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Abstract 
 

In this paper, we analyze the properties of the KMV model of credit portfolio loss. This theoretical 
model constitutes the cornerstone of Basel II’s Internal Ratings Based(IRB) approach to regulatory 
capital. Our results show that this model tends to overestimate the probability of portfolio loss when 
the probability of default of a single firm and the firms’ asset correlations are low. On the contrary, 
probabilities of portfolio loss are underestimated when the probability of default of a single firm and 
asset correlations are high. Moreover, the relationship between asset correlation and probability of 
loan portfolio loss is only consistent at very high quantiles of the portfolio loss distribution. These are 
precisely those adopted by the Basel II Capital Accord for the calculations of capital adequacy 
provisions. So, although the counterintuitive properties of the KMV model do not extend to Basel II, 
they do restrict its generality as a model of credit portfolio loss.  
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1 Introduction 
 

The idea that regulatory capital requirements should 

be risk sensitive is at the core of the second Basel 

Capital Accord (Basel II), BIS (2005a). Even the 

Basel Committee‘s current proposals for reform of 

the Capital Accord (Basel III), which were prompted 

by the 2008 Credit Crunch, are firmly built on the 

risk-sensitive framework of Basel II (See BIS, 

2009a,b). At the conceptual level there clearly is 

widespread support for the idea of risk-based capital 

provisions. However, in order to move this support 

from the conceptual to the practical level, it is 

essential that capital provisions accurately reflect 

credit risk. 

The Basel II‘s Internal Ratings Based (IRB) 

framework of capital adequacy was built on a credit 

risk model developed by the KMV Corporation, 

which was acquired by Moody‘s in 2002. The KMV 

model is an extension of Merton (1974) to credit risk 

(Vasicek, 1987), and more importantly, to loan 

portfolio risk (Vasicek, 2002). A significant issue in 

credit risk analysis is how default and asset 

correlations are taken into account. It is generally 

accepted that the overall risk of a portfolio can be 

reduced by diversifying its assets either sectorally or 

geographically. There is growing evidence that the 

same principle applies to credit portfolios. Griffith-

Jones et al. (2002a) and Griffith-Jones et al. (2002b), 

for instance, suggest that the overall risk of a 

geographically diversified portfolio is lower than that 

of a geographically concentrated portfolio. Garc´ıa 

(2002), Garc´ıa et al. (2006), show that the credit risk 

of a portfolio based on a two-factor model is lower 

than that of a single-factor portfolio. Tasche (2005) 

generalised this result to a multi-factor setting. So 

far,the theoretical and empirical research has taken 

two main directions. The first approach consists of 

the empirical estimation of asset correlations and 

default correlations (Dietsch and Petey, 2004; 

D¨ullmann and Scheule, 2003; Erlenmaier and 

Gerbach, 2001; Servigny and Renault, 2002). Other 

papers focus on the theoretical result of the main 

credit risk model showing that lower asset 

correlations imply lower default correlations (Garc´ıa, 

2002; Garc´ıa et al., 2006; Tasche, 2005, amongst 

others). 

In this paper, we analyse the properties of the 

KMV model of credit portfolio loss which constitutes 

the cornerstone of the IRB approach to regulatory 

capital. We find that the KMV model represents the 

probability of portfolio losses very poorly at low p, 

and low p. More specifically, it tends to overestimate 

the probability of portfolio loss when the probability 

of default of a single firm and the firms‘ asset 

correlations are low. On the contrary, probabilities of 
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portfolio loss are underestimated when the probability 

of default of a single firm and asset correlations are 

high. 

The paper is organised as follows. After this 

Introduction, Section 2 the KMV model is presented 

and its properties analysed. In Section 3 special 

emphasis is placed on the relationship between the 

KMV model and Basel II‘s IRB approach to 

regulatory capital provisions. Section 4 concludes. 

