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Abstract 

 
We set the context for capital approximation within the framework of the Basel II / III regulatory 
capital accords. This is particularly topical as the Basel III accord is shortly due to take effect. In this 
regard, we provide a summary of the role of capital adequacy in the new accord, highlighting along the 
way the significant loss events that have been attributed to the Operational Risk class that was 
introduced in the Basel II and III accords. Then we provide a semi-tutorial discussion on the modelling 
aspects of capital estimation under a Loss Distributional Approach (LDA). Our emphasis is to focuss 
on the important loss processes with regard to those that contribute most to capital, the so called “high 
consequence, low frequency" loss processes. 
This leads us to provide a tutorial overview of heavy tailed loss process modelling in OpRisk under 
Basel III, with discussion on the implications of such tail assumptions for the severity model in an LDA 
structure. This provides practitioners with a clear understanding of the features that they may wish to 
consider when developing OpRisk severity models in practice. From this discussion on heavy tailed 
severity models, we then develop an understanding of the impact such models have on the right tail 
asymptotics of the compound loss process and we provide detailed presentation of what are known as 
first and second order tail approximations for the resulting heavy tailed loss process. From this we 
develop a tutorial on three key families of risk measures and their equivalent second order asymptotic 
approximations: Value-at-Risk (Basel III industry standard); Expected Shortfall (ES) and the Spectral 
Risk Measure. These then form the capital approximations. 
We then provide a few example case studies to illustrate the accuracy of these asymptotic captial 
approximations, the rate of the convergence of the assymptotic result as a function of the LDA 
frequency and severity model parameters, the sensitivity of the capital approximation to the model 
parameters and the sensitivity to model miss-specification. 
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1 The Changing Landscape of Capital 
Accords 

 

In juristictions in which active regulation is applied to 

the banking sector throughout the world, the 

modelling of Operational Risk (OpRisk) has 

progressively taken a prominent place in financial 

quantitative measurement. This has occurred as a 

result of Basel II and now Basel III regulatory 

requirements. For example in the context of banking 

regulation in Australia, the basic framework of Basel 

II/III is summarized in Figure 1. In this juristiction one 

observes that a large amount of the developments in 

quantitative methodology for estimation of OpRisk 

capital, development of OpRisk frameworks 

embedded within retail banks and large financial 

institutions as well as infrastructure for collection and 

reporting of losses in data bases has been achieved 

largely due to regulatory choices to link Advanced 

Measurement Approaches in OpRisk modelling to 

Credit Risk. In other areas the progression of such 

features has lagged behind the Australian example but 

now OpRisk in other large banking sectors is 

becomming increasingly prominent. 

There has been a significant amount of research 

dedicated to understanding the features of Basel II, see 
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for example [1], [2] and [3]. In addition the 

mathematical and statistical properties of the key risk 

processes that comprise OpRisk, especially those that 

contribute significantly to the capital charge required 

to be held against OpRisk losses have also been 

carefully studied, see for example the book length 

discussions in [4], [5] and [6]. 

There have been both numerical and simulation 

based approaches adopted as well as analytical 

mathematical developments of closed form 

approximations for capital approximation. In this 

manuscript we aim to provide a clear and concise 

understanding of several increasingly popular 

approaches to capital approximation from an analytic 

perspective. In the process we demonstrate several 

important key details of such capital approximations, 

we discuss the implications of use of such 

approximations, their shortcommings and we assess 

their behaviours in simple but realistic loss models 

adopted in practice. 

In particular we provide a detailed discussion on 

the attributes of the so called capital approximation 

methods known as Single Loss type approaches of 

first and second order expansions. In doing so, this 

manuscript draws together several disperate areas of 

the literature to allow industry professionals an insight 

into the processes that have lead to expansions of tail 

functionals for risk measures such as Value-at-Risk, 

Expected-Shortfall and Spectral Risk measures, 

considered for capital definitions. 

In understanding the context for these 

developments we discuss first the regulatory evolution 

of OpRisk modelling frameworks. In January 2001 the 

Basel Committee on Banking Supervision proposed 

the Basel II Accord ([7], [8], [9]) which replaced the 

1988 Capital Accord. Now in 2013 the Basel III 

Accord is due to start to be considered. Since the 

initiation of the Basel captial accords, the discipline of 

OpRisk and its quantification have grown in 

prominence in the financial sector. Paralleling these 

developments have been similar regulatory 

requirements for the insurance industry which are 

referred to as Solvency 2. 

Under the Basel II/III structures there is at the 

core the notion of three pillars, which, by their very 

nature, emphasize the importance of assessing, 

modelling and understanding OpRisk loss profiles. 

These 3 pillars are; minimum capital requirements 

(refining and enhancing riskmodelling frameworks), 

supervisory review of an institutionвЂ™s capital 

adequacy and internal assessment processes and 

market discipline, which deals with disclosure of 

information, see Figure 1. 

In the third update to the Basel Accords due for 

implementation in the period 2013-2018, a global 

regulatory standard which draws together bank capital 

adequacy, stress testing and market liquidity is 

created. It is established as an international best 

practice for modelling OpRisk by the members of the 

Basel Committee on Banking Supervision, see [10] 

and discussions in [11]. 

The Basel III accord naturally extends on the 

work developed in both the Basel I and Basel II 

accords with the new accord arising primarily as a 

response to the identified issues associated with 

financial regulation that arose during the recent global 

financial crisis in the late-2000s. In this regard, the 

Basel III accord builds on Basel II by strengthening 

the bank capital requirements as well as introducing 

additional regulatory requirements on bank liquidity 

and leverage. 

Banking regulation under Basel II and Basel III 

specifies that banks are required to hold adequate 

capital against OpRisk losses. OpRisk is a relatively 

new category of risk which is additional to more well 

established risk areas such as market and credit risks. 

As such in its own right OpRisk attracts a capital 

charge which is defined by Basel II/III [1, p.144] as: 

“[. . . ] the risk of loss resulting from inadequate or 

failed internal processes, people and systems or from 

external events. This definition includes legal risk, but 

excludes strategic and reputational risk.” OpRisk is 

significant in many financial institutions. 

Before detailing the changes to capital 

requirements due to come into industry practice under 

Basel III, it is prudent to recall the Basel definition of 

Tier I capital, which is the key measure of a bank’s 

financial strength from the perspective of the 

regulatory authority. In particular the capital accord in 

Basell II and III states that financial institutions must 

provide capital above the minimum required amount, 

known as the floor capital. In addition this capital as 

specified in regulation is comprised of three key 

components, Tier I, Tier II and Tier III. Both Tier I 

and Tier II capital were first defined in the Basel I 

capital accord and remained substantially the same in 

the replacement Basel II and Basel III accords. 

Definition 1.1 (Tier I Capital) The Tier I 

capital under regulation is comprised of the following 

main components:   

1) Paid-up share capital / common stock;  

2) Disclosed Reserves (or retained earnings).  

It may also include non-redeemable non-

cumulative preferred stock.  

The Basel Committee also noted the existance of 

banking strategies to develop instruments in order to 

generate Tier I capital. As a consequence, these must 

be carefully regulated through imposition of stringent 

conditions, with a limit to such instruments at a 

maximum of 15% of total Tier I capital. 

Definition 1.2 (Tier II Capital) The Tier II 

capital under regulation is comprised of the following 

main components:   

1) Undisclosed reserves;  

2) Asset revaluation reserves;  

3) General provisions / general loan-loss 

reserves;  

4) Hybrid (debt/equity) capital instruments; and  

5) Long-term subordinated debt.  
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In this regard one may consider Tier II capital as 

representing so called "supplementary capital".  

We note at this stage that as a consequence of 

different legal systems in each juristiction, the accord 

has had to be sufficiently flexible to allow for some 

interpretation of specific capital componets within the 

context of each regulators juristiction. Depending on 

the particular juristiction in question, the specific 

country’s banking regulator has some discretionary 

control over how exactly differing financial 

instruments may count in a capital calculations. 

Remark 1.3 The key reason that Basel III 

requires financial institutions to hold capital is that it 

is aimed to provide protection against unexpected 

losses. This is different to mitigation of expected 

losses, which are covered by provisions, reserves and 

current year profits.  

We note that modifications under the Basel III 

accord relative to its predecessor refer to limitations 

on Risk Weighted Capital (RWC) and the Tier I 

Capital Ratio, as defined below. 

Definition 1.4 (Risk Weighted Assets) These 

assets comprise the total of all assets held by the bank 

weighted by credit risk according to a formula 

determined by either the juristictions regulatory 

authority or in some cases the central bank. Most 

regulators and central banks adhere to the definitions 

specified by the Basel Committee on Banking 

Supervision (BCBS) guidelines in setting formulae for 

asset risk weights. Liquid assets such as cash and 

coins typically have zero risk weight, while certain 

loans have a risk weight at 100% of their face value. 

