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This paper is concerned with identifying Granger causality in the volatilities of returns between the 
Australian equity and debt markets. Using a bivariate stochastic volatility model previously described 
by Yu and Renate (2006), we estimate and compare four causal models between equity market 
volatility, and the short term and long term debt market volatilities. The causal models are compared 
with two non-causal, bivariate stochastic volatility models. Models comparisons are performed using 
the Deviance Information Criteria (DIC). Modelling results suggest that bond market volatility 
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Keywords: Granger Causality, Financial Markets, Stochastic Volatility, Bayesian Analysis 
 
*Department of Accounting and Finance, Monash University, Clayton, Victoria 3800, Australia 
Tel: +61 3 9905 4938 
Fax: +61 3 9905 5475 
Email: Andrew.Sanford@Buseco.monash.edu.au  
 

The author would like to gratefully acknowledge the financial support provided for this research 
through a 2008 Accounting and Finance Departmental Grant. 
 
 
 
 
 

Introduction 
 

Why is it important to understand the causal 

relationships between markets? How one market 

responds to changes in another is important 

information for investors and risk managers. Although 

these concerns can usually be satisfied with measures 

of correlation, knowing how our society and its social 

constructs relate causally can be valuable from purely 

a scientific or intellectual perspective, and more 

practically from a policy perspective. A better 

empirical understanding of the direction of market 

influence, supplies both support or otherwise, to the 

theories of how asset prices are achieved or 

influenced across different markets. Do changes in 

equity market prices or volatility have a dominant 

impact on money market prices or volatility, or does 

the influence flow in the opposite direction? Do 

changes in the prices or volatilities of long term debt 

instruments influence equity prices or volatility? 

Often, research studies that investigate the interaction 

of financial markets are only interested in those 

linkages as measured by covariance or correlation. 

Although these measures are important, they leave the 

story only partially told. What is lacking often in 

market linkage research is a discussion of directional 

influences. This deficiency is in part due to the 

controversial nature of causality as compared with 

correlation. Causality is more often associated with 

research that involves controlled experimentation, 

than with non-experimental fields such as financial 

economics. A less controversial view of causal 

knowledge, and one to which most subscribe, is that 

causal knowledge at very least involves the 

knowledge of causal direction, or causal antecedent. 

Although events A and B may be shown to be 

correlated, an investigator or theorist may well hold 

the belief that event A causes event B, but event B 

does not cause event A. In this paper we initiate an 

investigation seeking to identify causal relationships 

between volatilities in various Australian asset 

markets, where causation is defined under the 

conceptual framework of Granger causality.  

In the following sections, we will review 

existing linkage research that covers markets analysed 

in this paper. We then review the concept of Granger 

causality, before describing the models used in the 

analysis. Our methodology is then described, 

followed by a discussion of the results and 

conclusions.    

 

Literature Review 
 

There are many studies that investigate linkages 

between various markets. Here we discuss two that 
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cover such linkages in the Australian context, and 

which are closely aligned with the study in this paper. 

Kim, In and Viney (2001) is the most similar to 

the investigation described in this paper.  Unlike our 

own, the authors apply a classical framework using a 

Generalized Method of Moments (GMM) estimation 

approach. Using a data series, which spans from 

January 1988 to December 1999, containing futures 

prices in equities, money and bond market 

instruments, they conclude that Australia‘s futures 

market price return volatilities are highly correlated. 

They find that the equity series is dominated by 

asymmetric negative shocks, whilst the money and 

bond markets are dominated by positive shocks. The 

‗bad news‘ arrivals in the equities, were found to 

increase the volatility in the money and bond markets, 

whilst larger shocks in the bond market decreased 

volatility in the equity and money markets. No 

significant day-of-the-week effects on returns, other 

than in the money market, were found whilst 

monetary policy was found to have a simultaneous 

effect on all market volatilities.  

Fleisher (2003) paper is based on the earlier 

work of Feming, Kirby and Ostdiek (1998), who 

modelled two sources of volatility linkages, one being 

new information common to the equity, money and 

bond markets and which affects them simultaneously, 

and the other, information spill-over effects between 

markets where investor‘s portfolio re-balancing 

impacts different markets. Volatility linkages between 

equity, money and bond markets both within and 

between Australian and US markets, is investigated 

using a rational expectations framework. Statistical 

analysis is performed using GMM estimation. 

Fleisher‘s study concludes that the model fits the data 

extremely well. Correlations between markets based 

on raw return proxies for volatility such as absolute 

and squared lagged returns are found to under 

represent the true high levels of correlations based on 

the estimated model.   

