Nguyen, N. M. (2023). Impact of risk-taking tendency and transformational leadership style on the use of management accounting system information: A direct-mediation model. *Baltic Journal of Management*, 18(3), 366–385. https://doi.org/10.1108/BJM-01-2022-0003
- Abu Afifa, M. M., & Saleh, I. (2022). Management accounting systems effectiveness, perceived environmental uncertainty and companies' performance: The case of Jordanian companies. *International Journal of Organizational Analysis*, 30(2), 259–288. https://doi.org/10.1108/IJOA-07-2020-2288
- Ahmad, M. A., & Al-Shbiel, S. O. (2019). The effect of accounting information system on organizational performance in Jordanian industrial SMEs: The mediating role of knowledge management. *International Journal of Business and Social Science*, 10(3), 99–104. https://doi.org/10.30845/ijbss.v10n3p9
- Business and Social Science, 10(3), 99–104. https://doi.org/10.30845/ijbss.v10n3p9
 Alahmed, M. A., Alasfour, M. G., & Salifu, E. (2024). Users' informativity and effective communication: The banking field in Kuwait. Arab Journal of Administrative Sciences, 30(1), 221–260. https://doi.org/10.34120/ajas.v30i1.201
- Alam, S. S., Latif, M. M., Kokash, H. A., & Ahsan, M. N. (2025). Relationship among industrial IoT, circular supply chain management practices and sustainable performance of manufacturing companies: An empirical study. *Circular Economy and Sustainability*, *5*, 3159–3186. https://doi.org/10.1007/s43615-025-00576-6
- Alkhaldi, A., Malik, S., Rashed, A., Alshaheen, A., & Lytras, M. D. (2024). Translating a value-based framework for resilient e-learning impact in post COVID-19 times: Research-based evidence from higher education in Kuwait. *Heliyon*, 10(2), Article e24271. https://doi.org/10.1016/j.heliyon.2024.e24271
- Amir, S., Salehi, N., Roci, M., Sweet, S., & Rashid, A. (2023). Towards circular economy: A guiding framework for circular supply chain implementation. *Business Strategy and the Environment*, *32*(6), 2684–2701. https://doi.org/10.1002/bse.3264
- Asif, M., Miao, Q., Jameel, A., Manzoor, F., & Hussain, A. (2020). How ethical leadership influence employee creativity: A parallel multiple mediation model. *Current Psychology*, 41, 3021–3037. https://doi.org/10.1007/s12144-020-00819-9
- Aureli, S., Foschi, E., & Paletta, A. (2025). Management accounting for a circular economy: Current limits and avenue for a dialogic approach. *Accounting, Auditing & Accountability Journal, 38*(9), 291–319. https://doi.org/10.1108/AAAJ-04-2022-5766
- Buffart, M., Croidieu, G., Kim, P. H., & Bowman, R. (2020). Even winners need to learn: How government entrepreneurship programs can support innovative ventures. *Research Policy*, 49(10), Article 104052. https://doi.org/10.1016/j.respol.2020.104052
- Burke, H., Zhang, A., & Wang, J. X. (2021). Integrating product design and supply chain management for a circular economy. *Production Planning & Control*, 34(11), 1097–1113. https://doi.org/10.1080/09537287 .2021.1983063
- Cagno, E., Neri, A., Negri, M., Bassani, C. A., & Lampertico, T. (2021). The role of digital technologies in operationalizing the circular economy transition: A systematic literature review. *Applied Sciences*, 11(8), Article 3328. https://doi.org/10.3390/app11083328
- Campos, F., Neves, V., Lobo, B., & Azevedo, G. (2023). Management accounting systems: A bibliometric analysis. In 2023 18th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE. https://doi.org/10.23919/CISTI58278.2023.10211347