 

2 Latent variable models and Basel II’s 
IRB Approach 
 

The theoretical foundations of the IRB approach of 

the 2005 Basel Capital Accord was first developed by 

KMV Corporation2 as an extension of Merton 

(1974)‘s model of corporate debt pricing, and was 

later published in Vasicek (1987, 1991, 2002). This 

model belongs to the class of latent variable models 

and one of its results is a factor representation of the 

determinants of individual default. The main property 

of this factor representation is the independence of 

individual defaults relative to each other, given the 

occurrence of the determinants of individual defaults. 

The KMV model is thus considered as an example of 

conditionally independent credit risk models. 

However, as we will show below, it does not 

adequately capture dependencies between individual 

default probabilities, and that this failure extends to 

Basel II‘s IRB approach. 

 

2.1 KMV model 
 

The main objective of the KMV model is the 

derivation of the probability distribution function of 

the loss of a portfolio of loans. The model first 

derives the probability distribution function of a 

single default. Single loans are then aggregated into a 

portfolio of loans, and assumptions concerning 

default correlations are made at this stage. Finally, 

Vasicek (2002) presents Monte Carlo simulations of 

the limiting distribution function of portfolio loss 

distribution function. 

It is worth emphasizing at this stage that we are 

modeling corporate rather than retail (consumer 

credit) default, and that we take the perspective of the 

borrowing firms rather than that of the lender when 

using the term ‖assets‖. In the literature on financial 

regulation or in the documents published by the Basel 

Committee on Banking Supervision, assets usually 

refer to loans, which are the firms‘ liabilities. 

Throughout this paper, banking loans will always be 

referred to as debts or liabilities. 

Assumptions 

A portfolio consists of M loans of equal amounts, one 

loan per firm. For each firm i = 1, ..., M the following 

assumptions hold 

 

1. Default occurs when the value of a firm‘s assets 

fall below the value of its debt, at maturity of its 

debt Ti. Formally, AiTi < Di, where AiTi 

represents the value of firm i‘s assets at the loan 

maturity time Ti and Di the value of firms i‘s 

liabilities. AiTi is the latent variable of the model. 

2. The value of a firm‘s assets is described by the 

stochastic differential equation dAi = Ai(μidt + 

σidxit) where xit is a standard Brownian Motion. 

Moreover, E[dxi]
18

 = dt, and E[dxi][dxj ] = pdt 

for i ≠ j. μi and σi are constants. They may be 

interpreted as the drift and the volatility of the 

asset value of firm i, respectively. Finally, a 

Brownian motion has a Normal distribution with 

mean 0 and variance dt. 

3. (Portfolio homogeneity) For the sake of 

simplicity, Vasicek (1987, 1991, 2002) assumes 

that all borrowers are identical. This implies that 

(i) all loans have the same maturity, Ti = Tj = T, 

i, j = 1, . . . ,M, (ii) asset correlations are 

identical, pi=pj=p (iii) debt values Di are 

identical, Di=Dj=D. 

 

In the Vasicek setting, the point in time where 

the occurrence of default is considered is the maturity 

of the debt, Ti in Assumption (1). In Assumption (2), 

p represents the two-by-two correlation of borrowing 

firms‘ assets, but not necessarily default correlation. 

Default correlation and asset correlation can differ 

significantly, as shown in Sch¨onbucher (2000), Zhou 

(2001), and mainly, Frey et al. (2001). Finally, it 

should be emphasized that asset correlation is 

exogenous in the KMV model. It is assumed to exist 

but its value is not obtained from the model. As a 

result, it may take any arbitrary value. In a 

consultative paper published by the Basel Committee 

in 1999, the asset correlation was set to 20%. 

Theoretically, p is the usual correlation formula 
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where  is the covariance of  and 

 and the square root of  is its 

standard deviation. The covariance is given by 

 

 
 

where  is the expectation operator. 

 

Given the assumptions above, let  be an 

indicator variable such that  if firm i defaults 

at time T and  if firm i does not default at time 

t = T. Then, the probability of default of a single firm 

is given by 

 
 

is obtained by solving the stochastic differential 

equation in Assumption (2) above, 

 

 
 

where  is the value of the firm‘s assets at time 0, T 

is maturity time and Xit is a variable with Normal 

(0,T), i.e., with mean 0 and variance T. 