Although the paper by Wang (2009) is an 

investigation of US market linkages rather than 

Australian, he uses implied volatilities to carry out 

measure of correlations between the US equity, bond 

and money markets. More importantly however, is his 

discussion of the problems of spurious regressions 

and their control. Wang (2009) notes that the presence 

of highly persistent implied volatilities can raise 

concerns regarding spurious regression results. 

Spurious regression results can become a concern 

when highly persistent independent variables and 

dependent variables lead to autocorrelation in the 

error terms. This autocorrelation in the error terms can 

result in biased standard errors and spurious 

conclusions regarding model parameters. The 

problem of spurious regressions can help explain 

Granger causality test results that change when further 

independent lagged variables are included in extended 

models. Granger, Hyung and Jeon (2001) 

recommended that the only approach to avoiding 

spurious regression is to incorporate further 

independent or lagged variables. 

 

The Granger Causality Model 
 

An operational definition of causality is provided in 

Granger (1980). Granger‘s particular concept of 

causality has become known in the econometrics 

literature as ‗Granger Causality‘. The first rule of 

Granger causality is that only the past and present can 

give rise to causal antecedents, and their effects must 

be temporally ordered with causal antecedents being 

either lagged or contemporaneous to the observed 

effect events. The second rule is that the conditioning 

information set is minimal.  That is, information does 

not contain observations that are deterministic 

functions of other observations. Finally, causal 

relationships should be invariant, whereby causal 

relationships between events remains constant 

overtime. A general definition given by Granger 

(1980) for Granger causality is

   

 

 . (1) 

 

Where  is a subset of values in the support of .  This description states that the information set , 

Granger causes given that the probability of changes when is excluded from the universal 

information set . The concept of Granger causation is therefore a probabilistic interpretation of causation. In 

this investigation, the information set that is removed from the universal set is the lagged latent log-volatility of 

one asset market from the the latent log-volatility process of a second asset market.  

 

 

The stochastic volatility model applied in this 

research is taken from that described in Yu and Meyer 

(2006). Yu et al (2006) referred to this model as the 

Granger Causality model ( ). Under this model, 

the mean-centred log-return process is modelled as 

follows.  
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 (2) 

 
 

Here is an observation of the mean-centred log-return series at time t. The innovation 

is generated by a standard bivariate normal process that has a covariance matrix , and with 

correlation of , giving  

 . (3) 

Whilst and is equal to  

  (4) 

The log-volatility process is modelled as a mean reverting process, 

  (5) 

 
Where ,  and . The covariance is given by 

. (6) 

And 

.  (7) 

Under this model the univariate marginal and conditional distributions can be described as follows.  

 (8) 

  (9) 

 (10) 

  (11) 

   (12) 

   (13) 

 

In the above description of the Granger 

Causality model ( ), asset market 2 volatility is 

partly Granger caused by volatility in asset market 1 

when the parameter is non-zero. The model that 

hypothesizes Granger causality in volatility from 

asset market 1 to asset market 2 is described 

as  .   

To provide a benchmark comparison for the 

causal models, a non-causal model is also estimated. 

We take the  model and set its 

parameter . We call this model the non-causal 

bivariate stochastic volatility model and designate 

it . 

 

The Methodology 
 

Bayesian analysis, including model estimation and 

comparisons, of each model is carried out using the 

freely available Bayesian software, WinBUGS
15,16

. 

This tool is the windows version of the original 

‗Bayesian Analysis Using Gibbs Sampling‘ tool 

known as BUGS, which implements, Gibbs sample 

and other Markov Chain Monte Carlo (MCMC) 

                                                           
15 WinBUGS is available for free download from 
http://www.mrc-bsu.cam.ac.uk/bugs/ 
16 Other statistical analysis is carried out using R, and the R 
package „coda‟.   

inferential techniques. In our results generation, we 

produce three sets of results for each combination of 

markets. These combinations are the equity and 

money markets, and the equity and bond markets. Of 

each of the three result sets per market combinations, 

one result is from the bivariate stochastic volatility 

model, and the other two from the causal models, 

where the direction of causality runs in one direction 

and is then reversed. Each model is defined in Table 

1, showing the hypothesized direction of Granger 

causality in volatility implicit in the model. 
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Table 1. Bivariate Stochastic Volatility and Granger Causality Model Definitions 

 

Model Volatility in Asset Market 1  Volatility in Asset Market 2  

 
Equity – Bond 

 Equity Bond 

 Bond Equity 

 
Equity – Money 

 Equity Money 

 Money Equity 

 

