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The management of operational risk in the banking industry has undergone significant changes over 
the last decade due to substantial changes in operational risk environment. Globalization, 
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1 Operational Risk under Basel II 
 

The management of operational risk in the banking 

industry has undergone significant changes over the 

last decade due to substantial changes in operational 

risk environment. Globalization, deregulation, the use 

of complex financial products and changes in 

information technology have resulted in exposure to 

new risks very different from market and credit risks. 

In response, Basel Committee for banking Supervision 

has developed a regulatory framework, referred to as 

Basel II [1], that introduced operational risk (OpRisk) 

category and corresponding capital requirements 

against OpRisk losses. OpRisk is defined by Basel II 

[1, p.144] as: “the risk of loss resulting from 

inadequate or failed internal processes, people and 

systems or from external events. This definition 

includes legal risk, but excludes strategic and 

reputational risk.” Similar regulatory requirements for 

the insurance industry are referred to as Solvency 2. A 

conceptual difference between OpRisk and 

market/credit risk is that it represents a downside risk 

with no upside potential. 

OpRisk is significant in many financial 

institutions. Examples of extremely large OpRisk 

losses are: Barings Bank in 1995 when the actions of 

one rogue trader caused a bankruptcy as a result of 

GBP 1.3 billion derivative trading loss; Enron 

bankruptcy in 2001 considered as a result of actions of 

its executives with USD 2.2 billion loss; and Société 

Générale losses of Euro 4.9 billion in 2008 due to 

unauthorized trades. In 2012, a capital against OpRisk 

in major Australian banks is about AUD 1.8-2.5 

billion (8-10% of the total capital). Under the Basel II 

framework, three approaches can be used to quantify 

the OpRisk annual capital charge  , see [1, pp.144-

148]. 

 The Basic Indicator Approach:   

 
 

 
∑   

               , where         

      are the annual gross incomes over the 

previous three years,   is the number of years 

with positive gross income, and       . 

 The Standardised Approach:   
 

 
∑   

       ∑   
              , where   , 
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        are the factors for eight business 

lines (BL) listed in Table 1 and       , 

        are the annual gross incomes of the  -
th BL in the previous three years. 

 The Advanced Measurement Approaches 

(AMA): a bank can calculate the capital charge 

using internally developed model subject to 

regulatory approval. 

 

A bank intending to use the AMA should 

demonstrate accuracy of the internal models within the 

Basel II risk cells (eight business lines times seven 

risk types, see Table 1) relevant to the bank and satisfy 

some criteria, see [1, pp.148-156], including: 

 The use of the internal data, relevant external 

data, scenario analysis and factors reflecting 

the business environment and internal control 

systems; 

 The risk measure used for capital charge should 

correspond to the 99.9% confidence level for a 

one-year holding period; 

 Diversification benefits are allowed if 

dependence modeling is approved by a 

regulator; 

 Capital reduction due to insurance is capped by 

20%.  

 

The intention of AMA is to provide incentive to 

a bank to invest into development of a sound OpRisk 

practices and risk management. The capital reserves 

under AMA (when compared to other approaches) 

will be more relevant to the actual risk profile of a 

bank. It is expected that the capital from the AMA is 

lower than the capital calculated under the 

Standardised Approach (some regulators are setting a 

limit on this reduction, e.g. 25%). The regulatory 

accreditation for AMA indicates to a market that a 

bank has developed a sound risk management 

practice. 

 

Table 1. Basel II business lines and event types.         are the business line factors  

used in the Basel II Standardised Approach 

 

Basel II business lines (BL) Basel II event types (ET) 

• Corporate finance (β1 = 0.18) 

• Trading & Sales (β2 = 0.18) 

• Retail banking (β3 = 0.12) 

• Commercial banking (β4 = 0.15) 

• Payment & Settlement (β5 = 0.18) 

• Agency Services (β6 = 0.15) 

• Asset management (β7 = 0.12) 

• Retail brokerage (β8 = 0.12) 

• Internal fraud 

• External fraud 

• Employment practices and workplace safety 

• Clients, products and business practices 

• Damage to physical assets 

• Business disruption and system failures 

• Execution, delivery and process management 

 

Remarks 1.1 While the regulatory capital for 

operational risk is based on the 99.9% confidence 

level over a one year period, economic capital used by 

banks is often higher; some banks use the 99.95%-

99.98% confidence levels.  

 

A popular method under the AMA is the loss 

distribution approach (LDA). Under the LDA, banks 

quantify distributions for frequency and severity of 

OpRisk losses for each risk cell (business line/event 

type) over a one-year time horizon. The banks can use 

their own risk cell structure but must be able to map 

the losses to the Basel II risk cells. There are various 

quantitative aspects of the LDA modeling discussed in 

several books [2-7] and various papers, e.g. [8-10] to 

mention a few. The commonly used LDA model for 

calculating the total annual loss      in a bank 

(occurring in the years          can be formulated 

as  

 

       ∑   
                   ∑  

     

   
  

   
     (1) 

 

Here, the annual loss       in risk cell   is 

modeled as a compound process over one year with 

the frequency (annual number of events)       

implied by a counting process (e.g. Poisson process) 

and random severities   
   

   ,            . 

Estimation of the annual loss distribution by modeling 

frequency and severity of losses is a well-known 

actuarial technique used to model solvency 

requirements for the insurance industry, see e.g. [11-

13]. Then the capital is defined as the 0.999 Value at 

Risk (VaR) which is the quantile of the distribution for 

the next year total annual loss       :  

 

                    
                     

         
(2) 

 

at the level        . Here, index  +1 refers to the 

next year and notation   
      denotes the inverse 

distribution of a random variable  . The capital can be 

calculated as the difference between the 0.999 VaR 

and expected loss if the bank can demonstrate that the 

expected loss is adequately captured through other 

provisions. If correlation assumptions can not be 

validated between some groups of risks (e.g. between 

business lines) then the capital should be calculated as 

the sum of the 0.999 VaRs over these groups. This is 
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equivalent to the assumption of perfect positive 

dependence between annual losses of these groups. 

However, it is important to note that the sum of VaRs 

across risks is not most conservative estimate of the 

total VaR. In principle, the upper conservative bound 

can be larger; see Embrechts et al [14] and Embrechts 

et al [15]. This is often the case for heavy tailed 

distributions (with the tail decay slower than the 

exponential) and large quantiles. 

The major problem in OpRisk is a lack of quality 

data that makes it difficult for advanced research in 

the area. In past, most banks did not collect OpRisk 

data – it was not required while the cost of collection 

is significant. Moreover, indirect OpRisk losses 

cannot be measured accurately. Also the duration of 

OpRisk events can be substantial and evaluation of the 

impact of the event can take years. 

Over the past five years, major banks in most 

parts of the world have received accreditation under 

the Basel II AMA by adopting the LDA despite there 

being a number of unresolved methodological 

challenges in its implementation. Different approaches 

and methods are still under hot debate. One of the 

unresolved challenges is combining internal data with 

external data and scenario analysis required by Basel 

II. In this paper, we review some methods proposed in 

the literature to combine different data sources for 

OpRisk capital modelling. Other challenges not 

discussed in this paper include modelling dependence 

between risks, handling data truncation, modelling 

heavy tailed severities, and estimation of the 

frequency and severity distributions; for these issues, 

the readers are refereed to Panjer [5] or Shevchenko 

[16]. 

The paper is organised as follows. Section 2 

describes the requirements for the data that should be 

collected and used for Basel II AMA. Combining 

different data sources using ad-hoc and Baysian 

methods are considered in Sections 3–5. Other 

methods of combining, non-parametric Bayesian 

method via Dirichlet process and Dempster’s 

combining rule are considered in Section 6 and 

Section 7 respectively. To avoid confusion in 

description of mathematical concepts we follow a 

standard statistical notation denoting random variables 

by upper case symbols and their realisations by lower 

case symbols, vectors are written in bold. 

 

2 Data Sources 
 

Basel II specifies requirement for the data that should 

be collected and used for AMA. In brief, a bank 

should have internal data, external data and expert 

opinion data. In addition, internal control indicators 

and factors affecting the businesses should be used. A 

bank’s methodology must capture key business 

environment and internal control factors affecting 

OpRisk. These factors should help to make forward-

looking estimation, account for the quality of the 

controls and operating environments, and align capital 

assessments with risk management objectives. 

The intention of the use of several data sources is 

to develop a model based on the largest possible 

dataset to increase the accuracy and stability of the 

capital estimate. Development and maintenance of 

OpRisk databases is a difficult and challenging task. 

Some of the main features of the required data are 

summarized as follows. 

 

2.1 Internal data 
 
The internal data should be collected over a minimum 

five year period to be used for capital charge 

calculations (when the bank starts the AMA, a three-

year period is acceptable). Due to a short observation 

period, typically, the internal data for many risk cells 

contain few (or none) high impact low frequency 

losses. A bank must be able to map its historical 

internal loss data into the relevant Basel II risk cells in 

Table 1. The data must capture all material activities 

and exposures from all appropriate sub-systems and 

geographic locations. A bank can have an appropriate 

reporting threshold for internal data collection, 

typically of the order of Euro 10,000. Aside from 

information on gross loss amounts, a bank should 

collect information about the date of the event, any 

recoveries of gross loss amounts, as well as some 

descriptive information about the drivers of the loss 

event. 

 

2.2 External data 
 
A bank’s OpRisk measurement system must use 

relevant external data. These data should include data 

on actual loss amounts, information on the scale of 

business operations where the event occurred, and 

information on the causes and circumstances of the 

loss events. Industry data are available through 

external databases from vendors (e.g. Algo OpData 

provides publicly reported OpRisk losses above USD 

1 million) and consortia of banks (e.g. ORX provides 

OpRisk losses above Euro 20,000 reported by ORX 

members). The external data are difficult to use 

directly due to different volumes and other factors. 