As specified by the BCBS the total RWA is not limited 

to Credit Risk. It contains components for Market Risk 

(typically based on value at risk (VAR) ) and 

Operational Risk. The BCBS rules for calculation of 

the components of total RWA have also been updated 

as a result of the recent financial crisis.  

Definition 1.5 (Tier I Capital Ratio) The Tier 1 

capital ratio is the ratio of a bank’s core equity 

capital to its total risk-weighted assets (RWA).  

Next we highlight the prominent extensions to 

the Basel II accord, established in the Basel III accord. 

In particular the Basel III accord will require financial 

institutions to hold for risk weighted assets, 4.5% of 

common equity which is an increase from the previous 

2% under Basel II as well as 6% of Tier I capital itself 

an increase by 2% relative to Basel II. In addition to 

these changes to common equity and Tier I capital, 

Basel III also introduces a minimum leverage ratio 

and two additional required liquidity ratio limits. 

Finally, of the significant changes, there are also 

additional capital buffers introduced:   

1) Introduction of a mandatory capital 

conservation buffer of 2.5% ; and  

2) A discretionary countercyclical buffer, 

allowing national regulators to require up to another 

2.5% of capital during periods of high credit growth.  

 

1.1 Understanding the Significance of 
OpRisk Losses 
 

To illustrate the significance of OpRisk losses on the 

stability of banking operations and the extent that 

particular loss processes in this class of risk can 

threaten financial insolvency for banks we note some 

aggregate loss figures and illustrate how such 

aggregates are possible by noting particular instances 

of prominent loss events that have occurred under the 

OpRisk class. 

It was reported in [12] that the total loss 

associated with operational risk has reached as high as 

US$ 96 billion in the United States during the 

financial crisis in 2008. There have also been 

numerous OpRisk loss events that have been 

highlighted in the media to support such enormous 

aggregate figures. Such single event examples of 

extremely large OpRisk losses include: Barings Bank 

(loss GBP 1.3 billion in 1995), Sumitomo Corporation 

(loss USD 2.6 billion in 1996), Enron (USD 2.2 

billion in 2001), and recent loss in Society Generale 

(Euro 4.9 billion in 2008). 

Some of the lesser reported cases have recently 

come to light with the paper of [13] who paint similar 

pictures in the Chinese banking sectors as have been 

observed in US and European markets. For example 

they state that typical examples of large OpRisk loss 

events in recent years in the Chinese banking sector 

include the Guangdong branch of the Industrial and 

Commercial Bank of China (ICBC) which in 2003 lost 

740 million yuan; the Jinzhou branch of the Bank of 

Communications in 2004 which lost 22.1 million 

yuan; the Heilongjiang branch of the Bank of China 

(BOC) in 2005 which lost 100 million yuan; the 

Guangdong branch of BOC in 2006 lost 400 million 

yuan; and the Qilu Bank in 2010 which lost 100 

million yuan. 

Each of these single loss events are significant 

and indicate the importance of models for loss 

processes which will capture such extreme loss events 

adequately when undertaking capital estimation. 

These illustrative examples and many more, has 

provided a clear focus for practitioners and risk 

modellers to invest in efforts to understand heavy 

tailed loss modelling, which has been highlighted in 

numerous reviews on OpRisk modelling, see [14], 

[15], [16], [17], [18] and [19]. In particular we will 

focus on the most widely used model framework 

involving a compound process reprsentation of the 

risk process. 
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Figure 1. The Basel II and now Basel III pillars for capital adequacy assessment 

 

 
 

1.2 A Brief Background on Loss 
Distributional Approach (LDA) Models 

 

To quantify the operational risk capital charge under 

the current regulatory framework for banking 

supervision, referred to as Basel II/ Basel III, many 

banks adopt the Loss Distribution Approach (LDA). 

There are several modeling issues that should be 

resolved to use this approach in practice, a detailed 

review on the quantitative properties of estimation can 

be found in [19], [20], [21], [22], [23], [24] and in 

addition in some important heavy tailed settings (large 

consequence, rare occurance) closed form 

representations of such models in [25], [16] and [15]. 

In this section we fist motivate and introduce the 

context of LDA modeling in risk and insurance. Next, 

we provide a brief specifically selected survey of 

closed form analytic results known in the actuarial and 

risk literature for sub-classes of such LDA models as 

the Single Loss Approximations (hereafter SLA). As 

pointed out previously it is precisely these heavy 

tailed loss processes that result in the significant 

individual loss events, as discussed above. We 

therefore then focus on key elements of heavy tailed 

loss process asymptotics with a view to understanding 

capital approximations. In doing so we draw together 

several disparate sources of information for 

practitioners from sources in both mathematics and 

risk literature, for example we consider results 

recently developed in actuarial literature for the heavy 

tailed case corresponding to the first order and second 

order asymptotic approximations, see comprehensive 

discussions in a general context in [26], [27] and the 

books, [28] and the forthcoming [29]. 

We conclude this section by observing that 

according to regulatory standards and indeed good risk 

management practice such asymptotic SLA 

approximations are often required to be accompanied 

with numerical and statistical solutions which can 

more readily take into account model uncertainty, 

parameter uncertainty, parameter sensitivity and 

asymptotic rate of convergence analysis, see 

discussions in [30]. 

The fact that such approximations are inherently 

asymptotic in nature, and may be inaccurate outside of 

the neighborhood of infinity, means such analysis is 

directly relevant in practice when considering the 

suitability of such approximations for capital 

calculations. It is important that these be both accurate 

and relatively stable over time. However, 

incorporating these features into a SLA is often highly 

challenging. 

To begin, consider the widely utilized insurance 

model known as a single risk LDA model. This 

represents the standard under the Basel II/III capital 

accords [31] and involves an annual loss in a risk cell 

(business line/event type) modeled as a compound 

distributed random variable,  

 

                              
   

 ∑  
  

   

     
        (1) 

 

for           discrete time (in annual units) 

and index   identifies the risk cell. Furthermore, the 

annual number of losses is denoted by   
   

 which is a 

random variable distributed according to a frequency 

counting distribution        , typically Poisson, 

Binomial or Negative Binomial. The severities 
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(losses) in year   are represented by random variables 

  
   

   ,    , distributed according to a severity 

distribution         and there are   
   

 of them in year 

 . 

Before proceeding, it will be relevant to define 

some basic notation adopted throughout. In general, 

we will suppress the risk cell index   and time index   

unless explicitly utilised. Therefore, we denote by 

     a distribution with positive support for the 

severity model characterizing the loss distribution for 

each random variable    for            . We 

denote the annual loss (aggregated loss) by   with 

annual loss distribution      and the partial sum of 

  random losses by    with distribution    
     

where     denotes the  -fold convolution of the 

severity distribution for the independent losses. The 

densities, when they exist, for the severity distribution 

and annual loss distributions will be denoted by      

and       respectively. 

In constructing the LDA model we assume that 

all losses are i.i.d. with   
      ~     and that the 

severity distribution is continuous with no atoms in 

the support      . As a consequence, linear 

combinations (aggregation) of losses in a given year, 

denoted by the partial sum  

 

      ∑ 

 

   

  
      ~   

    

 

have the following analytic representation:  

 

   
                ∫  

     

                   

 

In [32] it is shown that if      has no atoms in 

      then the  -fold convolution of such severity 

distributions will also admit no atoms in the support 

     . In addition we note that continuity and 

boundedness of a severity distribution      is 

preserved under  -fold convolution. Hence, if      

admits a density 
 

  
     then so does the distribution 

of the partial sum    
, for any           and 

compound process (random sum)   . For most models 

such analytic representations of the combined loss 

distribution are non closed form, with the exception of 

special sub-families of infinitely divisible severity 

distribution models, see [16]. 

 

2 On the Road to Capital Approximation: a 
Tale of Tails 

 

In this section we present an overview of important 

technical results from the probability and 

mathematical statistics literature that will lead to an 

understanding of OpRisk capital approximation 

techniques that are being discussed in the OpRisk 

literature recently, see [33], [34], [35], [36] and [27]. 

Since this section is aimed at a guided review we 

make explicit some important definitions that are used 

throughout, for example we remind the reader of the 

notion of asymptotic equivalence and max-sum 

equivalence, as well as several key definitions relating 

to tail asymptotics for a severity model under an LDA 

framework that are not widely known by practitioners 

utilising such approximations. 

Definition 2.1 (Asymptotic Equivalence) A 

probability distribution function      is 

asymptotically equivalent to another probability 

distribution function     , denoted by     ~     as 

    if it holds that,          such that       

the following is true  

 

                        |
    

    
  |     (2) 

 

Definition 2.2 (Max-Sum Equivalence) A 

probability distribution function is max-sum-

equivalent, denoted by  ~  , when the convolution 

of the tail distribution of two random variables is 

distributed according to the sum of the two tail 

distributions asymptotically,  

 

                   ~                   

 

see discussion in [52].  

From these basic definitions, we next proceed to 

consider some key classifications of heavy tailed 

distributions. Though technical in nature, these will 

allow us to carefully understand the behaviour of both 

heavy tailed severity distributions and the compound 

processes constructed with these models under an 

LDA framework. 