- Carissimi, M. C., Creazza, A., Pisa, M. F., & Urbinati, A. (2023). Circular economy practices enabling circular supply chains: An empirical analysis of 100 SMEs in Italy. *Resources, Conservation and Recycling, 198*, Article 107126. https://doi.org/10.1016/j.resconrec.2023.107126

- Carter, C. R., & Carter, J. R. (1998). Interorganizational determinants of environmental purchasing: Initial evidence from the consumer products industries. Decision Sciences, 29(3), 659-684. https://doi.org/10.1111/j.1540-5915.1998.tb01358.x
- Carter, C. R., & Ellram, L. M. (1998). Reverse logistics: A review of the literature and framework for future investigation. *Journal of Business Logistics*, 19(1), 85–92. https://www.academia.edu/17373468 /Reverse_logistics_a_review_of_the_literature_and_framework_for_future_investigation
- Chenhall, R. H., & Moers, F. (2015). The role of innovation in the evolution of management accounting and its integration into management control. Accounting, Organizations and Society, https://doi.org/10.1016/j.aos.2015.10.002
- Chourasia, S., Tyagi, A., Pandey, S. M., Walia, R. S., & Murtaza, Q. (2022). Sustainability of Industry 6.0 in global perspective: Benefits and challenges. *MAPAN*, *37*, 443–452. https://doi.org/10.1007/s12647-022-00541-w Das, S., & Pan, T. (2022). *A strategic outline of Industry 6.0: Exploring the future*. https://doi.org/10.2139
- /SSRN.4104696
- Day, G. S., & Schoemaker, P. (2004). Peripheral vision: Sensing and acting on weak signals. Long Range Planning, 37(2), 117-121. https://doi.org/10.1016/j.lrp.2004.01.003
- Day, G. S., & Schoemaker, P. (2009). Are you a 'vigilant leader'? IEEE Engineering Management Review, 37(2), 102-102. https://doi.org/10.1109/EMR.2009.5235469
- Day, G. S., & Kruse, K. (2021). How vigilant leaders prepare for a turbulent future. *Strategy & Leadership*, 49(1), 32–37. https://doi.org/10.1108/SL-11-2020-0139
- Deegan, C., & Blomquist, C. (2006). Stakeholder influence on corporate reporting: An exploration of the interaction between WWF-Australia and the Australian minerals industry. Accounting, Organizations and Society, 31(4-5), 343-372. https://doi.org/10.1016/j.aos.2005.04.001
- den Hollander, M. C., Bakker, C. A., & Hultink, E. J. (2017). Product design in a circular economy: Development of a typology of key concepts and terms. *Journal of Industrial Ecology*, 21(3), 517–525. https://doi.org/10.1111/jiec.12610
- Di Vaio, A., Hasan, S., Palladino, R., & Hassan, R. (2023). The transition towards circular economy and waste within accounting and accountability models: A systematic literature review and conceptual framework. *Environment, Development and Sustainability, 25*(1), 734–810. https://doi.org/10.1007/s10668-021-02078-5
- Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297-316. https://doi.org/10.25300/MISQ/2015/39.2.02
- Dinda, S. (2020). A circular economy approach for sustainable economic development. *International Journal of Green Economics*, 14(2), 174–189. https://doi.org/10.1504/ijge.2020.109736
- Dufrénot, G. (Ed.). (2023). New thinking on sustainable development and growth. In New challenges for macroeconomic policies: Economic growth, sustainable development, fiscal and monetary policies. (pp. 147–191). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-15754-7_4
- Elgie, A. R., Singh, S. J., & Telesford, J. N. (2021). You can't manage what you can't measure: The potential for circularity in Grenada's waste management system. *Resources, Conservation and Recycling,* 164, Article 105170. https://doi.org/10.1016/j.resconrec.2020.105170
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
- Freeman, R. E. (1984). Strategic management: A stakeholder approach. Pitman Publishing Inc.