Moreover, the data have a survival bias as typically 

the data of all collapsed companies are not available. 

Several Loss Data Collection Exercises (LDCE) for 

historical OpRisk losses over many institutions were 

conducted and their analyses reported in the literature. 

In this respect, two papers are of high importance: 

[17] analysing 2002 LDCE and [18] analysing 2004 

LDCE where the data were mainly above Euro 10,000 

and USD 10,000 respectively. To show the severity 

and frequency of operational losses, Table 2 presents a 

data summary for 2004 LDCE conducted by US 

Federal bank and Thrift Regulatory agencies in 2004 

for US banks. Here, twenty three US banks provided 

data for about 1.5 million losses totaling USD 25.9 

billion. It is easy to see that frequencies and severities 
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of losses are very different across risk cells, though 

some of the cells have very few and small losses. 

 

2.3 Scenario Analysis 
 

A bank must use scenario analysis in conjunction with 

external data to evaluate its exposure to high-severity 

events. Scenario analysis is a process undertaken by 

experienced business managers and risk management 

experts to identify risks, analyse past internal/external 

events, consider current and planned controls in the 

banks; etc. It may involve: workshops to identify 

weaknesses, strengths and other factors; opinions on 

the impact and likelihood of losses; opinions on 

sample characteristics or distribution parameters of the 

potential losses. As a result some rough quantitative 

assessment of risk frequency and severity distributions 

can be obtained. Scenario analysis is very subjective 

and should be combined with the actual loss data. In 

addition, it should be used for stress testing, e.g. to 

assess the impact of potential losses arising from 

multiple simultaneous loss events. 

Expert opinions on potential losses and 

corresponding probabilities are often expressed using 

opinion on the distribution parameter; opinions on the 

number of losses with the amount to be within some 

ranges; separate opinions on the frequency of the 

losses and quantiles of the severity; opinion on how 

often the loss exceeding some level may occur. Expert 

elicitation is certainly one of the challenges in OpRisk 

because many managers and employees may not have 

a sound knowledge of statistics and probability theory. 

This may lead to misleading and misunderstanding. It 

is important that questions answered by experts are 

simple and well understood by respondents. There are 

psychological aspects involved. There is a vast 

literature on expert elicitation published by 

statisticians, especially in areas such as security and 

ecology. For a good review, see O’Hagan [19]. 

However, published studies on the use of expert 

elicitation for OpRisk LDA are scarce. Among the few 

are Frachot et al [9]; Alderweireld et al [20]; Steinhoff 

and Baule [21]; and Peters and Hübner [22]. These 

studies suggest that questions on “how often the loss 

exceeding some level may occur" are well understood 

by OpRisk experts. Here, experts express the opinion 

that a loss of amount   or higher is expected to occur 

every   years. A recently proposed framework that 

incorporates scenario analysis into OpRisk modeling 

was proposed in Ergashev [23], where the basis for the 

framework is the idea that only worst-case scenarios 

contain valuable information about the tail behavior of 

operational losses. 

 

Remarks 2.1 One of the problems with the combining 

external data and scenario analysis is that external 

data are collected for Basel II risk cells while scenario 

analysis is done at the loss process level.  

 

 

2.4 A Note on Data Sufficiency 
 

Empirical estimation of the annual loss 0.999 quantile, 

using observed losses only, is impossible in practice. 

It is instructive to calculate the number of data points 

needed to estimate the 0.999 quantile empirically 

within the desired accuracy. Assume that independent 

data points         with common density      have 

been observed. Then the quantile    at confidence 

level   is estimated empirically as  ̂   ̃⌊  ⌋  , 

where  ̃ is the data sample   sorted into the ascending 

order. The standard deviation of this empirical 

estimate is  

 

                   ̂   
√      

     √ 
  (3) 

 

see Glasserman [24, section 9.1.2, p. 490]. Thus, to 

calculate the quantile within relative error     

       ̂     , we need  

 

                  
       

            
 (4) 

 

observations. Suppose that the data are from the 

lognormal distribution            . Then using 

formula (4), we obtain that           observations 

are required to achieve     accuracy (     ) in the 

0.999 quantile estimate. In the case of         data 

points, we get       , that is, the uncertainty is 

larger than the quantile we estimate. Moreover, 

according to the regulatory requirements, the 0.999 

quantile of the annual loss (rather than 0.999 quantile 

of the severity) should be estimated. OpRisk losses are 

typically modelled by the heavy-tailed distributions. In 

this case, the quantile at level   of the aggregate 

distributions can be approximated by the quantile of 

the severity distribution at level  

 

    
   

    
  

 

see Embrechts et al [25, theorem 1.3.9]. Here,      is 

the expected annual number of events. For example, if 

       , then we obtain that the error of the annual 

loss 0.999 quantile is the same as the error of the 

severity quantile at the confidence level         . 

Again, using (4) we conclude that this would require 

      observed losses to achieve     accuracy. If 

we collect annual losses then            annual 

losses should be collected to achieve the same 

accuracy of    . These amounts of data are not 

available even from the largest external databases and 

extrapolation well beyond the data is needed. Thus 

parametric models must be used. For an excellent 

discussion on data sufficiency in OpRisk, see Cope et 

al [26]. 

 



Journal of Governance and Regulation / Volume 2, Issue 3, 2013 

 

 
37 

Table 2. Number of loss events (%, top value in a cell) and total Gross Loss (%, bottom value in a cell) 

annualised per Business Line and Event Type reported by US banks in 2004 LDCE [27, tables 3 and 4]. 100% 

corresponds to 18,371.1 events and USD 8,643.2 million. Losses   USD 10,000 occurring during the period 

1999-2004 in years when data capture was stable 

 

 ET(1) ET(2) ET(3) ET(4) ET(5) ET(6) ET(7) Other Fraud Total 

BL(1) 
0.01% 

0.14% 

0.01% 

0.00% 

0.06% 

0.03% 

0.08% 

0.30% 

0.00% 

0.00% 

 0.12% 

0.05% 

0.03% 

0.01% 

0.01% 

0.00% 

0.3% 

0.5% 

BL(2) 
0.02% 

0.10% 

0.01% 

1.17% 

0.17% 

0.05% 

0.19% 

4.29% 

0.03% 

0.00% 

0.24% 

0.06% 
6.55% 

2.76% 

 0.05% 

0.15% 
7.3% 

8.6% 

BL(3) 
2.29% 

0.42% 
33.85% 

2.75% 

3.76% 
0.87% 

4.41% 

4.01% 

0.56% 

0.1% 

0.21% 

0.21% 
12.28% 

3.66% 

0.69% 

0.06% 
2.10% 
0.26% 

60.1% 

12.3% 

BL(4) 
0.05% 

0.01% 
2.64% 

0.70% 

0.17% 

0.03% 

0.36% 

0.78% 

0.01% 

0.00% 

0.03% 

0.00% 
1.38% 
0.28% 

0.02% 

0.00% 

0.44% 

0.04% 
5.1% 

1.8% 

BL(5) 
0.52% 

0.08% 

0.44% 

0.13% 

0.18% 

0.02% 

0.04% 

0.01% 

0.01% 

0.00% 

0.05% 

0.02% 
2.99% 
0.28% 

0.01% 

0.00% 

0.23% 

0.05% 
4.5% 
0.6% 

BL(6) 
0.01% 

0.02% 

0.03% 

0.01% 

0.04% 

0.02% 

0.31% 

0.06% 

0.01% 

0.01% 

0.14% 

0.02% 
4.52% 
0.99% 

  5.1% 

1.1% 

BL(7) 
0.00% 

0.00% 

0.26% 

0.02% 

0.10% 

0.02% 

0.13% 

2.10% 

0.00% 

0.00% 

0.04% 

0.01% 
1.82% 
0.38% 

 0.09% 

0.01% 
2.4% 

2.5% 

BL(8) 
0.06% 

0.03% 

0.10% 

0.02% 
1.38% 
0.33% 

3.30% 
0.94% 

 0.01% 

0.00% 
2.20% 
0.25% 

 0.20% 

0.07% 
7.3% 

1.6% 

Other 
0.42% 

0.1% 
1.66% 

0.3% 
1.75% 
0.34% 

0.40% 

67.34% 

0.12% 

1.28% 

0.02% 

0.44% 
3.45% 
0.98% 

0.07% 

0.05% 

0.08% 

0.01% 
8.0% 

70.8% 

Total 
3.40% 

0.9% 
39.0% 

5.1% 

7.6% 

1.7% 

9.2% 

79.8% 

0.7% 

1.4% 

0.7% 

0.8% 
35.3% 

9.6% 

0.8% 

0.1% 
3.2% 
0.6% 

100.0% 

100.0% 

 

2.5 Combining different data sources 
 

Estimation of low-frequency/high-severity risks 

cannot be done using historically observed losses from 

one bank only. It is just not enough data to estimate 

high quantiles of the risk distribution. Other sources of 

information that can be used to improve risk estimates 

and are required by the Basel II for OpRisk AMA are 

internal data, relevant external data, scenario analysis 

and factors reflecting the business environment and 

internal control systems. Specifically, Basel II AMA 

includes the following requirement
1
 [1, p. 152]: “Any 

operational risk measurement system must have 

certain key features to meet the supervisory soundness 

standard set out in this section. These elements must 

include the use of internal data, relevant external 

data, scenario analysis and factors reflecting the 

business environment and internal control systems." 

Combining these different data sources for model 

estimation is certainly one of the main challenges in 

OpRisk. Conceptually, the following ways have been 

proposed to process different data sources of 

information:   

 numerous ad-hoc procedures;  

 parametric and nonparametric Bayesian 

methods; and  

 general non-probabilistic methods such as 

Dempster-Shafer theory.  

 

                                                           
1
 The original text is available free of charge on the BIS 

website www.BIS.org/bcbs/publ.htm. 