 

2.1 Review of Classifications for Heavy 
Tailed Severity Distributions 

 

In practice the choice of severity distribution      

should be considered carefully for each individual risk 

process as it can have a significant impact on the 

capital and the choice of appropriate captial 

approximation method. This is especially the case for 

those risk processes for which business managers 

believe there will be infrequent losses with very high 

consequence. It is therefore important to carefully 

consider the possible implications on capital 

calculation and capital approximation that arise when 

making particular assumptions about the severity 

distributions right tails. In this regard we begin with a 

basic coverage of the key features one may consider 

when deciding on a suitable heavy tailed severity 

distribution, with respect to the behaviour of the right 

tail, associated with probabilities of large loss 

amounts. We note that the classifications of severity 

models into particular families of heavy-taile models 

as discussed below is by no means supposed to be 

disjunctive in the understanding of such groupings. In 

addition we also point out that fact that we have 

several choices to consider when developing such 

high-consequence severity model assumptions. For 
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instance we could assume properties of the right tail of 

the distribution function, the density function or the 

survival function. 

For large consequence events, one may often consider 

distributions for which the moment generating 

function doesn’t exist on the positive real line such 

that  

 

       ∫                   (3) 

 

In otherwords, the standard Markov Inequality 

for the expontially decaying “light” tail behaviour of a 

loss distribution in which  

 

                                          (4) 

 

does not apply. 

It can be shown that a distribution   has a 

moment generating function in some right 

neighbourhood of the origin if and only if the 

following bound holds for some positive real numbers 

  and  ,  

 

                     (5) 

 

Hence, one basic definition of an important class 

of distributions in OpRisk is the heavy tailed 

distributions which have a right tail heavier than any 

exponential distribution. However, there are numerous 

more refined categorisations of heavy tailed 

distributions which are required for the results in this 

manuscript. 

A popular class of heavy-tailed models is the 

sub-exponential family of severity distributions that 

we denote by membership          and define 

below, see discussion in for example [38] and [39]. 

Definition 2.3 (Sub-exponential Severity 

Models) The sub-exponential family of distributions   

defines a class of heavy tailed severity models that 

satisfy the limits  

 

                    
   

        

      
    (6) 

 

if and only if,  

 

                    
   

        

      
    (7) 

 

In [40] it was demonstrated that the necessary 

and sufficient condition for membership of a severity 

distribution in the sub-exponential class       is 

satisfied if and only if the tail distribution        
     satisfies  

 

   
   

∫  
 

 

      

    
          

 

Alternatively, one may characterize the family of 

distributions     by those that satisfy 

asymptotically the tail ratio  

 

   
   

      

    
             (8) 

 

Severity models     are of interest for 

severity distributions in high consequence loss 

modeling since they include models with infinite mean 

loss and infinite variance. In addition, the class   

includes all severity models in which the tail 

distribution under the log transformed r.v.,          , 

is a slowly varying function of   at infinity. We will 

discuss both regular and slow variation below. 

Examples of models in this family include:   

1) Pareto:      (
 

     
)

 

 for    ,     and 

     

2) Log Normal:      
 

 
 

 

 
   [

     

√   
],    , 

    and    .  

3) Heavy-Tailed Weibull:               , 

   ,     and      .  

We may also consider classes of heavy-tailed 

severity distributions as classified by their right tail 

properties through formal definitions such as regularly 

varying tail, long-tailed, dominantly varying tail, 

subversively varying tail and smoothly-varying tail, 

each of which we briefly define below. We then relate 

these different classes of severity model assumptions 

to each other to provide a basic understanding of the 

relationships between each of these possible heavy 

tailed severity modelling assumption. 

Arguably one of the most utilised sub-classes of 

the sub-exponential distributions is the class of 

regularly varying distributions. Now recalling the 

definition of the class of regularly varying functions 

given by Definition 2.4, see [41] and [38]. 

Definition 2.4 (Regular Variation)  A 

measurable function        that satisfies the 

condition that  

 

            
   

     

    
         (9) 

 

is regularly varying with index   denoted by 

     .   

We define the class of all regularly varying 

functions denoted by          . It is also 

convention to distinguish the special sub-class of 

functions denoted generically by      that are 

regularly varying with an index of     as follows. 

Corollary 2.5 (Slowly Varying Tail) A function 

    is slowly varying if    .  

So one may consider the class of severity 

distributions or densities that are members of this 

class. To provide some intuition for properties of 

severity models in this class of regularly varying 

models we note the following important features. It 

can be shown that for loss processes in which the 
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severity models have a strictly non-negative support, 

the membership of a severity distribution in the class 

of regularly varying functions with tail index     

implies that  

 

     

 (
                                    
        

 
 (10) 

 

Analogously (setting      ) if the right tail 

of a distribution   is regularly varying with an index   

then this implies that the distribution   will have 

     -th moments which are infinite for    . In 

addition the following is also known about truncated 

moments of severity distributions in which       is 

regularly varying at infinity with      for some 

   . 

 

 [      ]~
 

   
                

 [      ]~
 

   
                

 (11) 

Clearly, these truncated moments are often of 

direct interest in risk management and especially in 

the context of capital estimation. 

In addition, following properties of regularly 

varying functions apply specifically in the context of 

distributions and densities, see [68, Theorem 1.20] and 

[55]. 

Corollary 2.6 (Regularly Varying Severity 

Distributions) If the severity model has a regrularly 

varying distribution       with a density   which is 

locally integrable on       with  

 

                  ∫  
 

 
        (12) 

 

then given the severity density   is ultimately 

monotone, one has for     that        . 

Furthermore, one can show that in the case of non-

negative random variables, such as for a loss process 

in an LDA severity model, if the distribution is 

regularly varying       with    , then the right 

tail          .  

Furthermore, in OpRisk when considering 

severity densities and distribution functions we are 

working with strictly positive functions. In this regard 

we note that positive regularly varying functions have 

a unique representation detailed in Theorem 2.7, see 

[25], [26], [43] and [14]. This representation 

demonstrates an important property of such positive 

regularly varying functions, as it shows that the 

integration of regularly varying functions (tail 

functionals) will behave in the same manner as the 

integration of power functions. In addition, we note 

that in general the class of severity distributions and 

densities considered in OpRisk settings will be strictly 

monotonic in their tail behaviour. This is significant as 

it means that one will achieve uniform convergence in 

the limit taken in the definition of regular variation for 

such severity distributions. 

Theorem 2.7 (Karamata's Representation 

Theorem for Regularly Varying Functions)  A 

function   is a positive regularly varying function at 

infinity,       , with index    if and only if   can 

be represented by  

 

            (∫  
 

  

       

 
  )        (13) 

 

with             for some     and 

         .   

Remark 2.8 It is worth considering the intuition 

and relevance of the Karamata Representation 

Theorem. In particular it demonstrates that when 

integrating regularly varying functions      , one 

can pass the slowly varying component outside the 

integral as follows  

 

     ∫  
 

 

       ∫  
 

 

        

     ∫  
 

 

     
     

   
  

(14) 

 

see discussion in [65, p.25].  

Remark 2.9 A consequence of this 

representation theorem is that every regularly varying 

function       will admit a representation given by,  

 

                                      (15) 

 

Remark 2.10 One way to understand the 

implications of working with severity models from this 

class of distributions is to consider what it tells the 

practitioner about integration of functions with 

respect to such severity distributions. Ofcourse the key 

component in this regard will be the influence the 

right tail plays in such functionals. In particular if 

     and the severity density       then the 

integration of such a function satisfies  

 

              ∫  
 

 
              (16) 

 

Furthermore, if the index of regular variation is 

     then one has  

 

                  ∫  
 

 
              (17) 

 

In addition a distribution   which is regularly 

varying with index   can be characterised by what is 

widely known as the tail balance condition in 

Definition 2.11, see [48]. 

Lemma 2.11 (Tail Balance Condition)  A 

distribution function   is regularly varying with index 

    if there exists       with       and a 

slowly varying function     , which for all     

means  
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    (18) 

 

and the following tail balance conditions are 

satisfied as      

 
                      

                      
 (19) 

 

Finally, it is important in the context of this 

manuscript which is considering capital 

approximations to make the connection between the 

properties of the regularly varying distribution and its 

inverse (quantile function) that is often utilised 

pointwise as the mathematical measure of OpRisk 

capital, such as in the Basel II/III stipulated Value-at-

Risk for some quantile level  . 

Lemma 2.12 (Regularly Varying Distribution 

and Quantile Functions) If the right tail of a 

distribution is regularly varying at infinity such that 

       with     and             , then it is 

also true that the quantile function       
              will be regularly varying at the 

origin,           . If one defines       

  (  
 

 
) on       then this leads to the 

representation       
 

   ( 
 

 ), where    represents 

the De Bruyn conjugate of  
 

 

 , see details in [49, 

p.79].  