 

Using (4), we can write (3) as 

 
where pi is the probability of individual default. 

 

 

 
 

The only random element in the left-hand side of this inequality is Xit. So we can re-write this expression as 

 

 
 

Since Xit is a Normal distribution with mean 0 and variance 1, the expression above becomes 

 

 
 

where  and  is the cumulative normal distribution function.  is the 

‖distance-to-default‖ of firm i (Merton, 1974; Vasicek, 1987, 1991, 2002). 

 

Expression (8) clearly shows that the probability 

of default of a single firm i does not depend in any 

way on the probability of default of a single firm j, 

since the two-by-two correlation of firms‘ assets, p, 

does not appear in it. Asset correlations can be 

endogenized by assuming that the asset value of a 

single firm follows a multidimensional Brownian 

motion. In Assumption (2) above the stochastic 

differential equation describing the asset value 

becomes . Recent 

papers have pursued this direction, for instance, 

Kafetztaki-Boulamatsis and Tasche (2001), and 

Nyfeler (2000). Although this approach is 

conceptually more adequate for modelling joint 

defaults or default dependencies, it suffers from a 

major shortcoming. Estimating the asset correlation 

matrix is practically impossible (see Gottschalk, 

2011, for details). 

 

 

2.2 Probability of loan portfolio loss 
 

From result (8), Vasicek (2002) proceeds to derive 

the probability of the loss of a loan portfolio. Let Li 

denote the gross loss on the i-th loan. The gross loss 

represents the loss before recoveries. Li = 1 if the i-th 

firm defaults and Li = 0 if the i-th firm does not 

default. Let L be the portfolio percentage gross loss, 

defined as the weighted sum of each individual 

portfolio percentage gross loss, 

 
where M is the total number of loans in the 

portfolio. We wish to calculate the probability of 

n defaults out of the M loans 
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for n = 1,...,M. From Assumption 2, each firm‘s asset 

follows a Brownian motion, and the two-by-two 

correlations are identical, i.e., , for any 

firm , ,...,M. This implies that the 

Brownian motion variables Xit are jointly 

equicorrelated standard normal variables. A property 

of this type of probability distribution is the 

representation 

 

 
 

where, Ft and Z1t,...,ZMt are mutually 

independent standard normal distributions. (11) is a 

factor representation, the factor being Ft. Vasicek 

(1991) explicitly points out that expression (11) 

derives necessarily from the assumption of normality 

of asset returns, which in turn is a necessary outcome 

of the hypothesis that asset returns follow a Brownian 

motion. In many subsequent papers in the literature, 

(11) is presented as the starting point of the KMV 

credit risk model, with the assumption of normality 

replaced by the more convenient hypothesis that the 

factor Ft follows a Student‘ t distribution.
19

 Vasicek 

(2002) suggested that Ft can be interpreted as a 

common macroeconomic factor affecting the whole 

portfolio of loans. Each firm‘s sensitivity to this 

factor is given by .  stands for the 

firm‘s specific risk. 

In order to evaluate the probability of n defaults 

in the portfolio, it is necessary to determine the 

number of possible combinations of n individual 

defaults in a portfolio of M loans. Since individual 

defaults are independent given the occurrence of the 

factor Ft,
20

 the number of possible combinations of 

defaults is given by the Binomial factor . 

Moreover, we now assume for the sake of simplicity, 

and following Vasicek (1991, 2002), that the 

portfolio is homogeneous. This implies that 

individual probabilities of default are identical, as are 

the distances-to-default DD and as before the 

maturities of the debts.  

By the law of iterated expectations, the 

probability of having exactly n defaults is the average 

of the conditional probabilities of n defaults, averaged 

over the possible realizations of Ft and weighted by 

the probability density function of Ft evaluated at u, 

 
 

Once the individual defaults can be assumed to 

occur independently, the Vasicek model reduces to a 

Binomial model of default. 