These methods are presented in the following 

sections. Methods of credibility theory, closely related 

to Bayesian method are not considered in this paper; 

for applications in the context of OpRisk, see [28]. For 

application of Bayesian networks for OpRisk, the 

reader is referred to [29] and [30]. Another challenge 

in OpRisk related to scaling of external data with 

respect to bank factors such as total assets, number of 

employees, etc is not reviewed in this paper; interested 

reader is referred to a recent study Ganegoda and 

Evans [31]. 

 

3 Ad-hoc Combining 
 
Often in practice, accounting for factors reflecting the 

business environment and internal control systems is 

achieved via scaling of data. Then ad-hoc procedures 

are used to combine internal data, external data and 

expert opinions. For example: 

 Fit the severity distribution to the combined 

samples of internal and external data and fit the 

frequency distribution using internal data only. 

 Estimate the Poisson annual intensity for the 

frequency distribution as                , 

where the intensities      and      are implied 

by the external and internal data respectively, 

using expert specified weight  . 

 Estimate the severity distribution as a mixture  

 

                                 
 

where       ,       and       are the 

distributions identified by scenario analysis, 
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internal data and external data respectively, 

using expert specified weights    and   . 

 Apply the minimum variance principle, where 

the combined estimator is a linear combination 

of the individual estimators obtained from 

internal data, external data and expert opinion 

separately with the weights chosen to minimize 

the variance of the combined estimator.  

 

Probably the easiest to use and most flexible 

procedure is the minimum variance principle. The 

rationale behind the principle is as follows. Consider 

two unbiased independent estimators  ̂    and  ̂    for 

parameter  , i.e.    ̂         and      ̂       
 , 

     . Then the combined unbiased linear estimator 

and its variance are  

 

 ̂       ̂
       ̂

                        (5) 

 

     ̂       
   

        
   

             (6) 

 

It is easy to find the weights minimising 

     ̂    :      
     

    
   and      

     
  

  
  . The weights behave as expected in practice. In 

particular,      if   
    

    (  
    

  is the 

uncertainty of the estimator  ̂    over the uncertainty 

of  ̂     and      if   
    

   . This method can 

easily be extended to combine three or more 

estimators using the following theorem. 

 

Theorem 3.1 (Minimum variance estimator)  Assume 

that we have  ̂   ,           unbiased and 

independent estimators of   with variances   
  

         . Then the linear estimator  

 

 ̂       ̂
         ̂     

 

is unbiased and has a minimum variance if    
     

   ∑   
        

  . In this case,         
  and  

 

     ̂     (∑  

 

   

 

  
 )

  

  

 

This result is well known, for a proof, see e.g. 

Shevchenko [16, exercise problem 4.1]. It is a simple 

exercise to extend the above principle to the case of 

unbiased estimators with known linear correlations. 

Heuristically, minimum variance principle can be 

applied to almost any quantity, including a distribution 

parameter or distribution characteristic such as mean, 

variance or quantile. The assumption that the 

estimators are unbiased estimators for   is probably 

reasonable when combining estimators from different 

experts (or from expert and internal data). However, it 

is certainly questionable if applied to combine 

estimators from the external and internal data. 

 

4 Bayesian Method to Combine Two Data 
Sources 
 

The Bayesian inference method can be used to 

combine different data sources in a consistent 

statistical framework. Consider a random vector of 

data                 whose joint density, for a 

given vector of parameters                , is 

      . In the Bayesian approach, both observations 

and parameters are considered to be random. Then the 

joint density is  

 

                                                  (7) 

 

where  

     is the probability density of the parameters, a so-

called prior density function. Typically,      

depends on a set of further parameters that 

are called hyper-parameters, omitted here for 

simplicity of notation;  

       is the density of parameters given data  , a so-

called posterior density; 

       is the joint density of observed data and 

parameters; 

       is the density of observations for given 

parameters. This is the same as a likelihood 

function if considered as a function of  , i.e. 

            ; 

     is a marginal density of   that can be written as 

     ∫              . For simplicity of 

notation, we consider continuous      only. 

If      is a discrete probability function, then 

the integration in the above expression should 

be replaced by a corresponding summation. 

 
4.1 Predictive distribution 
 

The objective (in the context of OpRisk) is to estimate 

the predictive distribution (frequency and severity) of 

a future observation      conditional on all available 

information               . Assume that 

conditionally, given  ,      and   are independent, 

and      has a density          . It is even common 

to assume that                 are all conditionally 

independent (given  ) and identically distributed. 

Then the conditional density of     , given data 

   , is 

 

          ∫                     (8) 

 

If      and   are not independent, then the 

predictive distribution should be written as  

 

          ∫                       (9) 

 
4.2  Posterior distribution 
 

Bayes’s theorem says that the posterior density can be 

calculated from (7) as 
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                                           (10) 

 

Here,      plays the role of a normalisation 

constant. Thus the posterior distribution can be viewed 

as a product of a prior knowledge with a likelihood 

function for observed data. In the context of OpRisk, 

one can follow the following three logical steps. 

 The prior distribution      should be estimated 

by scenario analysis (expert opinions with 

reference to external data). 

 Then the prior distribution should be weighted 

with the observed data using formula (10) to 

get the posterior distribution       . 

 Formula (8) is then used to calculate the 

predictive distribution of      given the data 

 . 

 

Remarks 4.1  

 Of course, the posterior density can be used to 

find parameter point estimators. Typically, 

these are the mean, mode or median of the 

posterior. The use of the posterior mean as the 

point parameter estimator is optimal in a sense 

that the mean square error of prediction is 

minimised. For more on this topic, see 

Bühlmann and Gisler [32, section 2.3]. 

However, in the case of OpRisk, it is more 

appealing to use the whole posterior to 

calculate the predictive distribution (8).  

 So-called conjugate distributions, where prior 

and posterior distributions are of the same 

type, are very useful in practice when Bayesian 

inference is applied. Below we present 

conjugate pairs (Poisson-gamma, lognormal-

normal) that are good illustrative examples for 

modelling frequencies and severities in OpRisk. 

Several other pairs can be found, for example, 

in Bühlmann and Gisler [32]. In all these cases 

the posterior distribution parameters are easily 

calculated using the prior distribution 

parameters and observations. In general, the 

posterior should be estimated numerically 

using e.g. Markov chain Monte Carlo methods, 

see Shevchenko [16, chapter 2].  

 

4.3 Iterative Calculation 
 
If the data            are conditionally (given 

   ) independent and    is distributed with a 

density        , then the joint density of the data for 

given   can be written as        ∏   
           . 

Denote the posterior density calculated after   

observations as              , then using (10), 

observe that 

 

                   ∏   
            

                                                    
(11) 

 

It is easy to see from (11), that the updating 

procedure which calculates the posteriors from priors 

can be done iteratively. Only the posterior distribution 

calculated after  -1 observations and the  -th 

observation are needed to calculate the posterior 

distribution after   observations. Thus the loss history 

over many years is not required, making the model 

easier to understand and manage, and allowing experts 

to adjust the priors at every step. Formally, the 

posterior distribution calculated after  -1 observations 

can be treated as a prior distribution for the  -th 

observation. In practice, initially, we start with the 

prior distribution      identified by expert opinions 

and external data only. Then, the posterior distribution 

       is calculated, using (10), when actual data are 

observed. If there is a reason (for example, the new 

control policy introduced in a bank), then this 

posterior distribution can be adjusted by an expert and 

treated as the prior distribution for subsequent 

observations. 

 

4.4  Estimating Prior 
 

In general, the structural parameters of the prior 

distributions can be estimated subjectively using 

expert opinions (pure Bayesian approach) or using 

data (empirical Bayesian approach). In a pure 

Bayesian approach, the prior distribution is specified 

subjectively (that is, in the context of OpRisk, using 

expert opinions). Berger [33] lists several methods. 

 Histogram approach: split the space of the 

parameter   into intervals and specify the 

subjective probability for each interval. From 

this, the smooth density of the prior distribution 

can be determined. 

 Relative Likelihood Approach: compare the 

intuitive likelihoods of the different values of 

 . Again, the smooth density of prior 

distribution can be determined. It is difficult to 

apply this method in the case of unbounded 

parameters. 

 CDF determinations: subjectively construct the 

distribution function for the prior and sketch a 

smooth curve. 

 Matching a Given Functional Form: find the 

prior distribution parameters assuming some 

functional form for the prior distribution to 

match prior beliefs (on the moments, quantiles, 

etc) as close as possible. 

 

The use of a particular method is determined by 

a specific problem and expert experience. Usually, if 

the expected values for the quantiles (or mean) and 

their uncertainties are estimated by the expert then it is 

possible to fit the priors. 

Often, expert opinions are specified for some 

quantities such as quantiles or other risk 

characteristics rather than for the parameters directly. 

In this case it might be better to assume some priors 

for these quantities that will imply a prior for the 

parameters. In general, given model parameters 

           , assume that there are risk 
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characteristics         ,           that are well 

understood by experts. These could be some quantiles, 

expected values, expected durations between losses 

exceeding high thresholds, etc. Now, if experts specify 

the joint prior           , then using transformation 

method the prior for         is  

 

                         |
                

          
|  (12) 

 

where                               is the 

Jacobian determinant of the transformation. 

Essentially, the main difficulty in specifying a 

joint prior is due to a possible dependence between the 

parameters. It is convenient to choose the 

characteristics (for specification of the prior) such that 

independence can be assumed. For example, if the 

prior for the quantiles         (corresponding to 

probability levels           ) is to be 

specified, then to account for the ordering it might be 

better to consider the differences  

 

                             
 

Then, it is reasonable to assume independence 

between these differences and impose constraints 

    ,        . If experts specify the marginal 

priors                     (e.g. gamma priors) 

then the full joint prior is  

 

                               

 

and the prior for parameters   is calculated by 

transformation using (12). To specify the  -th prior 

     , an expert may use the approaches listed above. 