Typical examples of slowly varying functions are 

functions converging to a positive constant, logarithms 

and iterated logarithms. Another important note to 

make here is that distributions such as the Pareto, 

Cauchy, Student-t, Burr and log-gamma, truncated  -

stable distributions have regularly varying tails and are 

ultimately infinitely differentiable and their 

derivatives are regularly varying. 

One can also consider a related sub-classes of 

regularly varying severity models known as the class 

of Smoothly Varying functions given in Definition 

2.13, see [50] and [28, p.6]. 

Definition 2.13 (Smoothly Varying Function)  

A real measurable function           is smoothly 

varying with index    and order   if it is eventually 

(asymptotically)  -times continously differentiable 

and the  -th derivative                is 

regularly varying with index            . 

Furthermore, for any non-integer value    , with 

      for     and        , then a function 

     is smoothly varying with index    and order   if 

         and the following limit holds  

 

   
   

      
   

   
       

                    

           
    (20) 

 

One can also state the smooth variation theorem 

which provides asymptotic bounds on the severity 

density, see [41]. 

Theorem 2.14 (Smooth Variation Theorem) If 

a severity density model has a regularly varying right 

tail       then there exists functions    and    with 

       and asymptotic equivalence   ~   such that 

in some neighbourhood of infinity the following 

bounds apply        .  

Corollary 2.15 If the severity density has a 

regularly varying right tail,      , then there exists 

a function       with  ~ .  

This further characterization of a sub-class of 

regularly varying severity models is highly relevant as 

it allows one to make some comments on integrals of 

tail functionals with respect to such severity 

distributions. In particular, one can show the following 

is true for two smoothly varying functions when 

utilised to construct a product function, see [51, p.47]. 

Lemma 2.16 (Products of Smoothly Varying 

Functions) Given two smoothly varying functions 

      and      , then the product of these two 

functions is also smoothly varying as          
     .  

Remark 2.17 (Implications for Capital 

Approximations) This product closure for the family 

of smoothly varying functions, when combined with 

convolution closure properties of regularly varying 

functions to be explained below is particularly useful 

when integrating tail functionals of compound 

processes, such as would be required when 

calculating capital approximations under certain risk 

measures such as Expected shortfall or Spectral Risk 

Measures.  

Building on these sub-classes of regularly 

varying functions, one can also define additional 

notions or tail variation such as dominantly varying, 

subversively varying and long tailed severity models, 

see discussion in [52]. 

Definition 2.18 (Dominantly Varying Tail)  A 

severity distribution function   is said to have a 

dominantly varying tail if it satisfies the asymptotic 

condition that  

 

                     
   

     

    
    (21) 

 

for any        . An alternative equivalent 

relationship is to consider  

 

                            
   

     

    
    (22) 

 

for any    .   

This notion of dominated variation is interesting 

to consider for the following reasons discussed in [53]. 

It is well known that for a severity model with a 

positive support, if the distribution   has a tail   

which is regularly varying, then in this case it will 

imply that   is in the family of subexponential 

distributions. Alternatively, if the tail of the severity 

distribution   is instead merely of dominated 
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variation, then it is no longer the case that the severity 

distribution   needs to be in the family of 

subexponential models. 

Definition 2.19 (Subversively Varying Tail)  A 

severity distribution function   is said to have a 

subversively varying tail if it satisfies the asymptotic 

condition that  

 

                         
   

     

    
    (23) 

 

for any    .   

Definition 2.20 (Long Tailed Distribution)  A 

severity distribution function   is said to be long-

tailed if it satisfies the asymptotic condition that  

 

                        
   

      

    
    (24) 

 

for all constants    . Equivalently one can 

state this by saying that        is asymptotically 

equivalent to     , that is       ~    .   

The long tailed severity model case is particular 

interesting as members of this family have the 

property that the distribution of a random variable 

 ~  is said to have a long right tail if for all    ,  

 

        
   

                 (25) 

 

or equivalently put in terms of asymptotic order 

it means that  

 

                        ~      (26) 

 

Therefore, the interpretation of a right long-tailed 

distributed quantity is that if the long-tailed quantity 

exceeds some high level, the probability approaches 1 

that it will exceed any other higher level. Put simply if 

you know the loss amounts are significant then the 

realized losses from such a severity model are 

probably worse than you think. 

Remark 2.21 One can show that all long-tailed 

distributions are heavy-tailed, but the converse is 

false. In addition one has that all subexponential 

distributions are long-tailed, but examples can be 

constructed of long-tailed distributions that are not 

subexponential.  

Having defined these different families of tail 

behaviour in a severity distribution or density, we note 

the following relationships between these families, see 

discussion in [54]. 

Remark 2.22 (Relating the Families of 

Severity Models by Tail Behaviour) The following 

relationships between the different families of severity 

distributions, classified by their right tail behaviour 

holds:   

1) Firstly, the class of sub-exponential 

distributions is larger than the class of regularly 

varying distributions and one can observe the 

relationship through the result in Lemma 2.28, see 

[48, Lemma 3.2]. Secondly, it is well known that the 

class of smoothly varying functions, functions with 

continous derivatives being regularly varying at 

infinity, is a subclass of regularly varying functions.  

2) The intersection between the family of 

dominantly varying, subversively varying and sub-

exponential tailed distributions is contained in the 

family comprised of the intersection between the 

dominantly varying tailed functions and the long 

tailed functions. Furthermore, these sub-families 

formed from the intersections are themselves 

contained in the family of sub-exponential models 

which is iteself contained in the family of long tailed 

distributions.  

It will be useful in generalizing assumptions on 

the frequency distribution in the LDA structure when 

obtaining the results for the single loss capital 

approximations to also consider two additional 

classification concepts for the families of heavy tailed 

severity models, these are the notions of extended 

regularly varying functions (ER) and the O-regularly 

varying functions (OR) given in Definition 2.23. 

First we define the following properties for the 

severity density, using the notation [41], the lim sup 

and lin inf according to Equation 27 and Equation 28 

for      

 

                        
   

     

    
 (27) 

 

and  

 

                        
   

     

    
 (28) 

 

with the relationship that       
 

       
. 

Definition 2.23 (Extended and O-Type 

Regular Variation)  The class of extended regularly 

varying functions is the set of postive measurable 

functions      satisfying for some constants     

the relationship  

 

                        (29) 

 

The class of O-regularly varying functions is the 

set of postive measure functions      satisfying  

 

                        (30) 

 

It will also be beneficial to recall the definition 

of the Matuszewska index, see [55] and [41, page 68]. 

Definition 2.24 (Matuszewska Index)  Let   be 

a positive density function, then the upper 

Matuszewska index, denoted      is given as     

by the infimum of the   values such that there exists a 

constant        where for each     one has  

 
     

    
                                        (31) 
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The lower Matuszewska index, denoted      is 

analogously given as     by the supremum of   

values for which for some constant     and for all 

    one has  

 
     

    
                                        (32) 

 

The following relationship between Matuszewske 

indexs is known for positive functions    

 

                              (
 

 
)  (33) 

 

One can show the following properties of the 

Matuszewska Index for a postive function   given in 

Lemma 2.25, see [41, page 71]. 

Lemma 2.25  Consider a positive function   

then the following properties w.r.t. the Matuszewska 

Index’s sign can be shown:   

1)   has bounded increase      if       .;  

2)   has bounded decrease      if      
  .;  

3)   has positive increase      if       .; 

and  

4)   has positive decrease      if       .  

Of direct relevance to the results to be discussed 

in this manuscript on higher order asymptotic tail 

expansions will be the extension of the concept of 

Matuszewska indices which was further developed for 

distribution function tails in [56] who provided the 

statements in Lemma 2.26. 

Lemma 2.26 (Matuszewska Indices for 

Distribution Functions)  Given a severity distribution 

 , then the upper Matuszewska index for the tail of the 

distribution               denoted by    is 

given by  

 

        { 
        

    
    }      

   

        

    
  (34) 

 

The lower Matuszewska index is given for the tail 

of a distribution analogously by  

 

      { 
    

 
   

    
    }      

   

    
 
   

    
  (35) 

 

Analogous definitions can also be developed for 

severity density functions.   

When the upper and lower Matuszewska indices 

are finite for the tails of a distribution function one 

may state the following bounds in Proposition 2.27. 

Proposition 2.27  Given a severity distribution 

function   with a finite upper Matuszewska index 

     then there exists constants    and    such 

that the bound  

 

                   
    

    
   (

 

 
)

  

 (36) 

 

holds for all        and       . 

Furthermore, if the lower Matuszewska index is 

finitely positive      then there exists constants    

and    such that  

 

                  
    

    
   (

 

 
)

  

 (37) 

 

holds for all        and       .   

We now proceed with the process of utilizing 

these characterizations for the heavy-tailed severity 

models to obtain asymptotic bounds for the compound 

process tails and capital estimates. 

 

2.2 Single Risk Closed Form Compound 
Process Approximations of Asymptotic 
Tail Behaviour 

 

We begin by noting several important properties one 

can obtain when combining severity distributions from 

the above heavy-tailed families into LDA structures. 