From (8), p(u) is given by 

 

 

                                                           
19

 The probability of extreme events is higher in the Student’s 
t distribution than in the Normal distri- bution. Distributions 
with higher probabilities of extreme events capture more 
adequately the empirical distributions of financial variables. 
20

 See Gottschalk (2011) for proof. 

 

Substituting XT in factor representation gives 

 

 
 

Re-arranging the terms in the left-hand side of 

the inequality, we obtain 

 

 
 

As was seen above, since Zit, i = 1,...,M, is 

Normally distributed 

 

 
 

Note that we have replaced Ft by its value u. 

Substituting (16) in (12) yields the probability of n 

defaults in the portfolio 

 

 
 

A limiting distribution of portfolio loss can be 

obtained by assuming the number of loans in the 

portfolio tends to infinity. If we maintain the 

assumptions of homogeneity,  =  now 

becomes the fraction of defaulted loans in the 

portfolio. By the law of large numbers, the fraction of 

defaults is (almost surely) equal to the individual 

default probability, . 
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The cumulative distribution function of the fraction L portfolio loss is thus 

 

 
 

The notation is used to emphasized that 

this distribution is valid only when the number of 

loans in the portfolio becomes infinitely large. The α-

percentile of (19), denoted , is given by inverting 

. The α -percentile of the loss distribution, 

 is thus 

 

 
 

Finally, the derivative of (19) with respect to x 

gives the density distribution function 

 

 
 

where  is the exponential function. 

 

Vasicek (2002) and Gordy (2003) show that 

(20) is also valid when the weights of single loans in 

the portfolio are allowed to differ, i.e., when 

, where . However, a 

necessary and sufficient condition is that no single 

loan may dominate the portfolio, which implies that 

. This result is particularly important in 

the light of Basel II‘s formulae to calculate regulatory 

capital. 

The properties of the cumulative distribution 

function of portfolio loss (19) are summarized in 

Vasicek (2002), and a couple illustrative plots are 

presented in Sch¨onbucher (2000) and Garc´ıa 

(2002). A more useful reference is Bluhm et al. 

(2003), where the properties of (19) are more 

thoroughly described. When ,  

converges to a one-point distribution concentrated at 

L = p. When  the distribution flattens and 

converges to a zero-one distribution with probabilities 

 and . 

 

 
 
2.3 Is the KMV model adequate for 
modeling the probability of portfolio 
losses? 

 

In Figures 1 and 2 we simulate (19) to illustrate some 

of these properties.
21

 In all figures, the left-hand 

graph shows  for asset correlations 

between 1% and 41%. The right-hand side graph 

plots  for asset correlations between 51% 

                                                           
21

 Results for other values of  and  can be found in 

Gottschalk (2011) 

and 91%. The fixed parameter is the individual 

probability of default p. It is worth remembering at 

this stage that (19) hinges on the assumption that all 

the firms in the portfolio have the same probability of 

default. 

Figure 1 clearly shows that for a probability of 

default equal to 1% always collapses to p, 

when asset correlations are quite low (1% to 41%). 

Figure 1 also shows that at low p and low , the 

probability of any fraction of the portfolio defaulting 

is 100%, irrespective of the level of asset correlation. 

This is quite counterintuitive since one would expect 

the probability of portfolio loss to be low when the 

probability of individual default and the asset 

correlations are low. 
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Figure 1. Probability of portfolio loss - p=1% 

 

 
 

Figure 2. Probability of portfolio loss - p=50% 

 

 
 

 

The KMV model performs a bit better at 

higher levels of asset correlation (40% to 91%). 

Portfolio default probabilities are more spread out, 

and more dependent on the level of asset 

correlation. Nonetheless, it is evident from the two 

figures that the KMV model represents the 

probability of portfolio losses very poorly at low p, 

and low . This fact was pointed out by 

Schonbucher (2000), and Bluhm et al. (2003), 

amongst others. 

In Figure 2 the probability of portfolio loss 

when the probability of default of a single firm is 

now p=50%. The left-hand side figure shows a 

more interesting result. When the asset correlation 

is 1%, , up to 40% of the firms in the 

portfolio do not default, even though the individual 

probabilities of default are quite high. The fraction 

of the portfolio that does not default obviously 

decreases inversely with asset correlation. When 

asset correlation is 41%, all the portfolio defaults. 