When using MCMC simulation to estimate 

model parameters, it is necessary to monitor 

convergence of the chain of iterates samples being 

generated. This ensures that the samples drawn are 

drawn from a stationary markov chain. To monitor 

convergence, Geweke‘s Z-score (Geweke, 1992) is 

used.
17

 To overcome any problems associated with 

poor mixing around the mode of support, we use a 

single, long sample chain, for each of the parameter 

estimations. Poor mixing around the mode of support 

may occur in situations where the posterior is multi-

modal, or the MCMC algorithm moves only slowly 

around the mode. In our estimation process, in some 

situations, chain lengths exceed 2 million iterations, 

and in one model estimation, the chain was run up to 

3 million iterations. For each chain, only the 10
th

 

iteration is recorded to reduce demands on computer 

memory storage. The length of each chain is 

determined by reference to Geweke‘s Z-Score, with 

each MCMC chain continued until all parameters 

achieve a Z-score within modulus 2. All Z-Scores are 

calculated based on the recommended default settings 

of 0.1 and 0.5 for the first window and second 

window respectively. In most model estimations, the 

default settings are sufficient. In a few situations, 

which have been identified in the subsequent results, 

first windows settings of 0.2 or 0.3 are required 

however, these were only accepted when the runs are 

already very long, and most other parameters have 

already achieved a Z-Score within modulus 2.     

Identification of Granger Causality proceeds 

based on the foundations of the concept described 

earlier, particularly as in equation (1). In a slight 

modification of this, as we do not determine the 

posterior predictive distributions as a measure of this 

condition, instead measure each models performance 

using the Deviance Information Criteria (DIC). The 

DIC measure, much like the Akaike Information 

Criteria (AIC) or Bayesian (Schwarz) Information 

Criteria (BIC) measures, uses a prescribed measure of 

model ‗fit‘ to the observed data, usually based on 

some deviance criteria, and a complexity measure that 

penalizes an increasingly complex model. In the 

classical sense, model complexity is usually measured 

                                                           
17 Calculation of Geweke‟s Z-Score is performed using the 
function „geweke.diag‟ available under the „coda‟ add-in 
package under R. 

by the number of free parameters available within the 

model, as models with increasing numbers of free 

parameters achieve a better fit. The DIC measure is 

particularly suited for hierarchical models, where the 

number of parameters can exceed the number of 

observations. This is the situation with the models 

estimated in this study. Because we have a latent log-

volatility  present, estimation of the latent log-

volatility is also required. Due to the inclusion of 

these latent factors in the estimation results, we have 

more free ‗parameters‘ than observations. 

In testing for Granger Causality, we compare 

each models adequacy relative to the reversed causal 

model and non-causal model counterpart. Models that 

achieve a lower DIC score have a better, complexity 

adjusted, fit to the observed data than those with a 

comparatively higher DIC score. DIC measures can 

be either negative or positive. Although the DIC 

measure is available under the WinBUGS tool, its 

calculation is straightforward, and any MCMC output 

can have a DIC calculated. A comprehensive 

discussion of DIC and its use in comparing stochastic 

volatility models can be found in Berg, Meyer and Yu 

(2004).  

As part of a Bayesian analysis, it is necessary to 

define prior probability distributions over the 

parameters of the models. The priors represent the 

prior beliefs of the investigator, before new data is 

observed. These priors are detailed in the next section.  

 

Priors 
 

The proper priors are specified over the model 

parameters. The intention is to provide dispersed 

distributions, reflecting uninformative prior beliefs. 

The low informativeness of the priors allows the 

information contained within the observed return data 

to dominate the estimation of parameter values. 

Specific distributions were selected based on the 

theoretical range of the parameters to be estimated. 

These are,  
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Where, 

 

 
 

 
 

 
 

 
 

We see from the prior distributions that the 

parameter  is centred on zero, reflecting a prior 

belief that log-volatility in the second asset market of 

the  model, is not caused by a one period lagged 

volatility in the first asset market. Likewise, the 

dispersion around zero is large, reflecting uncertainty 

regarding this proposition.  

Although deviating from the nomenclature of the 

models described in the previous sections, we specify 

priors against the inverse of and , which are 

the precision parameters . Precision 

parameters, as opposed to variance parameters, are 

more readily assumed in the WinBUGS software. 

Although prior specifications are a necessary 

component of a Bayesian analysis, when defining 

priors there is always a risk that some informativeness 

will be included. Given the length of the data series 

involved however, it is expected that most of the prior 

information will be overwhelmed by information 

contained within the observed data. This of course can 

be readily confirmed by altering the priors and re-

estimating the models to check for robustness. 