- Freeman, R. E., & Phillips, R. A. (2002). Stakeholder theory: A libertarian defense. Business Ethics Quarterly, 12(3), 331–349. https://doi.org/10.2307/3858020
- Freeman, R. E., Dmytriyev, S. D., & Phillips, R. A. (2021). Stakeholder theory and the resource-based view of the firm. *Journal of Management, 47*(7), 1757–1770. https://doi.org/10.1177/0149206321993576
- Gao, Z., Liu, Y., Zhao, C., Fu, Y., & Schriesheim, C. A. (2024). Winter is coming: An investigation of vigilant leadership, antecedents, and outcomes. Journal of Applied Psychology, 109(6), 850-870. https://doi.org/ 10.1037/apl0001175
- Ghasemi, R., Habibi, H. R., Ghasemlo, M., & Karami, M. (2019). The effectiveness of management accounting systems: Evidence from financial organizations in Iran. Journal of Accounting in Emerging Economies, 9(2), 182-207. https://doi.org/10.1108/JAEE-02-2017-0013
- Gimenez, C., & Tachizawa, E. M. (2012). Extending sustainability to suppliers: A systematic literature review. Supply Chain Management, 17(5), 531-543. https://doi.org/10.1108/13598541211258591
- Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2024). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage Publications, Inc. https://eli.johogo.com/Class/CCU/SEM modeling (PLS-SEM) (2nd ed.). Sage Publications, Inc. https://eli.johogo.com/Class/CCU/SEM/_A%20Primer%20on%20Partial%20Least%20Squares%20Structural%20Equation%20Modeling_Hair.pdf
- Hazen, B. T., Russo, I., Confente, I., & Pellathy, D. (2021). Supply chain management for circular economy: Conceptual framework and research agenda. The International Journal of Logistics Management, 32(2), 510-537. https://doi.org/10.1108/IJLM-12-2019-0332
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
- Heredia, J., Castillo-Vergara, M., Geldes, C., Carbajal Gamarra, F. M., Flores, A., & Heredia, W. (2022). How do digital capabilities affect firm performance? The mediating role of technological capabilities in the "new normal". Journal of Innovation & Knowledge, 7(2), Article 100171. https://doi.org/10.1016/j.jik.2022.100171
- Heshmati, A., Kim, J., & Wood, J. (2019). A survey of inclusive growth policy. *Economies, 7*(3), Article 65. https://doi.org/10.3390/economies7030065
- Hsu, C.-C., Choon Tan, K., Zailani, S. H. M., & Jayaraman, V. (2013). Supply chain drivers that foster the development of green initiatives in an emerging economy. International Journal of Operations & Production Management, 33(6), 656-688. https://doi.org/10.1108/IJOPM-10-2011-0401
- Huikkola, T., Kohtamäki, M., & Ylimäki, J. (2022). Becoming a smart solution provider: Reconfiguring a product manufacturer's strategic capabilities and processes to facilitate business model innovation. *Technovation*, 118, Article 102498. https://doi.org/10.1016/j.technovation.2022.102498
- Ibeh, C. V., Asuzu, O. F., Olorunsogo, T., Elufioye, O. A., Nduubuisi, N. L., & Daraojimba, A. I. (2024). Business analytics and decision science: A review of techniques in strategic business decision making. *World Journal* of Advanced Research and Reviews, 21(2), 1761-1769. https://doi.org/10.30574/wjarr.2024.21.2.0247

- Jain, V. K., Singh, S. & Sharma, P. (2025). Circular economy: Developing framework for circular supply chain implementation for energy efficient solution in Industry 4.0. *Circular Economy and Sustainability*, 5, 2197–2228. https://doi.org/10.1007/s43615-025-00511-9
- Jones C. S. (1985). An empirical study of the role of management accounting systems following takeover or merger. Accounting Organizations and Society, 10(2), 177-200. https://doi.org/10.1016/0361-3682(85)90015-7
- Kaplan R. S. (1984). The evolution of management accounting. The Accounting Review, 59(3), 390-418. https://coin.wne.uw.edu.pl/~pmodzelewski/The%20Evolution%20of%20Management%20Accounting.pdf
- Karuppiah, K., Virmani, N., & Sindhwani, R. (2024). Toward a sustainable future: Integrating circular economy in the digitally advanced supply chain. Journal of Business & Industrial Marketing, 39(12), 2605-2619. https://doi.org/10.1108/JBIM-12-2023-0742
- Kaur, H., Reddy, C. K. K., Hanafiah, M. M., & Lippert, K. (2024). Implementing advanced technologies for disaster management in the age of Industry 6.0: Strategies and best practices using quantum computing. In C. K. K. Reddy, A. Nag, M. Ouaissa, B. Bhushan, & M. M. Hanafiah (Eds.), The rise of quantum computing
- in Industry 6.0 towards sustainability (pp. 1–13). Springer. https://doi.org/10.1007/978-3-031-73350-5_1
 Kayikci, Y., Kazancoglu, Y., Gozacan-Chase, N., & Lafci, C. (2022). Analyzing the drivers of smart sustainable circular supply chain for sustainable development goals through stakeholder theory. Business Strategy and the Environment, 31(7), 3335-3353. https://doi.org/10.1002/bse.3087
- Kayikci, Y., Kazancoglu, Y., Lafci, C., Gozacan-Chase, N., & Mangla, S. K. (2022). Smart circular supply chains to achieving SDGs for post-pandemic preparedness. *Journal of Enterprise Information Management, 35*(1), 237-265. https://doi.org/10.1108/JEIM-06-2021-0271
- Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). Guilford Publications.
- Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of
- e-Collaboration, 11(4), 1-10. https://doi.org/10.4018/ijec.2015100101

 Lahane, S., Kant, R., & Shankar, R. (2020). Circular supply chain management: A state-of-art review and future opportunities. Journal of Cleaner Production, 258, Article 120859. https://doi.org/10.1016/ j.jclepro.2020.120859
- Larrinaga, C., & Garcia-Torea, N. (2022). An ecological critique of accounting: the circular economy and COVID-19. Critical Perspectives on Accounting, 82, 1-10. https://doi.org/10.1016/j.cpa.2021.102320
- Lewis, C. T., & Short, C. (2002). A Latin dictionary: Founded on Andrew's edition of Freund's Latin dictionary. Clarendon Press.
- Liu, H., Alharthi, M., Atil, A., Zafar, M. W., & Khan, I. (2022). A non-linear analysis of the impacts of natural resources and education on environmental quality: Green energy and its role in the future. Resources Policy, 79, Article 102940. https://doi.org/10.1016/j.resourpol.2022.102940
- Liu, L., Long, J., Fan, Q., Wan, W., & Liu, R. (2023). Examining the functionality of digital platform capability in driving B2B firm performance: Evidence from emerging market. *Journal of Business and Industrial Marketing, 38*(9), 1941-1957. https://doi.org/10.1108/JBIM-09-2021-0441
- Liu, R., Wang, Y., & Zou, J. (2022). Research on the transformation from financial accounting to management accounting based on drools rule engine. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/9445776
- Luthra, S., Sharma, M., Kumar, A., Joshi, S., Collins, E., & Mangla, S. (2022). Overcoming barriers to cross-sector collaboration in circular supply chain management: A multi-method approach. Transportation Research Part E: Logistics and Transportation Review, 157, Article 102582. https://doi.org/10.1016/j.tre.2021.102582
- Madsen, D. Ø., Slåtten, K., & Berg, T. (2025). From Industry 4.0 to Industry 6.0: Tracing the evolution of industrial paradigms through the lens of management fashion theory. *Systems*, *13*(5), Article 387. https://doi.org/10.3390/systems13050387
- Matarneh, S., Piprani, A. Z., Ellahi, R. M., Nguyen, D. N., Le, T. M., & Nazir, S. (2024). Industry 4.0 technologies and circular economy synergies: Enhancing corporate sustainability through sustainable supply chain integration and flexibility. *Environmental Technology & Innovation*, 35, Article 103723. https://doi.org/10.1016/j.eti.2024.103723
- Mazi, C., & Ebere, C. (2019). Management accounting system and performance of quoted insurance companies in Nigeria. International Journal of Innovative Finance and Economics Research, 7(2), 82-88.