For example, if       is             , then the 

expert may provide the mean and variational 

coefficient for       (or median and 0.95 quantile) 

that should be enough to determine    and   . 

Under empirical Bayesian approach, the 

parameter   is treated as a random sample from the 

prior distribution. Then using collective data of 

similar risks, the parameters of the prior are estimated 

using a marginal distribution of observations. 

Depending on the model setup, the data can be 

collective industry data, collective data in the bank, 

etc. To explain, consider   similar risks where each 

risk has own risk profile     ,        ; see Figure 

1. Given          , the risk data   
   

   
   

   are 

generated from the distribution          . The risks 

are different having different risk profiles     , but 

what they have in common is that             are 

distributed from the same density     . Then, one can 

find the unconditional distribution of the data   and fit 

the prior distribution using all data (across all similar 

risks). This could be done, for example, by the 

maximum likelihood method or the method of 

moments or even empirically. Consider, for example, 

  similar risk cells with the data    
   

,          , 
        . This can be, for example, a specific 

business line/event type risk cell in   banks. Denote 

the data over past years as         
   

      

   
  , that 

is,    is the number of observations in bank   over past 

years. Assume that   
   

      

   
 are conditionally 

independent and identically distributed from the 

density        , for given          . That is, the 

risk cells have different risk profiles   . Assume now 

that the risks are similar, in a sense that             

are independent and identically distributed from the 

same density     . That is, it is assumed that the risk 

cells are the same a priori (before we have any 

observations); see Figure 1. Then the joint density of 

all observations can be written as  

 

               ∏   
   ∫  [∏  

  

   
    

   
      ]               (13) 

 

The parameters of      can be estimated using 

the maximum likelihood method by maximising (13). 

The distribution      is a prior distribution for the  -
th cell. Using internal data of the  -th risk cell, its 

posterior density is calculated from (10) as  

 

             ∏  
  

   
    

   
               (14) 

 

where      was fitted with MLE using (13). 

The basic idea here is that the estimates based on 

observations from all banks are better then those 

obtained using smaller number of observations 

available in the risk cell of a particular bank. 
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Figure 1. Empirical Bayes approach – interpretation of the prior density     . Here,      is the risk profile of 

the  -th risk. Given          , the risk data   
   

   
   

   are generated from the distribution          . The risks 

are different having different risk profiles     , but             are distributed from  

the same common density      

 

 
4.5 Poisson Frequency 
 

Consider the annual number of events for a risk in one 

bank in year   modelled as a random variable from the 

Poisson distribution           . The intensity 

parameter   is not known and the Bayesian approach 

models it as a random variable  . Then the following 

model for years               (where     

corresponds to the next year) can be considered. 

 

Model Assumptions 4.2  

 Suppose that, given    , the data 

          are independent random variables 

from the Poisson distribution,           : 

 

                         

  
          (15) 

 

 The prior distribution for   is a gamma 

distribution,           , with a density 

 

                  
        

     
                           (16) 

 

That is,   plays the role of   and   
         

  the role of   in (10). 

 

Posterior. Given    , under the Model 

Assumptions 4.2,         are independent and their 

joint density, at    , is given by 

 

       ∏   
         

   
  (17) 

 

Thus, using formula (10), the posterior density is 

 

       
        

     
         ∏  

 

   

   
   

   

                  

(18) 

which is             , i.e. the same as the prior 

distribution with updated parameters    and    given 

by:  

 

            ∑   
               

 

     
  (19) 

 

Improper constant prior. It is easy to see that, if the 

prior is constant (improper prior), i.e.        
      , then the posterior is              with  

 

     ∑   
             

 

 
  (20) 

 

In this case, the mode of the posterior        is 

 ̂ 
               

 

 
∑   

     , which is the same 

as the maximum likelihood estimate (MLE)  ̂ 
      

of  . 

 

Predictive distribution. Given data, the full 

predictive distribution for      is negative binomial, 

                   :  

 

               ∫                 

   ∫       

  

     

           
         

   
       

       
∫                       

                 
       

       
(

 

    
)

  
(

  

    
)

 

  

(21) 

 

It is assumed that given    ,      and   are 

independent. The expected number of events over the 

next year, given past observations,          , i.e. 

mean of                     (which is also a 

mean of the posterior distribution in this case), allows 

for a good interpretation as follows:  

 

collective prior density π(θ) 

… 𝚯    𝚯 K  

𝑋 
   

 𝑋 
   

   ~ 𝐹 𝑥 𝚯    𝛉     

Risk 1 

𝑋 
 𝐾 

  𝑋 
 𝐾 

    ~ 𝐹 𝑥 𝚯 𝐾  𝛉 𝐾   

Risk 1 
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  ∑   

     

     
     (22) 

 

Here,  

  ̂ 
      

 

 
∑   

      is the estimate of   using the 

observed counts only; 

       is the estimate of   using a prior 

distribution only (e.g. specified by expert); 

    
  

    
 is the credibility weight in [0,1) 

used to combine    and  ̂ 
     . 

 

Remarks 4.3  

 As the number of observed years   increases, 

the credibility weight    increases and vice 

versa. That is, the more observations we have, 

the greater credibility weight we assign to the 

estimator based on the observed counts, while 

the lesser credibility weight is attached to the 

expert opinion estimate. Also, the larger the 

volatility of the expert opinion (larger   , the 

greater credibility weight is assigned to 

observations. 

 Recursive calculation of the posterior 

distribution is very simple. That is, consider 

observed annual counts              , 

where    is the number of events in the  -th 

year. Assume that the prior            is 

specified initially, then the posterior 

             after the  -th year is a gamma 

distribution,             , with      
∑   

      and             . Observe 

that,  

 

                              
    

      
  (23) 

 

This leads to a very efficient recursive scheme, 

where the calculation of posterior distribution 

parameters is based on the most recent 

observation and parameters of posterior 

distribution calculated just before this 

observation.  

 

Estimating prior. Suppose that the annual frequency 

of the OpRisk losses   is modelled by the Poisson 

distribution,             , and the prior density 

     for   is           . Then,          and 

        . The expert may estimate the expected 

number of events but cannot be certain in the estimate. 

One could say that the expert’s “best” estimate for the 

expected number of events corresponds to 

              . If the expert specifies      and an 

uncertainty that the “true”   for next year is within the 

interval [ , ] with a probability             

(it may be convenient to set       , then the 

equations 

 
         

            ∫  
 

 
               

   
        

   
    (24) 

can be solved numerically to estimate the structural 

parameters   and  . Here,     
   

    is the gamma 

distribution,           , i.e. 

 

    
   

    ∫  

 

 

    

      
   ( 

 

 
)     

 

In the insurance industry, the uncertainty for the 

“true”   is often measured in terms of the coefficient 

of variation,        √           . Given the 

expert estimates for         and          √   
the structural parameters   and   are easily estimated. 

 

4.6  Numerical example 
 

If the expert specifies          and           
           then we can fit a prior distribution 

                       by solving (24). 

Assume now that the bank experienced no losses over 

the first year (after the prior distribution was 

estimated). Then, using formulas (23), the posterior 

distribution parameters are  ̂                 

 ̂                        and the estimated 

arrival rate using the posterior distribution is  ̂  

 ̂   ̂         If during the next year no losses are 

observed again, then the posterior distribution 

parameters are  ̂   ̂            ̂   ̂     

 ̂         and  ̂   ̂   ̂         Subsequent 

observations will update the arrival rate estimator 

correspondingly using formulas (23). Thus, starting 

from the expert specified prior, observations regularly 

update (refine) the posterior distribution. The expert 

might reassess the posterior distribution at any point in 

time (the posterior distribution can be treated as a 

prior distribution for the next period), if new 

practices/policies were introduced in the bank that 

affect the frequency of the loss. That is, if we have a 

new policy at time  , the expert may reassess the 

parameters and replace  ̂  and  ̂  by  ̂ 
  and  ̂ 

  

respectively. 

In Figure 2, we show the posterior best estimate 

for the arrival rate  ̂   ̂   ̂ ,          (with 

the prior distribution as in the above example), when 

the annual number of events   ,          are 

simulated from                and the realized 

samples for 25 years are      = (0,0,0,0,1,0,1,1,1,0, 

2,1,1,2,0,2,0,1,0,0,1,0,1,1,0). 
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Figure 2. The Bayesian and the standard maximum likelihood estimates of the arrival rate vs the observation 

year; see Section 4.6 for details 

 

 
 

On the same figure, we show the standard 

maximum likelihood estimate of the arrival rate 

 ̂ 
           ∑   

     . After approximately 8 years, 

the estimators are very close to each other. However, 

for a small number of observed years, the Bayesian 

estimate is more accurate as it takes the prior 

information into account. Only after 12 years do both 

estimators converge to the true value of 0.6 (this is 

because the bank was very lucky to have no events 

during the first four years). Note that for this example 

we assumed the prior distribution with a mean equal to 

0.5, which is different from the true arrival rate. Thus 

this example shows that an initially incorrect prior 

estimator is corrected by the observations as they 

become available. It is interesting to observe that, in 

year 14, the estimators become slightly different 

again. This is because the bank was unlucky to 

experience event counts (1, 1, 2) in the years (12, 13, 

14). As a result, the maximum likelihood estimate 

becomes higher than the true value, while the 

Bayesian estimate is more stable (smooth) with 

respect to the unlucky years. If this example is 

repeated with different sequences of random numbers, 

then one would observe quite different maximum 

likelihood estimates (for small    and more stable 

Bayesian estimates. 

Finally we note that the standard deviation of 

the posterior distribution              is large for 

small  . It is indicated by the error bars in Figure 2 

and calculated as   √  . 