3 The KMV model and regulatory capital 
 

The IRB approach assumes heterogeneous 

portfolios of loans. This implies that each borrower 

may have a distinct probability of default pi, each 

loan has a distinct maturity Mi, the weight of each 

loan in the portfolio is different , and that the 

percent loss on each loan can be different, . In the 

Basel Committee‘s publications,  is the referred to 

as the loss given default, and is equal to 1 minus the 

recovery rate. For the sake of simplicity, it assumed 

in the KMV model that the loss is total, so , 

for all loans in the portfolio. 

According to the rules of Basel II, regulatory 

capital is needed only to cover unexpected losses, 

given that banks are supposed to cover for expected 

losses as part of their on-going activities. 

Regulatory capital is thus given by 

, where  
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and  is given by expression (20) in the main text, factored by the loss given default . 

 
 

To take into account the impacts of differing 

maturities on credit risk, the IRB rules require that the 

following expression be multiplied to the regulatory 

capital formula (22) 

 

 
 

where 

. M is the 

maturity of the loan for which regulatory capital is 

being calculated, and pi is the borrower‘s probability 

of default. In the KMV context,  is given by (3)
22

 

It is clear from (22) that regulatory capital in the 

IRB approach is fundamentally the α-percentile of the 

asymptotic cumulative distribution function of the 

portfolio loss in the KMV model, (20). In the IRB 

approach, α is set to 99.99 percent. The inclusion of 

asset correlation in (22) raises the issue of portfolio 

diversification on the IRB approach. A growing 

number of papers throw some light on the 

relationship between the KMV model and Basel II‘s 

IRB approach. Amongst those, Kjersti (2005), 

Hamerle et al. (2003) are the most straightforward 

without compromising technicality. Gordy (2003) is 

an important paper showing that Basel‘s capital 

adequacy rules can be reconciled with a class of 

credit risk models which are portfolio-invariant. 

Gordy (2003) is explicitly mentioned in the Basel 

Committee‘s official documents as one of the 

theoretical cornerstone of their IRB approach, along 

with Vasicek (2002) BIS (see 2005a). 

 

3.1 Default correlation and portfolio 
diversification 

 

Following Markowitz(1952) a portfolio is 

efficient if there is no other portfolio with lower risk 

and an at least equal expected return, and no portfolio 

with a higher expected return and at most equal risk. 

In this context diversification is a means to change 

the risk of the portfolio. The portfolio risk is 

measured as the standard deviation from expected 

returns, and, by definition, is the sum of the variances 

of each component of the portfolio from the expected 

return and the correlations  between components 

. Risk diversification can be achieved if 

                                                           
22

 Note that there is a discrepancy between two Basel 
Committee’s publications regarding the Normal distribution 
used in expression (22). In BIS (2005a, p.7) Ф(.) is the 
Normal distribution function N(.). However, in BIS (2005b, 
p.60 footnote 71) Ф(.) is the cumulative Normal distribution. 
Since BIS (2005a) is the main document of the Basel Capital 
Accord and thus supercedes BIS (2005a), we use its formula 
here.  

, but not when the components of the 

portfolio are perfectly correlated . 

Moreover, increasing the number of components in 

the portfolio decreases its overall variance, regardless 

of the sign of cross-correlations,
23

 since in a large 

portfolio, cross-correlations among assets determine 

the portfolio variance. The variance of each asset then 

contribute little to portfolio risk (see Ingersoll, 1987). 

Extending this setting to credit portfolios is not 

straightforward. In the case of credit, the concept of 

risk is not solely associated from that of variance. 

Risk is an inherent characteristic of a loan, and can be 

proxied by the probability of default. In the Vasicek 

model the probability of default is determined by the 

behaviour of the latent variable, and increasing the 

number of loans may not necessarily lead to lower 

probability of default. 