- Mihai, F.-C., & Minea, I. (2021). Sustainable alternative routes versus linear economy and resources degradation in eastern Romania. Sustainability, 13(19), Article 10574. https://doi.org/10.3390/su131910574
- Mitson, R., Qin, S., & Men, R. L. (2024). The value of employee trust during turbulent times: Exploring vigilant leadership communication and employee psychological well-being. *International Journal of Strategic Communication*, 18(3), 228–248. https://doi.org/10.1080/1553118X.2024.2331300
- Mora Cortez, R., & Johnston, W. J. (2019). Marketing role in B2B settings: Evidence from advanced, emerging and developing markets. Journal of Business & Industrial Marketing, 34(3), 605-617. https://doi.org/10.1108 /JBIM-04-2017-0089
- Morseletto, P. (2020). Restorative and regenerative: Exploring the concepts in the circular economy. Journal of Industrial Ecology, 24(4), 763–773. https://doi.org/10.1111/jiec.12987 Muskat, B., Hörtnagl, T., Peters, M., & Zehrer, A. (2021). Innovation capability and culture: How time-orientation
- shapes owner-managers' perceptions. *Journal of Hospitality and Tourism Management, 47*(5), 217–227. https://doi.org/10.1016/j.jhtm.2021.03.018
- Nakku, V. B., Agbola, F. W., Miles, M. P., & Mahmood, A. (2020). The interrelationship between SME government support programs, entrepreneurial orientation, and performance: A developing economy perspective. *Journal of Small Business Management*, 58(1), 2–31. https://doi.org/10.1080/00472778.2019.1659671
- Nyiwul, L., & Koirala, N. P. (2024). Renewable energy policy performance and technological innovation in Africa: A Bayesian estimation. Energy Policy, 193, Article 114279. https://doi.org/10.1016/j.enpol.2024.114279
- Organa, M., & Sus, A. (2023). Leadership 4.0. New definition and distinguishing features. Procedia Computer Science, 225, 3701-3709. https://doi.org/10.1016/j.procs.2023.10.365
- Organa, M., Sus, A., Hołub, J., & Nogalski, B. (2024). Identification and definition of the new leadership paradigm in Industry 4.0. In A. Visvizi, O. Troisi, & V. Corvello (Eds.), Research and Innovation Forum 2023: Navigating shocks and crises in uncertain times — https://doi.org/10.1007/978-3-031-44721-1_42 - Technology, business, society (pp. 559-572). Springer.

- Paulraj, A., Chen, I. J., & Blome, C. (2017). Motives and performance outcomes of sustainable supply chain management practices: A multi-theoretical perspective. *Journal of Business Ethics*, 145, 239–258. https://doi.org/10.1007/s10551-015-2857-0
- Pieroni, M. P. P., McAloone, T. C., & Pigosso, D. C. A. (2019). Business model innovation for circular economy and sustainability: A review of approaches. *Journal of Cleaner Production*, 215, 198–216. https://doi.org/10.1016/j.jclepro.2019.01.036
- Qazi, A. A., & Appolloni, A. (2022). A systematic review on barriers and enablers toward circular procurement management. *Sustainable Production and Consumption*, 33, 343-359. https://doi.org/10.1016/j.spc.2022.07.013
- Qian, J., & Ji, R. (2022). Impact of energy-biased technological progress on inclusive green growth. Sustainability, 14(23), Article 16151. https://doi.org/10.3390/su142316151
- Raimo, N., Rubino, M., Esposito, P., & Vitolla, F. (2023). Measuring quality of popular annual financial reports: Features of the rewarded US reporting municipalities. *Corporate Social Responsibility and Environmental Management (CSREM)*, 30(1), 17–27. https://doi.org/10.1002/csr.2336
- Saleh, Q. Y., & Al-Nimer, M. B. (2022). The mediating role of the management accounting information system in the relationship between innovation strategy and financial performance in the Jordanian industrial companies. *Cogent Business & Management*, 9(1), Article 2135206. https://doi.org/10.1080/23311975.2022.2135206
- Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., & Ringle, C. M. (2022). Progress in partial least squares structural equation modeling use in marketing research in the last decade. *Psychology & Marketing*, *39*(5), 1035–1064. https://doi.org/10.1002/mar.21640
- Shobande, O. A., Tiwari, A. K., Ogbeifun, L., & amp Trabelsi, N. (2024). Demystifying circular economy and inclusive green growth for promoting energy transition and carbon neutrality in Europe. *Structural Change and Economic Dynamics*, 70, 666–681. https://doi.org/10.1016/j.strueco.2024.05.016
- Soobaroyen, T., & Poorundersing, B. (2008). The effectiveness of management accounting systems: Evidence from functional managers in a developing country. *Managerial Auditing Journal*, 23(2), 187–219. https://doi.org/10.1108/02686900810839866
- Sousa-Zomer, T. T., Magalhães, L., Zancul, E., Campos, L. M. S., & Cauchick-Miguel, P. A. (2018). Cleaner production as an antecedent for circular economy paradigm shift at the micro-level: Evidence from a home appliance manufacturer. *Journal of Cleaner Production*, 185, 740–748. https://doi.org/10.1016/j.jclepro.2018.03.006
- Xuan, V. N. (2025). Determinants of carbon dioxide emissions in technology revolution 6.0: New insights from Brunei. *Energy Strategy Reviews*, 57, Article 101633. https://doi.org/10.1016/j.esr.2024.101633
- Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. *Long Range Planning*, 52(3), 326–349. https://doi.org/10.1016/j.lrp.2018.12.001
 Wernerfelt, B. (1984). A resource-based view of the firm. *Strategic Management Journal*, 5(2), 171–180.