 

4.7  The Lognormal         Severity 
 

Assume that the loss severity for a risk in one bank is 

modelled as a random variable from a lognormal 

distribution,        , whose density is  

 

                    
 

 √    
   ( 

        

   )  (25) 

 

This distribution often gives a good fit for 

operational loss data. Also, it belongs to a class of 

heavy-tailed (subexponential) distributions. The 

parameters   and   are not known and the Bayesian 

approach models these as a random variables    and 

   respectively. We assume that the losses over the 

years           are observed and should be 

modelled for next year    . To simplify notation, 

we denote the losses over past   years as         

and the future losses are         . Then the model can 

be structured as follows. For simplicity, assume that   

is known and   is unknown. The case where both   

and   are unknown can be found in Shevchenko [34, 

section 4.3.5]. 

 

Model Assumptions 4.4  

 Suppose that, given   and     , the data 

          are independent random variables 

from        . That is,        ,         

are distributed from the normal distribution 

      . 

 Assume that parameter   is known and the 

prior distribution for    is the normal 

distribution,         . That is the prior 

density is  

 

     
 

  √  
   ( 

       

   
 )  (26) 

 

Denote the losses over past years as   
           and corresponding log-losses as   
          . Note that   plays the role of   in (10).  

 

Posterior. Under the above assumptions, the joint 

density of the data over past years (conditional on   

and     ) at position     is 

 

         ∏   
   

 

 √  
   ( 

       

   )  (27) 
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Then, using formula (10), the posterior density 

can be written as 

 

       

   ( 
      

 

   
 )

  √  
∏  

 

   

   ( 
       

   )

 √  
 

                       ( 
         

     
 )  (28) 

 

that corresponds to a normal distribution, 

            , i.e. the same as the prior distribution 

with updated parameters  

 

                          
    ∑   

     

     
  (29) 

 

     
      

  
  

 

     
                    

      (30) 

 

The expected value of      (given past 

observations),            , allows for a good 

interpretation, as follows:  

 

                           
    ∑   

     

     
 

               
 

                               (31) 

 

where  

 
 

 
 

 
∑   

      is the estimate of   using the observed 

losses only; 

   is the estimate of   using a prior distribution only 

(e.g. specified by expert); 

   
 

       
  is the credibility weight in [0,1) used to 

combine    and  
 

. 

 

Remarks 4.5  

 As the number of observations increases, the 

credibility weight   increases and vice versa. 

That is, the more observations we have the 

greater weight we assign to the estimator 

based on the observed counts and the lesser 

weight is attached to the expert opinion 

estimate. Also, larger uncertainty in the expert 

opinion   
  leads to a higher credibility weight 

for observations and larger volatility of 

observations    leads to a higher credibility 

weight for expert opinions. 

 The posterior distribution can be calculated 

recursively as follows. Consider the data 

             . Assume that the prior 

distribution,         , is specified initially, 

then the posterior density              after 

the  -th event is the normal distribution 

             with  

 

     
    ∑   

     

     
         

  
  

 

     
  

 

where     
    . It is easy to show that  

     
             

      
           

  
      

      
 (32) 

 

with            
    . That is, calculation of 

the posterior distribution parameters can be 

based on the most recent observation and the 

parameters of the posterior distribution 

calculated just before this observation. 

 Estimation of prior for the parameters of 

lognormal distribution is considered in 

Shevchenko and Wüthrich [35].  

 

5 Bayesian Method to Combine Three Data 
Sources 
 
In the previous section we showed how to combine 

two data sources: expert opinions and internal data; or 

external data and internal data. In order to estimate the 

risk capital of a bank and to fulfill the Basel II 

requirements, risk managers have to take into account 

internal data, relevant external data (industry data) and 

expert opinions. The aim of this section is to provide 

an example of methodology to be used to combine 

these three sources of information. Here, we follow 

the approach suggested in Lambrigger et al [36]. As in 

the previous section, we consider one risk cell only. In 

terms of methodology we go through the following 

steps: 

 In any risk cell, we model the loss frequency 

and the loss severity by parametric 

distributions (e.g. Poisson for the frequency or 

Pareto, lognormal, etc. for the severity). For the 

considered bank, the unknown parameter 

vector   (for example, the Poisson parameter 

or the Pareto tail index) of these distributions 

has to be quantified. 

 A priori, before we have any company specific 

information, only industry data are available. 

Hence, the best prediction of our bank specific 

parameter   is given by the belief in the 

available external knowledge such as the 

provided industry data. This unknown 

parameter of interest is modelled by a prior 

distribution (structural distribution) 

corresponding to a random vector  . The 

parameters of the prior distribution (hyper-

parameters) are estimated using data from the 

whole industry by, for example, maximum 

likelihood estimation. If no industry data are 

available, the prior distribution could come 

from a “super expert” that has an overview 

over all banks. 

 The true bank specific parameter    is treated 

as a realisation of  . The prior distribution of a 

random vector   corresponds to the whole 

banking industry sector, whereas   stands for 

the unknown underlying parameter set of the 

bank being considered. Due to the variability 

amongst banks, it is natural to model   by a 

probability distribution. Note that   is random 
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with known distribution, whereas    is 

deterministic but unknown. 

 As time passes, internal data              

as well as expert opinions              

about the underlying parameter   become 

available. This affects our belief in the 

distribution of   coming from external data 

only and adjust the prediction of   . The more 

information on   and   we have, the better we 

are able to predict   . That is, we replace the 

prior density      by a conditional density of 

  given   and  . 

 

In order to determine the posterior density 

        , consider the joint conditional density of 

observations and expert opinions (given the parameter 

vector  ):  

 

                         (33) 

 

where    and    are the conditional densities (given 

   ) of   and  , respectively. 

Thus   and   are assumed to be conditionally 

independent given  . 

 

Remarks 5.1  

 Notice that, in this way, we naturally combine 

external data information,     , with internal 

data   and expert opinion  .  

 In classical Bayesian inference (as it is used, 

for example, in actuarial science), one usually 

combines only two sources of information as 

described in the previous sections. Here, we 

combine three sources simultaneously using an 

appropriate structure, that is, equation (33).  

 Equation (33) is quite a reasonable 

assumption. Assume that the true bank specific 

parameter is   . Then, (33) says that the 

experts in this bank estimate    (by their 

opinion  ) independently of the internal 

observations. This makes sense if the experts 

specify their opinions regardless of the data 

observed. Otherwise we should work with the 

joint distribution         .  

 

We further assume that observations as well as 

expert opinions are conditionally independent and 

identically distributed, given    , so that  

 

        ∏   
                          (34) 

 

        ∏   
                        (35) 

 

where    and    are the marginal densities of a single 

observation and a single expert opinion, respectively. 

We have assumed that all expert opinions are 

identically distributed, but this can be generalised 

easily to expert opinions having different distributions. 

Here, the unconditional parameter density      

is the prior density, whereas the conditional parameter 

density          is the posterior density. Let        

denote the unconditional joint density of the data   

and expert opinions  . Then, it follows from Bayes’s 

theorem that  

 

                             (36) 

 

Note that the unconditional density        does 

not depend on   and thus the posterior density is given 

by  

 

                 ∏   
           ∏   

             (37) 

 

For the purposes of OpRisk, it should be used to 

estimate the predictive distribution of future losses. 

 

5.1  Modelling Frequency: Poisson Model 
 

To model the loss frequency for OpRisk in a risk cell, 

consider the following model. 

 

Model Assumptions 5.2 (Poisson-gamma-gamma)  
Assume that a risk cell in a bank has a scaling factor 

  for the frequency in a specified risk cell (it can be 

the product of several economic factors such as the 

gross income, the number of transactions or the 

number of staff).   

a) Let  ~             be a gamma 

distributed random variable with shape 

parameter      and scale parameter    
 , which are estimated from (external) market 

data. That is, the density of             , 

plays the role of      in (37).  

b) Given    , the annual frequencies, 

            , where     refers to next 

year, are assumed to be independent and 

identically distributed with   ~           . 

That is,         in (37) corresponds to the 

probability mass function of a             

distribution.  

c) A financial company has   expert opinions 

  ,      , about the intensity parameter 

 . Given    ,    and    are independent 

for all   and  , and         are independent 

and identically distributed with 

  ~            , where   is a known 

parameter. That is,         corresponds to the 

density of a              distribution.  

 

Remarks 5.3  

 The parameters    and    in Model 

Assumptions 5.2 are hyper-parameters 

(parameters for parameters) and can be 

estimated using the maximum likelihood 

method or the method of moments. 

 In Model Assumptions 5.2 we assume  

 

                             (38) 
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that is, expert opinions are unbiased. A 

possible bias might only be recognised by the 

regulator, as he alone has the overview of the 

whole market.  

 

Note that the coefficient of variation of the 

conditional expert opinion      is  

 

                                    √   
 

and thus is independent of  . This means that  , which 

characterises the uncertainty in the expert opinions, is 

independent of the true bank specific  . For 

simplicity, we have assumed that all experts have the 

same conditional coefficient of variation and thus have 

the same credibility. Moreover, this allows for the 

estimation of   as  

 

                      ̂    ̂  ̂    (39) 

 

where  

 

 ̂  
 

 
∑  

 

   

              ̂  
 

   
∑  

 

   

     ̂            

 

In a more general framework the parameter   can 

be estimated, for example, by maximum likelihood. 

In the insurance practice   is often specified by 

the regulator denoting a lower bound for expert 

opinion uncertainty; e.g. Swiss Solvency Test, see 

Swiss Financial Market Supervisory Authority ([37], 

appendix 8.4). If the credibility differs among the 

experts, then           should be estimated for all 

 ,      . Admittedly, this may often be a 

challenging issue in practice. 