First, default correlation is positively related to 

asset correlation. Second, asset correlations in the 

Vasicek model can only assume positive values, 

unlike conventional portfolios. As a result, the 

opportunities for credit risk diversification are limited 

to assets presenting cross- correlations converging to 

zero. 

Morever, Figures 1 and 2 suggest that the 

Vasicek model yields a negative relationship between 

asset correlation and the probability of portfolio loss, 

for certain levels of probability. For instance, for 

, Figure 1 shows that the fraction of the 

portfolio that is lost is lower when (dashed 

curve) than when  (solid curve). An 

analogous result can be seen for . The 

dashed curve corresponds to , whilst the 

solid curve is associated to . This 

counterintuitive result is much more pronounced for 

higher values of the individual probability of default, 

as Figure 2 illustrates. For  the fraction of 

portfolio lost is lower when  (dashed line) 

than when  (solid line). This implies that at 

these levels of probability, increasing asset 

correlation actually reduces the overall risk of the 

portfolio. 

 

                                                           
23

 provided the assets are not perfectly correlated. 
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Figure 3. Regulatory Capital 

 

 
 

However, for  and , 

respectively, the more intuitive relationship between 

asset correlation and risk holds. The higher asset 

correlation, the higher default risk. In the context of 

Basel II‘s IRB Approach, these findings have hardly 

any implications. First, the Basel Committee decided 

that banks should make capital provisions for losses 

occurring with a probability of less than 0.01%. 

Second, the formulae adopted by the Basel 

Committee for the asset correlation restrict its value 

to the interval [0.12;0.24], (see BIS, 2005a). 

In the IRB formulae, the correlation between 

individual assets and the macroeconomic factor is 

given by the expression (24) for bank and sovereign 

borrowers, 

 

 
 

The correlation between individual asset and the 

macroeconomic factor for corporate borrowers are 

derived from (24).  for . 

 for , 

and  for .  is the correlation 

coefficient for corporate borrowers and  is given by 

(24). Si are annual sales of firms i. Clearly,  is 

reduced for small firms. (24) assumes a downward 

relationship between the asset/factor correlation and 

default probability. The higher the individual 

probability of default, the lower the asset/factor 

correlation, since in this case, the idiosyncratic 

factors  are assumed to dominate the 

macroeconomic factor. In other words, the higher the 

probability of default the higher the likelihood that 

default will be determined by factors specific to the 

borrower rather than macroeconomic conditions. The 

IRB‘s assumption of a negative relationship between 

asset/factor correlation and default probability stems 

from Lopez (2004). However, several subsequent 

studies have produced results that contradict this 

assumption. Amongst other, Dietsch and Petey 

(2004), D¨ullmann and Scheule (2003), and Hamerle 

et al. (2003). 

Figure 3 plots the regulatory capital given by 

(22), for various levels of individual probability of 

default , a loan maturity of 2.5 years 

(standard value in BIS (2005b)),  and a 

loss given default of 10%. Clearly, the higher the 

probability of default, the higher the necessary 

amount regulatory capital, for asset correlations lower 

than 0.65. 

 

4 Conclusions 
 

In this paper, we present the theoretical model that 

constitutes the cornerstone of Basel II‘s Internal 

Ratings Based (IRB) approach to regulatory capital. 

This model was developed by KMV Corporation, and 

later published in Vasicek (1987, 1991, 2002). We 

then analyse the properties of the KMV model of 

credit portfolio loss, for distinct value of single firm 

default probability and asset correlations. Our results 

show that this model tends to overestimate the 

probability of portfolio loss when the probability of 

default of a single firm and the firms‘ asset 

correlations are low. On the contrary, probabilities of 

portfolio loss are underestimated when the probability 

of default of a single firm and asset correlations are 

high. Moreover, the relationship between asset 

correlation and probability of loan portfolio loss is 

only consistent at very high quantiles of the portfolio 

loss distribution. These are precisely those adopted by 
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the Basel II Capital Accord for the calculations of 

capital adequacy provisions. So, although the 

counterintuitive properties of the KMV model do not 

extend to Basel II, they do restrict its generality as a 

model of credit portfolio loss. 
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