We will focus purely on Poisson processes, though 

this can trivially be generalized to other frequency 

distributions of interest. We first consider the annual 

loss process for a fixed number of loss events     

and state some properties of the partial sum with 

respect to assumptions on the tail behaviour of the 

severity model, see discussion in [57], [58] and [59]. 

Lemma 2.28 (Convolution Root Closure of 

Sub-exponential Distributions)  Assume the partial 

sum    ∑   
      is regularly varying with index 

    with each    being i.i.d. with positive support. 

Then for all           the   ’s are regularly 

varying also with index   and the following 

asymptotic equivalence as     holds  

 

   
            ~                (38) 

 

This result can be restated analogously, for any 

   , by showing that one has asymptotically as 

   ,  

 

           ~                    (39) 

 

This means that given a sum of   independent 

random variables         with common distribution 

  one has the following probabilistic interpretation for 

sub-exponential distributed random variables (often 

referred to as the ‘big jump’),  

 

            ~                   
         

(40) 

 

In addition, if one wishes to consider insurance 

mitigation in which each loss        
  is mitigated by 

an insurance policy coverage to produce          
  for 

some         , as for example under one of the 

insurance policy stuctures detailed in [25]. Then given 

the losses are from a severity model which is regularly 
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varying and tail balanced, the result in Lemma 2.29, 

see [60, Appendix 3.26] can be interpreted as a 

generalization of the above result, in an OpRisk 

context, to incorporate simple insurance mitigations. 

Lemma 2.29 (Generalization to Insurance 

Mitigation)  Consider an i.i.d. sequence of loss 

random variables    for             with 

distribution function   which is regularly varying with 

index     and satisfies the tail balance condition 

for some       in Definition 2.11. Then for any 

real constants      and integer     one can show  

 

                 ~           

 ∑ 

 

   

     
        

     
(41) 

 

where   
        and   

       . 

Remark 2.30 Note that in general, except when 

   , it is not true that given a linear combination 

                 which is regularly varying 

with index   for an i.i.d. sequence of losses      , this 

does not imply that    is from a distribution which is 

regularly varying.  

If we now consider the compound process 

setting, in which the number of losses in the given 

year is treated as a random variable, then the 

following results can be developed for the right tail 

approximation as a function of the heavy-tailed 

assumptions of the severity model. 

For the class of heavy tailed sub-exponential 

LDA models we have that a probability distribution 

function   will belong to the sub-exponential class   

if  ~  , i.e. it is max-sum-equivalent with itself and 

that the class   is closed under convolutions. The 

implications of this for LDA models is clear when one 

observes that sub-exponential LDA models are 

compound process random sums comprised of an 

infinite mixture of convolved distributions,  

 

               ∑   
             (42) 

 

for a suitable series     , (e.g. convergent 

sequence satisfying Kolmogorov three series 

theorem). As an example, consider the case in which 

   is defined by an LDA model constructed as a 

compound Poisson distribution, where each term will 

be given by         

  
. Then using the property of 

max-sum equivalence one can show the practically 

relevant asymptotic equivalence between the severity 

distribution   and the annual loss distribution   in 

which selecting     results in     and  

 

   
   

    

    
    

 

This asymptotic equivalence relationship 

between the severity distribution   and the annual loss 

distribution  , which is present for sub-exponential 

LDA models, greatly benefits the formulation of 

asymptotic approximations of tail functionals such as 

quantiles and tail expectations in such LDA models. It 

should also be noted that there also exists a special 

sub-family of such sub-exponential models which 

have the additional feature of being infinitely divisible 

in their severity models. The consequence of this 

additional feature is substantial as it often means that 

closed form representations of the distribution and 

density for the annual loss distributions can be 

obtained, see discussions in [25] and [16]. 

In general based on these properties we can 

obtain asymptotic approximations to the annual loss 

distribution tails which typically fall under one of the 

following classifications:   

 “First-Order” and “Second-Order” Single Loss 

Approximations: recently discussed in [35], [27], [61] 

and references therein.  

 “Higher-Order” Single Loss Approximations: 

see discussions in [51] and recent summaries in [26] 

and references therein.  

 Extreme Value Theory (EVT) Single Loss 

Approximations (Penultimate Approximations): the 

EVT based asymptotic estimators for linear 

normalized and power normalized extreme value 

domains of attraction were recently discussed in [61].  

 Doubly Infinitely Divisible Tail Asymptotics 

given  -stable severity models discussed in [16] and 

[25]. 
 
2.3 First Order Single Risk Loss Process 
Asymptotics for Heavy-Tailed LDA 
Models 

 

Consider the compound process distribution and right 

tail distribution functions, given for annual loss 

   ∑   
     , by  

 

   
    ∑  

 

   

        

   
    ∑  

 

   

         

 

 

where it is assumed that the frequency 

probability mass function satisfies ∑   
        . 

Then the following first order single risk loss 

processes tail asymptotic results apply when one 

considers a severity model with a regularly varying 

right tail. 

Theorem 2.31 (First Order Single Risk 

Asymptotic Tail Approximation)  The following 

results for compound process tail behaviour hold:   

1) Assuming the distribution of    losses is in the 

subexponential severity family and an independent 

integer-valued random variable for the number of 

losses,   satisfies              for an    . 

Then the following asymptotic equivalence holds  
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              ~              (43) 

 

2) Assuming the distribution of    is regulary 

varying with postive index     and the mean 

number of losses is finite        and      

    (        ). Then the following asymptotic 

equivalence holds  

 

          ~              (44) 

 

3) If one assumes the counting random varible   

is regularly varying with index    . If     then 

assume that       . Let the i.i.d. loss random 

variables      with finite mean         and tail 

probablity with asymptotic condition          

 (       ), then assymptotically one has the 

equivalence for the compound processes  

 

        ~       
          (45) 

 

4) Assume that        ~          for 

some     and    is regularly varying with an index 

    and with finite mean        . Then one has 

the asymptotic equivalence  

 

        ~                      
    (46) 

 

The above results make intuitive sense, since in 

for example the heavy-tailed subexponential severity 

model case, the tail of the distribution of the sum and 

the tail of the maximum are asymptotically of the 

same order. Hence the sum of losses is governed by 

large individual losses, and therefore the distributional 

tail of the sum is mainly determined by the tail of the 

maximum loss. In addition in the case of the general 

sub-exponential models, we note that the results 

presented for the first order single loss tail 

approximation required that         for some 

   . This means that   must have finite moments of 

all orders. This clearly has implications on the 

properties of the severity distribution since we 

observed the result that  

 

                 
   

   
   

    
       (47) 

 

To understand these implications we shall 

present a basic understanding how this first order 

asymptotic is derived. 

For these first order asymptotic behaviours of the 

right tail    
    one can consider obtaining an upper 

bound for the asymptotic ratio of the tail of the 

compound distribution and the severity distribution 

tail for each number of losses    . This is given in 

Lemma 2.32 for the standard geometric Kesten bound 

and then in the more general bound in Theorem 2.33 

derived in [62, Theorem 7]. 

Lemma 2.32 (Kesten's Bound)  If the severity 

distribution   is in the class of sub-exponential 

distributions then for each     there exists a 

constant          such that for all     the 

following bound holds  

 

       
      

    
              (48) 

 

A generalized version of such an upper bound for 

the tail ratios for each number of losses   of 
      

    
 is 

given in Theorem 2.33. 

Theorem 2.33  Consider a severity distribution 

  which is subexponential. Next define the sequence of 

constants         given by  

 

                      
   

      

    
  (49) 

 

Then a general bound on    for each   which is 

only a function of   and     is obtained by using for 

any            

 

   ∑  

   

   

(    ) ∏  

   

     

       ∏ 

   

   

       (50) 

 

with the empty product ∏     
            and 

where the sequence   ,    are defined to satisfy  

 

                    
    

      

    
        (51) 

 

where    can be selected arbitrarily small 

through selection of    large and    is given by  

 

                              
     

     
  (52) 

 

Then using one of these bounds on the tail ratios 

of the n-fold convolution of the severity model and the 

tail of the marginal severity model for each   one can 

extend to the compound process setting using the 

dominated convergence theorem. Given for example 

the standard Kesten bound one now applies the 

dominated convergence theorem given in Lemma 2.34 

to the limit to obtain the result for the First Order 

Single Loss Approximation in (47). 