 

Remarks 5.4 This model can be extended to a model 

where one allows for more flexibility in the expert 

opinions. For convenience, it is preferred that experts 

are conditionally independent and identically 

distributed, given  . This has the advantage that there 

is only one parameter,  , that needs to be estimated.  

 

Using the notation from Section 5, the posterior 

density of  , given the losses up to year   and the 

expert opinions of   experts, can be calculated. 

Denote the data over past years as follows:  

 

           
   

              
 

Also, denote the arithmetic means by  

 

           
 

 
∑   

            
 

 
∑   

               (40) 

 

Then, the posterior density is given by the 

following theorem. 

 

Theorem 5.1 Under Model Assumptions 5.2, given 

loss information     and expert opinion    , the 

posterior density of   is  

 

         
            

       √   
             (41) 

 

with  

 

              
 

     
 

  
                          (42) 

 

       
 

and  

 

        
 

 
∫  

 

 
                  (43) 

 

Here,       is a modified Bessel function of the third 

kind; see for instance Abramowitz and Stegun ([38], 

p. 375). 

 

Proof 5.5 Model Assumptions 5.2 applied to (37) yield  

 

                    ∏ 

 

   

    
      

   
∏  

 

   

       

      
        

              ∏   
          ∏   

                 

                    (  (   
 

  

)  
 

 
   )  

 

Remarks 5.6  

 A distribution with density (41) is known as the 

generalised inverse Gaussian distribution 

GIG       . This is a well-known distribution 

with many applications in finance and risk 

management; see McNeil et al [6, p. 75 and p. 

497]. 

 In comparison with the classical Poisson-

gamma case of combining two sources of 

information (considered in Section 4.5), where 

the posterior is a gamma distribution, the 

posterior        in (44) is more complicated. 

In the exponent, it involves both   and    . 

Note that expert opinions enter via the term 

    only.  

 Observe that the classical exponential 

dispersion family with associated conjugates 

(see Chapter 2.5 in Bühlmann and Gisler [32]) 

allows for a natural extension to GIG-like 

distributions. In this sense the GIG 

distributions enlarge the classical Bayesian 

inference theory on the exponential dispersion 

family.  

 

For our purposes it is interesting to observe how 

the posterior density transforms when new data from a 

newly observed year arrive. Let   ,    and    denote 

the parameters for the data           after   
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accounting years. Implementation of the update 

processes is then given by the following equalities 

(assuming that expert opinions do not change).  

 

              
                                  (44) 

         
 

Obviously, the information update process has a 

very simple form and only the parameter   is affected 

by the new observation     . The posterior density 

(44) does not change its type every time new data 

arrive and hence, is easily calculated. 

The moments of a GIG are not available in a 

closed form through elementary functions but can be 

expressed in terms of Bessel functions. In particular, 

the posterior expected number of losses is  

 

             √
 

 

      √   

      √   
  (45) 

 

The mode of a GIG has a simple expression that 

gives the posterior mode  

 

                
 

  
   √         (46) 

 

It can be used as an alternative point estimator 

instead of the mean. Also, the mode of a GIG differs 

only slightly from the expected value for large    . A 

full asymptotic interpretation of the Bayesian 

estimator (45) can be found Lambrigger et al [36] that 

shows the model behaves as we would expect and 

require in practice. 

 

5.2 Numerical example 
 

A simple example, taken from Lambrigger et al [36, 

example 3.7], illustrates the above methodology 

combining three data sources. It also extends 

numerical example from Section 4.6, where two data 

sources are combined using classical Bayesian 

inference approach. Assume that: 

 External data (for example, provided by 

external databases or regulator) estimate the 

intensity of the loss frequency (i.e. the Poisson 

parameter  ), which has a prior gamma 

distribution  ~            , as      
         and                    . 

Then, the parameters of the prior are    
      and         ; see Section 4.6. 

 One expert gives an estimate of the intensity as 

     . For simplicity, we consider in this 

example one single expert only and hence, the 

coefficient of variation is not estimated using 

(39), but given a priori (e.g. by the regulator): 

         √                   , i.e. 

   . 

 The observations of the annual number of 

losses         are sampled from 

             and are the same as in Section 

4.6. 

 

This means that a priori we have a frequency 

parameter distributed as              with mean 

        . The true value of the parameter   for this 

risk in a bank is    , that is, it does worse than the 

average institution. However, our expert has an even 

worse opinion of his institution, namely      . 

Now, we compare:  

 

Figure 3.     The Bayes estimate  ̂ 
   

,         , combines the internal data simulated from             , 

external data giving         , and expert opinion      . It is compared with the Bayes estimate  ̂ 
   

    , 

that combines external data and internal data, and the classical maximum likelihood estimate  ̂ 
       . See 

Example 5.2 for details. 
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 the pure maximum likelihood estimate 

 ̂ 
      

 

 
∑   

       

 the Bayesian estimate (22),  ̂ 
   

        
           , without expert opinion; 

 the Bayesian estimate derived in formula (45) 

 ̂ 
   

                       , that 

combines internal data and expert opinions 

with the prior.  

 

The results are plotted in Figure 3. The estimator 

 ̂ 
   

 shows a much more stable behaviour around the 

true value      , due to the use of the prior 

information (market data) and the expert opinions. 

Given adequate expert opinions,  ̂ 
   

 clearly 

outperforms the other estimators, particularly if only a 

few data points are available. 

One could think that this is only the case when 

the experts’ estimates are appropriate. However, even 

if experts fairly under- (or over-) estimate the true 

parameter  , the method presented here performs 

better for our dataset than the other mentioned 

methods, when a few data points are available. The 

above example yields a typical picture observed in 

numerical experiments that demonstrates that the 

Bayes estimator (45) is often more suitable and stable 

than maximum likelihood estimators based on internal 

data only. Note that in this example the prior 

distribution as well as the expert opinion do not 

change over time. However, as soon as new 

information is available or when new risk 

management tools are in place, the corresponding 

parameters may be easily adjusted. 

 

Remarks 5.7 In this section, we considered the 

situation where   is the same for all years         . 

However, in general, the evolution of   , can be 

modelled as having deterministic (trend, seasonality) 

and stochastic components, the case when    is purely 

stochastic and distributed according to a gamma 

distribution is considered in Peters, et al [39].  

 
5.3  Lognormal Model for Severities 
 

In general, one can use the methodology summarised 

by equation (37) to develop a model combining 

external data, internal data and expert opinion for 

estimation of the severity. For illustration purposes, 

this section considers the lognormal severity model. 

Consider modelling severities             
using the lognormal distribution        , where 

             are the losses over past   years. 

Here, we take an approach considered in Section 4.7, 

where   is unknown and   is known. The unknown   

is treated under the Bayesian approach as a random 

variable   . Then combining external data, internal 

data and expert opinions can be accomplished using 

the following model. 

 

Model Assumptions 5.8 (Lognormal-normal-

normal)  Let us assume the following severity model 

for a risk cell in one bank:   

a) Let   ~         be a normally distributed 

random variable with parameters      , which 

are estimated from (external) market data, i.e. 

     in (37) is the density of         .  

b) Given     , the losses           are 

conditionally independent with a common 

lognormal distribution:   ~       , where 

  is assumed known. That is,         in (37) 

corresponds to the density of a         

distribution.  

c) The financial company has   experts with 

opinions   ,      , about   . Given 

    ,    and    are independent for all   

and  , and         are independent with a 

common normal distribution:   ~      , 

where   is a parameter estimated using expert 

opinion data. That is,         corresponds to 

the density of a        distribution.  

 

Remarks 5.9  

 For    , the parameter   can be estimated 

by the standard deviation of   :  

 

        ̂  (
 

   
∑   

          )
   

  (47) 

 

 The hyper-parameters    and    are estimated 

from market data, for example, by maximum 

likelihood estimation or by the method of 

moments.  

 In practice one often uses an ad-hoc estimate 

for  , which usually is based on expert opinion 

only. However, one could think of a Bayesian 

approach for  , but then an analytical formula 

for the posterior distribution in general does 

not exist and the posterior needs then to be 

calculated numerically, for example, by MCMC 

methods.  

 

Under Model Assumptions 5.8, the posterior 

density is given by  

 

         
 

  √  
   ( 

      
 

   
 )∏  

 

   

 

 √  
   ( 

         

   ) 

 ∏   
   

 

 √  
   ( 

       

   ) 

    [ (
       

   
  ∑   

   
         

    ∑   
   

       

   )] 

    [ 
    ̂  

  ̂ ]                                                 (48) 

 

with  

 

 ̂  (
 

  
  

 

  
 

 

  
)

  

  

 

and  
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 ̂   ̂  (
  

  
  

 

  
∑  

 

   

     
 

  
∑  

 

   

  )  

 

In summary, we derived the following theorem 

(also see Lambrigger et al [36]). That is, the posterior 

distribution of   , given loss information     and 

expert opinion    , is a normal distribution 

   ̂  ̂  with  

 

 ̂  (
 

  
  

 

  
 

 

  
)

  

 

 

and  

 

     ̂                                (49) 

 

where     
 

 
∑   

        and the credibility weights 

are  

 

    ̂    
      ̂          ̂       

 

This yields a natural interpretation. The more 

credible the information, the higher is the credibility 

weight in (49) – as expected from an appropriate 

model for combining internal observations, relevant 

external data and expert opinions. 

 

6  Nonparametric Bayesian approach 
 

Typically, under the Bayesian approach, we assume 

that there is unknown distribution underlying 

observations         and this distribution is 

parametrized by  . Then we place a prior distribution 

on the parameter   and try to infer the posterior of   

given observations        . Under the nonparametric 

approach, we do not make assumption that underlying 

loss process generating distribution is parametric; we 

put prior on the distribution directly and find the 

posterior of the distribution given data which is 

combining of the prior with empirical data 

distribution. 

One of the most popular Bayesian nonparametric 

models is based on Dirichlet process introduced in 

Ferguson [40]. The Dirichlet process represents a 

probability distribution of the probability distributions. 