- Wernerfelt, B. (1984). A resource-based view of the firm. *Strategic Management Journal*, 5(2), 171-180 https://doi.org/10.1002/smj.4250050207
- Wong, L.-W., Leong, L.-Y., Hew, J.-J., Wei-Han Tan, G., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. *International Journal of Information Management*, 52, Article 101997. https://doi.org/10.1016/j.ijinfomgt.2019.08.005
 Wu, H., Ren, B., Shen, Y., Luo, S., Tu, J., Yang, X., & Hao, Y. (2024). Fostering inclusive green growth in China: What is
- Wu, H., Ren, B., Shen, Y., Luo, S., Tu, J., Yang, X., & Hao, Y. (2024). Fostering inclusive green growth in China: What is the role of industrial intellectualisation? *Technology Analysis & Strategic Management, 36*(11), 3857–3874. https://doi.org/10.1080/09537325.2023.2227289
- Xia, L., Gao, S., Wei, J., & Ding, Q. (2022). Government subsidy and corporate green innovation Does board governance play a role? *Energy Policy*, 161, Article 112720. https://doi.org/10.1016/j.enpol.2021.112720
- Xinle, T., Zhen, W., & Xinting, L. (2022). The influence of government subsidy on enterprise innovation: Based on Chinese high-tech enterprises. *Economic Research-Ekonomska Istraživanja*, 35(1), 1481-1499. https://doi.org/10.1080/1331677X.2021.1972818
- Xu, T., Weng, G., & Guo, W. (2024). Coupling and coordination relationship of tourism inclusive green growth system: Evidence from Shandong Province. *Chinese Journal of Population, Resources and Environment, 22*(3), 334–342. https://doi.org/10.1016/j.cjpre.2024.09.012
- Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. *Environmental Chemistry Letters*, 21, 55–80. https://doi.org/10.1007/s10311-022-01499-6
- Yi, J., Murphree, M., Meng, S., & Li, S. (2021). The more the merrier? Chinese government R&D subsidies, dependence, and firm innovation performance. *Journal of Product Innovation Management*, 38(2), 289–310. https://doi.org/10.1111/JPIM.12564
- Zahra, S. A. (2021). The resource-based view, resourcefulness, and resource management in startup firms: A proposed research agenda. *Journal of Management*, 47(7), 1841–1860. https://doi.org/10.1177/01492063211018505
- Zaleha Abdul Rasid, S., Ruhana Isa, C., & Khairuzzaman Wan Ismail, W. (2014). Management accounting systems, enterprise risk management and organizational performance in financial institutions. *Asian Review of Accounting*, 22(2), 128–144. https://doi.org/10.1108/ARA-03-2013-0022
- Accounting, 22(2), 128–144. https://doi.org/10.1108/ARA-03-2013-0022
 Zeng, S. X., Meng, X. H., Yin, H. T., Tam, C. M., & Sun, L. (2010). Impact of cleaner production on business performance. Journal of Cleaner Production, 18(10–11), 975–983. https://doi.org/10.1016/j.jclepro.2010.02.019
- Zhang, X., Guo, W., & Bashir, M. B. (2022). Inclusive green growth and development of the high-quality tourism industry in China: The dependence on imports. *Sustainable Production and Consumption*, *29*, 57–78. https://doi.org/10.1016/j.spc.2021.09.023
- Zhu, Q., Geng, Y., & Lai, K.-H. (2011). Environmental supply chain cooperation and its effect on the circular economy practice-performance relationship among Chinese manufacturers. *Journal of Industrial Ecology, 15*(3), 405–419. https://doi.org/10.1111/j.1530-9290.2011.00329.x
- Zhu, Q., Geng, Y., Sarkis, J. (2013). Motivating green public procurement in China: An individual level perspective. *Journal of Environmental Management*, 126, 85–95. https://doi.org/10.1016/j.jenvman.2013.04.009