Lemma 2.34 (Dominated Convergence 

Theorem)  Consider a sequence of integrable 

functions      on probability space         which 

satisfy the limit that  

 

     
   

                                 (53) 

 

In addition suppose that there exists an 

integrable function  

 

                     

 

then if             one has the limit result  
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∫  
 

           ∫  
 

           (54) 

 

Therefore one utilise this bound and the 

dominated convergence theorem to interchange the 

order of the summation and the limit and then utilise 

the fact that for heavy-tailed sub-exponential severity 

models the condition that  

 

                     
   

      

    
   (55) 

 

characterizing this sub-class of distributions 

implies that  

 

                      
   

      

    
   (56) 

 

see [63, Lemma 1.3.4]. Hence one obtains for ths 

compound process ratio,  

 

   
   

   
   

    
    

   
∑  

 

   

  

      

    
 ∑  

 

   

   

       

(57) 

 

which is equivalent to the asymptotic 

equivalence statement that  

 

                     
   ~          (58) 

 

Remark 2.35 In [62] they weaken the condition 

of all moments of   being finite, based on the results 

presented in [64]. This relaxation involves 

considering less restrictive tail assumptions on the 

sub-exponential severity distribution  , in particular it 

is assumed instead that it is a function of O-regular 

variation     . Then two bounds are obtained for 

the ratio 
      

    
 depending on whether the lower 

Matuszewska index      is in the interval         
or        then the corresponding bounds can be 

obtained where  

 

      

    
   | ( )|        

                        

(32) 

 

for some constants   and     or  

 
      

    
                                (60) 

 

for some constant  .  

A summary of results is provided in [62, 

Theorem 2]. 

 

2.4 Refinements and Second Order Single 
Risk Loss Process Asymptotics for Heavy-
Tailed LDA Models 
 

The second order single loss approximation as 

discussed in [65] and derived in [66] takes the form 

given by the Theorem 2.36, also see [67] [Proposition 

A3]. 

Theorem 2.36 (Second Order Single Risk 

Asymptotic Tail Approximation)  The following 

results for compound process tial behaviour hold 

under a refined second order approximation:   

1) Assuming the severity distribution for losses 

   is zero at the origin (   ) and satisfies that both 

the tail distribution   and the density   are 

subexponential. Furthermore assume the the frequency 

distribution  ~      is such that its probability 

generating function given by  

 

            ∑   
              (61) 

 

is analytic at    , then one has for finite mean 

severity models         , that  

 

   
   

              

    
                (62) 

 

If the severity distribution has an infinite mean 

and the density satisfies            for       

then one has  

 

          
   

              

    ∫  
 
       

              (63) 

 

with      and         
         

         
 for 

       .   

2) Assuming the losses    have a subexponential 

severity distribution function   in which       . 

Furthermore, assuming that the severity distribution 

admits admits a continous long-tailed severity density 

     which is dominantly varying with an upper 

Matuszewska index given by        . Futhermore, 

assuming that there is also an independent integer-

valued random variable for the number of losses,   

satisfying              for an    . Then the 

second-order asymptotic approximation of the 

compound process tail probabilities, as    , are 

given by  

 

                      [
  

        
]           (64) 

 

3) Assuming the losses    have a severity 

distribution function   which has regularly varying tail 

with index         such that           and a 

severity density      which is regularly varying, then 

the second order approximation for       is given by  
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(

  
 

         
           

            
 [

  

        
]     ∫  

 

 

            

           [
  

        
]     ∫  

 

 

           
 
    (65) 

 

Remark 2.37 Note many distributions will 

satisfy the conditions in Theorem 2.36 such as Log-

Normal, Weibull, Benktander Type I and Type II and 

numerous others.  

Remark 2.38 These first and second order 

repesentations are remarkable as they each state that 

for the annual loss distribution under an OpRisk LDA 

model for general sub-exponential family severity 

models, when considered at high confidence levels, the 

resulting quantiles of the annual loss distribution 

become only dependent on the tail of the severity 

distribution and not on the body. Therefore when 

making such an asympototic approximation it is 

convenient that one only requies a quantification of 

the mean of the frequency distribution. Consequently, 

over-dispersion as captured by Negative-Binomial 

processes will not affect the high confidence level 

quantiles of the annual loss distribution.  

 

3 The Journey Completes: Going from 
Compound Process Tail Asymptotics to 
Capital Approximations 
 

In this section we will consider asymptotic 

approximations of key risk management quantities 

known as risk measures which are used in the 

allocation of capital and reserving in all financial 

institutions and stipulated as standards under 

regulatory accords in both Basel II/III and Solvency II. 

Examples of such tail functionals include the 

calculation of Value-at-Risk (VaR), Expected 

Shortfall (ES) and Spectral Risk Measures as detailed 

below in both their definitions and the resulting simple 

first and second order asymptotic approximations one 

may consider. 

Proposition 3.1 (First-Order Approximate 

Risk Measures) These asymptotic expansions allow 

one to obtain estimates of common risk measures, see 

[68] and [69], such as:   

1) Value-at-Risk (VaR): for a level        , 

given by the quantile of the annual loss distribution,  

 

     
          

                     

   
 (  

   

    
        )~  (  

   

    
)  

 (66) 

 

where       is the generalized inverse, see [70].  

2) Expected Shortfall (ES): for a level   
     , the expected shortfall (ES) is given by the tail 

expectation of the annual loss distribution according 

to  

 

         
                      

 

   
∫  

 

 
         

 
 

   
  (  

   

    
)~

 

   
        

 (67) 

 

see [71]; and  

3) Spectral Risk Measure (SRM): for a weight 

function           given by  

 

        ∫  
 

 
             

           
 (  

   

    
)~               

 (68) 

 

with          a function           
           for some     and     where  

 

        ∫  
 

 
                   (69) 

 

For the Spectral Risk Measure (SRM), in [72] it 

is shown that if an individual has a Constant Absolute 

Risk Aversion (CARA) utility function with 

coefficient of absolute risk aversion   then the SPR 

should be given as  

 

     
    ∫  

 

 

             

 

where  

 

               (  
   

   
)           

 

with  

 

      
         

     
  

 

Note that if one take                 then 

the Spectral Risk Measure resumes to the Expected 

Shortfall.  

Proposition 3.2 (Second-Order 

Approximation of the VaR) Assume that severity 

distribution   has finite mean, and the hazard rate 

     
    

      
 is of regular variation        for 

   , then as     one has for the inverse of the 

annual loss distribution the result (see [26] and [67]),  

  

          
         (  

   

    
{   ̃     

    ̃   

 (    
    ̃  )}

  
)  

 

where  ̃               and  

 

      

(

 
 

    

      
           

∫  
 

 
          

      
            

 ̃  

(

  
 

             

    
           

           

    
           

 

 

where we define  

 

(70) 
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               (

      

     
  (  

 

 
)

  (  
 

 
)
           

 (71) 

 

Proposition 3.3 (Second-Order 

Approximation of the SRM) For a given tail 

function  ̅         define              
             . Now assume that for some     

          such that  

 

   
    

 

    
(
      

     
     )      

    

 
  

 

Then,  

 

     
   ~ [         (

    

   
)         ]   (  

   

    
)  

 

as    , where  

 

          
 

 
∫  

  

 

              (  
 

 
)    

 

and         as defined in 69, see details 

in [72].  

Corollary 3.4 (Second-Order Approximation 

of the ES) Let                . Then, when 

    we have the following Second-Order 

approximation of      , see [72]:  

 

     ~ [
 

   
 

  

             
 (

    

   
)]   (  

   

    
)  

 

The properties of such asymptotic single loss 

approximation estimates are still an active subject of 

study with regard to aspects such as explicit 

approximation errors, unbiased quantile function 

estimation, asymptotic rates of convergence, 

sensitivity to parameter estimation and model 

misspecification. In the following examples, we 

illustrate the properties of these first and second order 

approximations presented above for two popular 

heavy tailed LDA risk models. 

 

4 Examples 
 

In this section we consider two popular examples of 

LDA models that are regularly considered in OpRisk 

settings. These are the Poisson-Log Normal and the 

Poisson-Inverse-Gaussian LDA models. We detail the 

asymptotic approximations as a function of the 

quantile level   for the VaR in both models and the 

tail function in the Poisson-Inverse-Gaussian, where 

the tail is known in closed form. In particular we 

consider a range of different parameter settings 

affecting the heavy-tailed features of the severity 

model and assess the accuracy of the asymptotic 

approximations, versus an exhaustive Monte Carlo 

simulation approximation of the true solutions. This 

provides interesting information of relevance to 

assessing the rates of convergence of these asymptotic 

results, which are currently unknown in the literature. 

In addition, we study the sensitivity to the parameter 

estimation in the accuracy of the asymptotic risk 

measure approximations. 

Example 4.1 (Single Risk LDA Poisson-Log-

Normal Family)  Consider the heavy tailed severity 

model, selected to model the sequence of i.i.d. losses 

in each year  , denoted              
, and chosen to be 

a Log-Normal distribution   ~        where the 

two parameters in this model correspond to 

parameterizing the shape of the distribution for the 

severity   and the log-scale of the distribution  . The 

survival and quantile functions of the severity are 

given by  

 

         
 

 √    
  

 
        

                  

                ∫  
 

 

 

√    
   ( 

 

   
           )  

     
 

 
 

 

 
     

     

√   
                

                          

 

 

Therefore the closed form SLA for the VaR risk 

measure at level   would be presented in this case 

under first and second order approximations for the 

annual loss   ∑   
      according to Equations (72) 

and (73), respectively  
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where  ̃           ,       
    

      
 and 

 ̃          . 