It can be specified in terms of a base distribution      

and a scalar concentration parameter     and 

denoted as        . For example, assume that we 

model severity distribution      which is unknown 

and modelled as random at each point   using 

       . Then, the mean value of      is the base 

distribution      and variance of      is        
           . That is, as the concentration 

parameter   increases, the true distribution is getting 

closer to the base distribution     . Each draw from 

Dirichlet process is a distribution function and for 

          , the distribution of  

 

                            

 

is a     multivariate Dirichlet distribution  

 

                                        

 

formally defined as follows. 

 

Definition 6.1 (Dirichlet distribution)  A d-variate 

Dirichlet distribution is denoted as 

               , where     . The random vector 

             has a Dirichlet distribution if its 

density function is  

 

                
          

∏   
        

∏   
     

    
  (50) 

 

where      and          .  

 

There are several formal definitions of Dirichlet 

processes; for detailed description see Ghosh and 

Ramamoorthi [41]. For the purposes of this book, here 

we just present few important results that can be easily 

adopted for OpRisk. In particular, the  th marginal 

distribution of              is               , 

where           . Thus the marginal 

distribution of the Dirichlet process         is beta 

distribution     ~                     , i.e. 

explicitly it has the Beta density  

 

            
    

                    
          

                 (51) 

 

where      is a gamma function. 

 

If the prior distribution for      is        , 

then after observing        , the posterior for      

is  

 

  (    
 

   
     

 

   

 

 
∑       )  (52) 

 

In other words, Dirichlet process is a conjugate 

prior with respect to empirical sample distribution; in 

posterior, our unknown distribution      will have 

updated concentration parameter     and updated 

base distribution  

 

 ̃    
 

   
     

 

   

 

 
∑         (53) 

 

which is a weighted sum of the prior base distribution 

and empirical distribution with the weights         

and         respectively. The modeller can choose 

     as an expert opinion on distribution     , then 

posterior estimate of the      after observing data 

        will be given by  ̃    in (53). 
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Remarks 6.2  

 As new data are collected, the posterior 

distribution converges to the empirical 

distribution that itself converges to the true 

distribution of     . 

 The larger value of  , the less impact new data 

will have on the posterior estimate of     ; if 

   , the posterior distribution will simply be 

the empirical distribution of the data. 

 The concentration parameter   can be 

interpreted as an“effective sample sizeпїЅ 

associated with the prior estimate. In assigning 

the value of c, the modeler should attempt to 

quantify the level of information contained in 

the scenario estimates, as measured by the 

equivalent amount of data that would provide a 

similar level of confidence. The modeller can 

also estimate   from a likely interval range of 

severities or frequencies (i.e. from the variance 

of the possible distribution). Cope [42] 

suggests that given the rarity of the scenarios 

considered, the assigned value of   will likely 

be low, often less than ten and possibly as low 

as one.  

 

Numerical Example. Assume that expert provides 

estimates in USD millions for a risk severity as 

follows. If loss occurs, then the probability to exceed 

10, 30, 50 and 120 are 0.9, 0.5, 0.25 and 0.1 

respectively, and the maximum possible loss is USD 

600 million. That is, probability distribution      at 

points (0, 10, 30, 50, 120, 600) is (0, 0.1, 0.5, 0.75, 

0.9, 1). It is presented in Figure 4 with linear 

interpolation between specified distribution points. If 

we choose the prior for the unknown severity 

distribution      as            with concentration 

parameter     , then expected value for      from 

the prior is      and bounds for      for each   can 

be calculated from the marginal beta distribution (51). 

For example, the lower and upper bounds in Figure 4 

correspond to 0.1 and 0.9 quantiles of the beta 

distribution                      , i.e. will 

contain the true value of      with probability 0.8 for 

each  . Now, assume that we observe the actual losses 

20, 30, 50, 80, 120, 170, 220, and 280 all in USD 

million. The posterior mean of      combining 

scenario and data is easily calculated using (53) and 

presented in Figure 5 along with the empirical data 

and scenario distribution. 

 

Figure 4. Dirichlet marginal bounds for scenario severity distribution 
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Figure 5. Combining scenario severity distribution with empirical distribution of the observed data 

 

 
 

7 Combining using Dempster-Shafer 
structures 
 

Often risk assessment includes situations where there 

is little information on which to evaluate a probability 

or information is nonspecific, ambiguous, or 

conflicting. In this case one can work with bounds on 

probability. For example, this idea has been developed 

in Walley and Fine [43], Berleant [44] and there are 

suggestions that the idea has its roots from Boole [45]. 

Williamson and Downs [46] introduced interval-type 

bounds on cumulative distribution functions called 

“probability boxes” or “p-boxes”. They also described 

algorithms to compute arithmetic operations (addition, 

subtraction, multiplication and division) on pairs of p-

boxes. 

The method of reasoning with uncertain 

information known as Dempster-Shafer theory of 

evidence was suggested in Dempster [47, 48] and 

Shafer [49]. A special rule to combine the evidence 

from different sources was formulated in Dempster 

[48]; it is somewhat controversial and there are many 

modifications to the rule such as in Yager [50, 51]. 

For a good summary on the methods for 

obtaining Dempster-Shafer structures and “p-boxes", 

and aggregation methods handling a conflict between 

the objects from different sources, see Ferson et al 

[52]. The use of p-boxes and Dempster-Shafer 

structures in risk analyses offers many significant 

advantages over a traditional probabilistic approach. 

Ferson et al [52] lists the following practical problems 

faced by analysts that can be resolved using these 

methods: imprecisely specified distributions, poorly 

known or even unknown dependencies, non-negligible 

measurement uncertainty, non-detects or other 

censoring in measurements, small sample size, 

inconsistency in the quality of input data, model 

uncertainty, and non-stationarity (non-constant 

distributions). 

It is emphasized in Walley [53] that the use of 

imprecise probabilities does not require one to assume 

the actual existence of any underlying distribution 

function. This approach could be useful in risk 

analyses even when the underlying stochastic 

processes are nonstationary or could never, even in 

principle, be identified to precise distribution 

functions. Oberkampf et al [54] and Oberkampf [55] 

demonstrated how the theory could be used to model 

uncertainty in engineering applications of risk analysis 

stressing that the use of p-boxes and Dempster-Shafer 

structures in risk analyses offers many significant 

advantages over a traditional probabilistic approach. 

These features are certainly attractive for 

OpRisk, especially for combining expert opinions, and 

were applied for OpRisk in Sakalo and Delasey [56]. 

At the same time, some writers consider these 

methods as unnecessary elaboration that can be 

handled within the Bayesian paradigm through 

Baysian robustness (section 4.7 in Berger [33]). Also, 

it might be difficult to justify application of 

Dempster’s rule (or its other versions) to combine 

statistical bounds for empirical data distribution with 

exact bounds for expert opinions. 

 
7.1 Dempster-Shafer structures and p-
boxes 
 
A Dempster-Shafer structure on the real line is similar 

to a discrete distribution except that the locations 

where the probability mass resides are sets of real 

values (focal elements) rather than points. The 

correspondence of probability masses associated with 

the focal elements is called the basic probability 

assignment. This is analogous to the probability mass 

function for an ordinary discrete probability 
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distribution. Unlike a discrete probability distribution 

on the real line, where the mass is concentrated at 

distinct points, the focal elements of a Dempster-

Shafer structure may overlap one another, and this is 

the fundamental difference that distinguishes 

Dempster-Shafer theory from traditional probability 

theory. Dempster-Shafer theory has been widely 

studied in computer science and artificial intelligence, 

but has never achieved complete acceptance among 

probabilists and traditional statisticians, even though it 

can be rigorously interpreted as classical probability 

theory in a topologically coarser space. 

 

Definition 7.1 (Dempster-Shafer structure) A finite 

Dempster-Shafer structure on the real line   is 

probability assignment, which is a mapping  

 

            
 

where       ;          for focal elements 

    ,          ; and        whenever 

     for all  , such that      and         
 .  

 

For convenience, we will assume that the focal 

elements    are closed intervals        . Then 

implementation of a Dempster-Shafer structure will 

require    numbers; one for each   ; and    and    for 

each corresponding focal element. 

 

Remarks 7.2 Note that    denotes a power set. The 

power set of a set   is the set of all subsets of   

including the empty set   and   itself. If   is a finite 

set with   elements then the number of elements in its 

power set is   . For example, if   is the set      , 
then the power set is              .  

 

The upper and lower probability bounds can be 

defined for Dempster-Shafer structure. These are 

called plausibility and belief functions defined as 

follows. 

 

Definition 7.3 (Plausibility function) The plausibility 

function corresponding to a Dempster-Shafer 

structure      is the sum of all masses associated 

with sets that overlap with or merely touch the set 

     
 

       ∑  

      

       

 

which is the sum over   such that       .  

 

Definition 7.4 (Belief function) The belief function 

corresponding to a Dempster-Shafer structure      

is the sum of all masses associated with sets that are 

subsets of      

 

       ∑  

    

       

 

which is the sum over   such that     .  

 

Obviously,              . Also, if one of the 

structures (either Dempster-Shafer structure, or     or 

   ) is known then the other two can be calculated. 

Considering sets of all real numbers less than or equal 

to  , it is easy to get upper and lower bounds for a 

probability distribution of a random real-valued 

quantity characterized by a finite Dempster-Shafer 

structure. 

Consider Dempster-Shafer structure with focal 

elements that are closed intervals        . We can 

specify it by listing focal elements the focal elements 

and their associated probability masses    as 

                                          . Then 

the left bound (cumulative plausibility function) and 

the right bound (cumulative belief function) are  

 

      ∑              
     ∑          (54) 

 

respectively. These functions are non-decreasing and 

right continuous functions from real numbers onto the 

interval       and            , i.e. proper 

distribution functions. They define the so-called p-box 

              that can be defined without any 

reference to Dempster-Shafer structure.  

 

Definition 7.5 (probability box or p-box) p-box is a 

set of all probability distributions      such that 

             , where       and       are 

nondecreasing functions from the real line into      . 
It is denoted as        .  

 

That is, we say that         is a p-box of a 

random variable   whose distribution      is 

unknown except that              . 

 

Example 7.6  Consider the following Dempster-

Shafer structure with three focal elements that have 

the same probability    , i.e.  

 

              {

                   

                    

                    
 

 

Plausibility and belief functions are easily 

calculated using (54) respectively and presented by 

structure A in Figure 7.8.  

 

7.2  Dempster’s rule 
 

The central method in the Dempster-Shafer theory is 

Dempster’s rule for combining evidence (Shafer [49]; 

Dempster [47]). In some situations, this rule produces 

counterintuitive results and various alternative 

versions of the rule have been suggested such as 
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Yager [51]. In this section, we briefly describe only 

the original Dempster’s rule which is used to combine 

evidence obtained from two or more independent 

sources for the same quantity in question (e.g. expert 

opinions about a specific risk). A considerably more 

extensive review of this literature is available in Sentz 

and Ferson [57]. 

 

Definition 7.7 (Dempster’s rule) The combination of 

two independent Dempster-Shafer structures       

and       with focal elements    and    respectively 

is another Dempster-Shafer structure with probability 

assignment  

 

                
 

   
∑                                       (55) 

 

i.e. the sum over all   and   such that intersection of    

and    is equal to  , where  

 

  ∑                      (56) 

 

is the mass associated with the conflict present in the 

combining evidence.  

 

Example 7.8  Consider two independent Dempster-

Shafer structures A and B with focal elements    and 

   respectively  

 

              

{
 
 

 
        

 

 

        
 

 

        
 

 

     

 

          
 

              

{
 
 

 
         

 

 

        
 

 

        
 

 

 

 

The only combination of focal elements between 

these two structures that has no intersection is 

          with           . Thus the conflict of 

information in (56) is   
 

 

 

 
 

 

 
. Using Dempster 

rule (55) to combine structures A and B, we obtain the 

following structure C:  

 

{
         

 

 
           

 

 
           

 

 
          

 

 
           

 

 
  

         
 

 
           

 

 
 

}  

 

Note that intersection            is produced 

by two combinations:    with   ; and    with   . 

Thus    has probability  
 

 

 

 
 

 

 

 

 
            

while all other elements of structure   are produced 

by one combination and have probability 
 

 

 

 
    

   
 

 
 each. Plausibility and belief functions of all 

structures are easily calculated using (54 and 

presented in Figure 7.8 for all structures. elements.  

 

7.3  Intersection method 
 

If the estimates to be aggregated represent claims that 

the quantity has to be within some limits, then 

intersection method is perhaps the most natural kind 

of aggregation. The idea is simply to use the smallest 

region that all estimates agree. For example, if we 

know for sure that a true value of the quantity   is 

within the interval        , and we also know from 

another source of evidence, that   is also within the 

interval        , then we may conclude that   is 

certainly within the interval          . 
The most general definition of intersection can 

be specified in terms of probability boxes. If there are 

  p-boxes       
    

           
    

  , then their 

intersection is a p-box        , where  

 

         
      

                
      

   (57) 

 

if             for all  . This operation is used 

when the analyst is highly confident that each of 

multiple p-boxes encloses the distribution of the 

quantity in question. This formulation extends to 

Dempster-Shafer structures easily. The cumulative 

plausibility and belief functions of such structures 

form p-boxes. 
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Figure 6. Plausibility and belief functions for Dempster-Shafer structures in example in Section 7.2. Focal 

elements of the structure are indicated by arrows. Structure C is a result of combining strcutures A and B via 

Dempster’s rule 

 

 

 

 
 

Despite its several desirable properties, the 

intersection has only limited application for 

aggregation in OpRisk because it requires a very 

strong assumption that the individual estimates are 

each absolutely correct. It is certainly not 

recommended to the cases if any of the experts might 

be wrong. In practice, wrong opinions can be more 

typical than correct ones. For more detailed discussion 

and examples, see Ferson et al [52]. 

 

7.4  Envelope method 
 

In the previous section on aggregation via intersection, 

it is assumed that all the estimates to be aggregated are 

completely reliable. If the analyst is confident only 

that at least one of the estimates encloses the quantity, 

but does not know which estimate, the method of 

enveloping can be used to aggregate the estimates into 

one reliable characterization. In general, when the 

estimates to be aggregated represent claims about the 

true value of a quantity and these estimates have 

uncertain reliability, enveloping is often an 

appropriate aggregation method. The idea is to 

identify the region where any estimate might be 

possible as the aggregation result. In particular, if one 

expert says that the value is   and another expert says 

that it is  , we might decide to use the interval       as 

the aggregated estimate. If there are   p-boxes 

      
    

           
    

  , then their envelope 

is defined to be a p-box         where  

 

         
      

                
      

   (58) 
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This operation is always defined. It is used when 

the analyst knows that at least one of multiple p-boxes 

describes the distribution of the quantity in question. 

This formulation extends to Dempster-Shafer 

structures easily. The cumulative plausibility and 

belief functions of such structures form p-boxes. The 

result of aggregating these p-boxes can then be 

translated back into a Dempster-Shafer structure by 

canonical discretization. However, enveloping is 

sensitive to claims of general ignorance. This means 

that if only one expert provides an inconclusive 

opinion, it will determine the result of the aggregation. 

The overall result of enveloping will be as broad as 

the broadest input. The naive approach to omit any 

inconclusive estimates before calculating the envelope 

will not be sufficient in practice because any estimate 

that is not meaningless but just very wide can swamp 

all other estimates. Again, for more detailed 

discussion, the reader is referred to Ferson et al [52]. 

 

7.5 Bounds for empirical data 
distribution 
 

P-boxes and Dempster-Shafer structures can be 

constructed for empirical data using distribution free 

bounds around an empirical distribution function 

(Kolmogorov [58, 59]; Smirnov [60]). Similar to the 

confidence intervals around a single number, these are 

bounds on a statistical distribution as a whole. As the 

number of samples increases, these confidence limits 

would converge to the empirical distribution function. 

Given independent samples        from unknown 

continuous distribution     , the empirical 

distribution of the data is  

 

      
 

 
∑ 

 

 

       

 

The lower and upper bounds (referred to as 

Kolmogorov-Smirnov bounds) for the distribution 

     can be calculated as  

  
     (              )      

  
                                   (59) 

 

where        is a critical value for the one-sample 

Kolmogorov-Smirnov statistic    at the confidence 

level           and sample size  , i.e.  

 
                                       

 
              

 

The tabulated values for        as well as a 

numerical approximations can be found in Miller [61]. 

For example, for sample size      and        

(i.e.     confidence level),               . Note 

that typically, Kolmogorov-Smirnov statistics    is 

used for goodness-of-fit testing to compare a sample 

with a reference probability distribution. The null 

hypothesis that sample is from      is rejected at 

level   if    exceeds critical value       . 

Theoretically, the left tail of the KS upper limit 

extends to negative infinity. But, of course, the 

smallest possible value might be limited by other 

considerations. For instance, there might be a 

theoretical lower limit at zero. If so, we could use this 

fact to truncate the upper (left) bound at zero. The 

right tail of the lower limit likewise extends to positive 

infinity. Sometimes it may be reasonable to select 

some value at which to truncate the largest value of a 

quantity too.  

 

Example 7.9  Assume that we have the following iid 

samples 

 

                                       
 

Also assume that the lower bound for samples is 

zero and the upper bound is 30. Then Kolmogorov-

Smirnov bounds at     confidence are calculated 

using (59) and presented in Figure 7.  

 

 

Figure 7. Kolmogorov-Smirnov bounds for empirical distribution; for details see Example 7.9 
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The Kolmogorov-Smirnov bounds make no 

distributional assumptions, but they do require that the 

samples are independent and identically distributed. In 

practice, an independence assumption is sometimes 

hard to justify. Kolmogorov-Smirnov bounds are 

widely used in probability theory and risk analyses, 

for instance as a way to express the reliability of the 

results of a simulation. 

Formally, the Kolmogorov-Smirnov test is valid 

for continuous distribution functions. Also, in the 

discrete case, Kolmogorov-Smirnov bounds are 

conservative, i.e. these bounds can be used in the case 

of discrete distributions but may not represent best 

possible bounds. 

The confidence value   should be chosen such 

that the analyst believes the p-box contains the true 

distribution. The same hypothesis must also be 

assumed for the construction of the p-box from expert 

estimates. However, note that a p-box defined by 

Kolmogorov-Smirnov confidence limits is 

fundamentally different from the sure bounds. The 

Kolmogorov-Smirnov bounds are not certain bounds 

but statistical ones. The associated statistical statement 

is that     (or whatever is specified by  ) of the time 

the true distribution will be within the bounds. It is not 

completely clear how to combine the Kolmogorov-

Smirnov p-box with the expert specified p-box; the 

choices of the upper limit and confidence level   for 

Kolmogorov-Smirnov bounds can be problematic. 

 

8 Conclusions 
 

In this paper we reviewed several methods suggested 

in the literature for combining different data sources 

required for the LDA under Basel II requirements. We 

emphasized that Bayesian methods can be well suited 

for modeling OpRisk. In particular, Bayesian 

framework is convenient to combine different data 

sources (internal data, external data and expert 

opinions) and to account for the relevant uncertainties. 

There are many other methodological challenges in 

the LDA implementation such as modelling 

dependence, data truncation and estimation which are 

under the hot debate in the literature; for a recent 

review, the reader is referred to Shevchenko [16]. 
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