 

We will now compare this first order and second 

order asymptotic result to the crude Monte Carlo 

approach (for which one can generate uncertainty 

measures such as confidence intervals in the point 

estimator). To complete this example, we illustrate the 

basic Monte Carlo solution for the VaR for a range of 

quantile levels of the annual loss distribution, we 

display these along with the measured confidence 

intervals in the point estimators and we compare these 

to the first order SLA asymptotic result. The quantiles 

                                                   are 

considered where the       and        quantile levels 

do in fact correspond to regulatory standards of 

reporting in Basel II/III. 
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Figure 2. VaR approximation for the Poisson-Log-Normal example 

 

  

 
 

 

Example 4.2 (Single Risk LDA Poisson-

Inverse-Gaussian Family)  Consider the heavy tailed 

severity model, selected to model the sequence of i.i.d. 

losses in each year  , denoted              
, and 

chosen to be an Inverse-Gaussian distribution 

  ~        ̃  ̃  where the two parameters in this 

model correspond to parameterizing the scale of the 

distribution for the severity  ̃ and the scale of the 

distribution  ̃. The survival and quantile functions of 

the severity are given by  
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Therefore the closed form SLA for the VaR risk 

measure at level   would be presented in this case 

under first and second order approximations for the 

annual loss   ∑   
      according to Equations (74) 

and (75), respectively  
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where  ̃           ,       
    

      
 and 

 ̃   ̃ . 

 

Since the Inverse-Gaussian family is closed 

under convolution, ie,  

 

  ~        ̃  ̃     ∑ 

 

   

  ~         ̃    ̃   

 

we can calculate the distribution of the 

compound process analiticaly (see the comparison 

with the approximations on Figure 3). The drawback 
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of this family is that there is no closed form for the 

inverse cdf, which obliges us to resort to a numerical 

procedure for obtaining the quantiles, fortunately this 

is efficient and accurate for this class of models. For 

this model we also present first and second order 

approximations for the VaR and SRM for different 

choices of parameters on Figures 4, 5.   

One can see that even in these relatively simple 

examples, depending on the values of the parameters 

in the LDA risk model, the asymptotic VaR 

approximation may or may not be accurate at quantile 

levels of interest to risk management. Therefore, even 

small amounts of parameter uncertainty in the LDA 

model estimation may manifest in significanlty 

different accuracies in the SLA capital estimates. 

In the Poisson-Log-Normal Example, we can see 

on Figure 4.1 that the volatility of the severities,  , 

play a very important role on the accuracy of the 

approximations. It is also important to note that 

although in all the cases the second order 

approximations does not perform very well for 

quantiles bellow the 95-th percentile above this 

threshold it usually performs better than the first order. 

For the Poisson-Inverse-Gaussian case the 

greatest sensitivity is clearly on the rate   (see, for 

example, the bottom-left plot on Figure 4). In 

difference to the Log-Normal example, the second 

order approximation seems to perform always better 

than the first order, but none of them are sufficiently 

close to any of the “true" (Monte Carlo) VaR. 

These results therefore serve to illustrate the 

importance of understanding and developing further 

studies on the rate of convergence of these asymptotic 

single loss approximations. This will help to guide in 

the understanding of when they can be reliably utilised 

in practice. 

 

 

Figure 3. Tail function approximation for the Poisson-Inverse-Gaussian example 
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Figure 4. VaR approximation for the Poisson-Inverse-Gaussian example 
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Figure 5. SRM approximation for the Poisson-Inverse-Gaussian example 

  

  

  
 

5 Conclusions 
 

This work presented an extensive journey through 

some of the fundamental concepts necessary to the 

understanding of approximation of OpRisk measures 

under the Loss Distributional Approach (LDA). We 

discussed some of the most important classes of 

severities distributions classified by their right tail 

properties (such as regularly varying and long tailed) 

and their interrelations, which we think can help 

practitioners in the choice of the apropriate heavy 

tailed model. Due to the complex nature of these 

models, assymptotic results are often required for the 

calculation of risk measures (VaR and Expected 

Shortfall, for example) and a review of how these so-

called First and Second-Order approximations are 

obtained was provided alogn with a summary of 

several key results. Finally, for two popular LDA 

models First and Second-Order approximations can 

give precise results, but are highly sensitive to the 

parameters. 

 

References 
 

1. J. Danielsson, P. Embrechts, C. Goodhart, C. Keating, 

F. Muennich, O. Renault, H. S. Shin, et al., “An 

academic response to basel ii,” Special Paper-LSE 

Financial Markets Group, 2001. 

2. J.-P. Decamps, J.-C. Rochet, and B. Roger, “The three 

pillars of basel ii: optimizing the mix,” Journal of 

Financial Intermediation, vol. 13, no. 2, pp. 132–155, 

2004. 

3. A. K. Kashyap and J. C. Stein, “Cyclical implications 

of the basel ii capital standards,” Economic 

Perspectives-Federal Reserve Bank Of Chicago, vol. 

28, no. 1, pp. 18–33, 2004. 

4. M. G. Cruz, Modeling, measuring and hedging 

operational risk. John Wiley & Sons New York, 2002. 

5. J. L. King, Operational risk: measurement and 

modelling. John Wiley & Sons Chichester, 2001. 

6. P. Shevchenko, “Modelling operational risk using 

bayesian inference,” 2011. 

7. w. Bank for International Settlements, Basel, 

“Quantitative impact study for operational risk: 

overview of individual loss data and lessons learned.,” 



Journal of Governance and Regulation / Volume 2, Issue 3, 2013 

 

 
77 

Basel Committee on Banking Supervision., vol. 

BCBS, 2002. 

8. w. Bank for International Settlements, Basel, 

“International convergence of capital measurement 

and capital standards.,” Basel Committee on Banking 

Supervision., vol. BCBS, 2004. 

9. w. Bank for International Settlements, Basel, 

“International convergence of capital measurement 

and capital standards: a revised framework.,” Basel 

Committee on Banking Supervision, vol. BCBS, 2006. 

10. B. C. on Banking Supervision, “”group of governors 

and heads of supervision announces higher global 

minimum capital standards”,” Bank For International 

Settlements Press Release, vol. 35/2010, 2010-09-12. 

11. A. Blundell-Wignall and P. Atkinson, “Thinking 

beyond basel iii:  Necessary solutions for capital and 

liquidity,” OECD Journal: Financial Market Trends, 

vol. 2010, no. 1, pp. 5–6, 2010. 

12. P. Gagan, “Operational risk-what lies beneath: 

Operational risk issues underlying the subprime crisis-

while outsourcing its credit risk, countrywide financial 

created huge operational risks through its business 

practices and strategy.,” RMA Journal, vol. 91, no. 1, 

p. 96, 2008. 

13. J. Lu, L. Guo, and X. Liu, “Measuring the operational 

risk of commercial banks using the semi-linear 

credibility model,” Journal of Operational Risk, vol. to 

appear, 2013. 

14. M. Moscadelli, “The modelling of operational risk: 

experience with the analysis of the data collected by 

the basel committee,” Available at SSRN 557214, 

2004. 

15. J. Neslehov´a, P. Embrechts, and V. Chavez-

Demoulin, “Infinite mean models and the lda for 

operational risk,” Journal of Operational Risk, vol. 1, 

no. 1, pp. 3–25, 2006. 

16. G. Peters, P. Shevchenko, M. Young, and W. Yip, 

“Analytic loss distributional approach models for 

operational risk from the-stable doubly stochastic 

compound processes and implications for capital 

allocation,” Insurance Mathematics and Economics, 

vol. 49, no. 3, p. 565, 2011. 

17. G. Peters and S. Sisson, “Bayesian inference, monte 

carlo sampling and operational risk,” Journal of 

Operational Risk, vol. 1, no. 3, pp. 27–50, 2006. 

18. R. Giacometti, S. Rachev, A. Chernobai, M. 

Bertocchi, and G. Consigli, “Heavy-tailed 

distributional model for operational losses,” Journal of 

Operational Risk, vol. 55, p. 90. 

19. K. Dutta and J. Perry, “A tale of tails: An empirical 

analysis of loss distribution models for estimating 

operational risk capital,” 2006. 

20. P. Shevchenko, “Implementing loss distribution 

approach for operational risk,” Applied Stochastic 

Models in Business and Industry, vol. 26, no. 3, pp. 

277–307, 2009. 

21. G. Peters, A. Johansen, and A. Doucet, “Simulation of 

the annual loss distribution in operational risk via 

panjer recursions and volterra integral equations for 

value at risk and expected shortfall estimation.,” The 

Journal of Operational Risk, vol. 2, no. 3, pp. 29–58, 

2007. 

22. G. Peters and S. Sisson, “Bayesian inference, monte 

carlo sampling and operational risk,” Journal of 

Operational Risk, vol. 1, no. 3, pp. 27–50, 2006. 

23. G. Peters, P. Shevchenko, and M. Wuthrich, 

“Dynamic operational risk: modeling dependence and 

combining different sources of information,” arXiv 

preprint arXiv:0904.4074, 2009. 

24. A. Chernobai, C. Menn, S. Trueck, and S. Rachev, “A 

note on the estimation of the frequency and severity 

distribution of operational losses,” Applied Probability 

Trust, December, 2004. 

25. G. Peters, A. Byrnes, and P. Shevchenko, “Impact of 

insurance for operational risk: Is it worthwhile to 

insure or be insured for severe losses?,” Insurance: 

Mathematics and Economics, vol. 48, no. 2, pp. 287–

303, 2011. 

26. H. Albrecher, C. Hipp, and D. Kortschak, “Higher-

order expansions for compound distributions and ruin 

probabilities with subexponential claims,” 

Scandinavian Actuarial Journal, vol. 2010, no. 2, pp. 

105–135, 2010. 

27. M. Degen, “The calculation of minimum regulatory 

capital using single-loss approximations,” Journal of 

Operational Risk, vol. 5, no. 4, pp. 1–15, 2010. 

28. P. Barbe and W. McCormick, “Asymptotic expansions 

for infinite weighted convolutions of heavy tail 

distributions and applications,” 2009. 

29. M. Cruz, G. Peters, and P. Shevchenko, Handbook on 

Operational Risk. Wiley New York, 2013. 

30. P. Del Moral, G. Peters, and C. Verg´e, “An 

introduction to particle integration methods: with 

applications to risk and insurance,” arXiv preprint 

arXiv:1210.3851, 2012. 

31. I. BASEL, “Basel committee on banking supervision,” 

Risk Management Principles for Electronic Banking, 

2001. 

32. W. Feller, “An introduction to probability theory, vol. 

ii,” 1966. 

33. K. Bocker and C. Kluppelberg, “Operational var: a 

closed-form approximation,” Risk-London-Risk 

Magazine Limited-, vol. 18, no. 12, p. 90, 2005. 

34. K. Bocker and J. Sprittulla, “Operational var: 

meaningful means,” Risk Magazine, vol. 12, pp. 96–

98, 2006. 

35. K. Bocker and C. Kluppelberg, “First order 

approximations to operational risk? dependence and 

consequences,” Operational Risk Towards Basel III, 

Best Practices and Issues in Modeling, Management 

and Regulation, pp. 219– 245, 2009. 

36. C. Hess, “Can the single-loss approximation method 

compete with the standard monte carlo simulation 

technique?” Journal of Operational Risk, vol. 6, no. 2, 

2011. 

37. J. Li and Q. Tang, “A note on max-sum equivalence,” 

Statistics & probability letters, vol. 80, no. 23, pp. 

1720–1723, 2010. 

38. S. I. Resnick, Heavy-tail phenomena: probabilistic and 

statistical modeling, vol. 10. Springer, 2006. 

39. C. Kluppelberg, “Subexponential distributions and 

characterizations of related classes,” Probability 

Theory and Related Fields, vol. 82, no. 2, pp. 259–

269, 1989. 

40. E. Pitman, “Subexponential distribution functions,” J. 

Austral. Math. Soc. Ser. A, vol. 29, no. 3, pp. 337–

347, 1980. 

41. N. Bingham, C. Goldie, and J. Teugels, “Regular 

variation,” vol. 27, 1989. 

42. P. Soulier, “Some applications of regular variation in 

probability and statistics,” Escuela Venezolana de 

Matem´aticas, 2009. 



Journal of Governance and Regulation / Volume 2, Issue 3, 2013 

 

 
78 

43. T. Mikosch, “Regular variation, subexponentiality and 

their applications in probability theory,” Eurandom 

Report, vol. 99, p. 013, 1999. 

44. R. Bojanic and J. Karamata, “On slowly varying 

functions and asymptotic relations,” tech. rep., DTIC 

Document, 1963. 

45. R. Bojanic and E. Seneta, “Slowly varying functions 

and asymptotic relations,” Journal of Mathematical 

Analysis and Applications, vol. 34, no. 2, pp. 302–

315, 1971. 

46. J. Geluk, “n-regular variation,” american mathematical 

society, vol. 82, no. 4, 1981. 

47. A. Balkema, J. Geluk, and L. de Haan, “An extension 

of karamata’s tauberian theorem and its connection 

with complementary convex functions,” The Quarterly 

Journal of Mathematics, vol. 30, no. 4, pp. 385–416, 

1979. 

48. H. Jessen and T. Mikosch, Regularly varying 

functions. University of Copenhagen, laboratory of 

Actuarial Mathematics, 2006. 

49. J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, D. 

Waal, and C. Ferro, “Statistics of extremes: Theory 

and applications. 2004.” 

50. V. A. Tarov, “Smoothly varying functions and perfect 

proximate orders,” Mathematical Notes, vol. 76, no. 1, 

pp. 238– 243, 2004. 

51. N. Bingham, C. Goldie, and J. Teugels, “Regular 

variation,” vol. 27, 1989. 

52. A. G. Bardoutsos and D. G. Konstantinides, 

“Characterization of tails through hazard rate and 

convolution closure properties,” Journal of Applied 

Probability, vol. 48, pp. 123–132, 2011. 

53. C. M. Goldie, “Subexponential distributions and 

dominated-variation tails,” Journal of Applied 

Probability, pp. 440– 442, 1978. 

54. J. Geluk and Q. Tang, “Asymptotic tail probabilities of 

sums of dependent subexponential random variables,” 

Journal of Theoretical Probability, vol. 22, no. 4, pp. 

871–882, 2009. 

55. W. Matuszewska, “On a generalization of regularly 

increasing functions,” Studia Math, vol. 24, pp. 271–

279, 1964. 

56. D. B. Cline and G. Samorodnitsky, “Subexponentiality 

of the product of independent random variables,” 

Stochastic Processes and their Applications, vol. 49, 

no. 1, pp. 75–98, 1994. 

57. Y. Wang, D. Cheng, and K. Wang, “The closure of a 

local subexponential distribution class under 

convolution roots, with applications to the compound 

poisson process,” Journal of Applied Probability, vol. 

42, no. 4, pp. 1194–1203, 2005. 

58. S. Asmussen, S. Foss, and D. Korshunov, 

“Asymptotics for sums of random variables with local 

subexponential behaviour,” Journal of Theoretical 

Probability, vol. 16, no. 2, pp. 489–518, 2003. 

59. P. Embrechts and C. M. Goldie, “On convolution 

tails,” Stochastic Processes and their Applications, vol. 

13, no. 3, pp. 263–278, 1982. 

60. P. Embrechts, C. Kluppelberg, and T. Mikosch, 

Modelling extremal events: for insurance and finance, 

vol. 33. Springer, 2011. 

61. M. Degen and P. Embrechts, “Scaling of high-quantile 

estimators,” Journal of Applied Probability, vol. 48, 

no. 4, pp. 968–983, 2011. 

62. D. Daley, E. Omey, and R. Vesilo, “The tail behaviour 

of a random sum of subexponential random variables 

and vectors,” Extremes, vol. 10, no. 1, pp. 21–39, 

2007. 

63. P. Embrechts, C. Klu¨ppelberg, and T. Mikosch, 

“Modelling extreme events,” 1997. 

64. A. Stam, “Regular variation of the tail of a 

subordinated probability distribution,” Advances in 

Applied Probability, pp. 308–327, 1973. 

65. H. Albrecher, C. Hipp, and D. Kortschak, “Higher-

order expansions for compound distributions and ruin 

probabilities with subexponential claims,” 

Scandinavian Actuarial Journal, vol. 2010, no. 2, pp. 

105–135, 2010. 

66. E. Omey and E. Willekens, “Second order behaviour 

of the tail of a subordinated probability distribution,” 

Stochastic processes and their applications, vol. 21, 

no. 2, pp. 339–353, 1986. 

67. M. Degen, “The calculation of minimum regulatory 

capital using single-loss approximations,” Journal of 

Operational Risk, vol. 5, no. 4, pp. 1–15, 2010. 

68. P. Artzner, F. Delbaen, J. Eber, and D. Heath, 

“Coherent measures of risk,” Mathematical finance, 

vol. 9, no. 3, pp. 203–228, 1999. 

69. A. McNeil, R. Frey, and P. Embrechts, Quantitative 

risk management: Concepts, techniques and tools.  

Princeton Univ Pr, 2005. 

70. P. Embrechts and M. Hofert, “A note on generalized 

inverses,” Preprint, ETH Zurich, 2010. 

71. F. Biagini and S. Ulmer, “Asymptotics for operational 

risk quantified with expected shortfall,” ASTIN 

Bulletin-Actuarial Studies in non LifeInsurance, vol. 

39, no. 2, p. 735, 2009. 

72. B. Tong and C. Wu, “Asymptotics for operational risk 

quantified with a spectral risk measure,” Journal of 

Operational Risk, vol. 7, no. 3, p. 91, 2012. 

 