 

 

 

 

 

The Data 
 

We use price returns on the Australian All Ordinaries 

and S&P200 Index Futures contracts, 90 day Bank 

Bill contracts and 10 Year Government Bond Futures 

contracts as proxies for the returns in the equity, 

money and bond markets respectively. Data is taken 

from Datastream International sources, and comprises 

daily closing prices starting from March 2001 to 

January 2008. This covers 1,782 observations for each 

of the three series.  

In a similar manner to Fleischer (2003), closing 

prices are adjusted using the Sydney Futures 

Exchange guide to pricing conventions. Prices for 90 

day Bank Bill futures contracts are calculated using, 

 

 
 

Where  = 100 – Futures Price Quote (at 

time t). 

 

The price of a single Australian Commonwealth 

Government 10 year Bond Futures contract is given 

by 

 

 
 

Here also, the annual yield is calculated by 

deducting the quoted Futures price from 100. The 

coupon rate on the theoretical 10-year Government 

Bonds is 6% p.a. 

The S&P SPI Futures only began trading on 2
nd

 

May 2000, so to construct the longer series we 

combine the previous All Ordinaries SPI Futures 

contracts with the available S&P/ASX200 SPI 

Futures. 

The return series is calculated as the mean 

centred natural log of price differentials at time  for 

each market . 
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Although the intra-day price movements provide 

an opportunity to compare causal relationships 

between asset markets at a finer level of detail, the 

daily prices are considered to provide sufficient 

frequency so as to avoid the risk of missing causal 

events that can occur when longer inter-event 

durations are used.  

Summaries of the return data and proxies for 

volatility are provided in Table 2 and Table 3. The 

correlations in Table 3 suggest that the bond market 

returns and volatility proxies are more correlated with 

equity market returns than the money market returns.  

 

 

Table 2. Descriptive statistics for the daily holding period log-return ( tr ) equity, money and bond market Series 

 

   

Asset Market Mean Std dev. Skewness Kurtosis 

 (%) (%)   

     

Equity 0.03369 0.79881 -0.2183 3.258 

Money -0.00038 0.01042 -2.459 52.105 

Bond -0.00448 0.44375 -0.2100 1.770 

     

 

Table 3. Correlations with the Equity Market 

 
     

     

Money 
-0.07079 0.05968 0.04029 

-0.05996 
Bond 

-0.16938 0.13207 0.09099 
-0.16073 

 
    

 

Similar to Kim, In and Viney (2001), our study 

sample also presents return asymmetries for the 

equity, money and bond returns. Over the period of 

the data series, innovations in observed equity returns 

showed a marginal predominance of down ticks that 

averaged a daily return of -0.85%, whilst daily up tick 

returns averaged 0.98%. Money market returns were 

marginally dominated by upward ticks in returns, with 

positive daily returns averaging 0.009% and down 

returns of -0.01%. The bond market also had a 

marginal dominance of positive returns over the series 

period, with positive daily returns averaging 0.47% 

and negative daily returns averaging -0.5%. Skewness 

and Kurtosis for both series for the equity and bond 

series appear quite conservative, however returns on 

the money market has fat tails as indicated by its high 

kurtosis, and it is negative, or left skewed, having 

relatively fewer negative returns than positive returns. 

 

Results and Discussion 
 

Modelling results are presented in Table 4 

through to Table 9. Parameter estimates are presented 

for each model. Each table contains the parameter 

estimates drawn from the posterior distribution of the 

parameter, conditional on the observed return data. 

The details in each table are the summary statistics of 

the generated sample from the parameter posterior. 

Included in the summary statistics is the central 

location of the parameter‘s posterior, represented by 

its mean. The standard deviation of the sample is also 

provided, describing the dispersion associated with 

the posterior distribution. The standard error of the 

mean is provided as the naive standard error. The 

samples taken are drawn using a Markov Chain 

Monte Carlo simulation, where a Metropolis-Hastings 

algorithm is used to draw samples from the posterior 

distribution. Under this approach, the sample iterates 

drawn are correlated, requiring an adjustment to the 

naive standard error calculation, which results in the 

time-series adjusted standard error. Quantile values 

are also shown for each parameter estimate. In 

accordance with our Bayesian analysis approach, the 

5% Credible Interval for each of the parameters is 

calculated. The 5% Credible Interval identifies the 

lower and upper bound values of the parameter. These 

bounds contain the range for the parameter value 

where 95% of the posterior probability density is 

located. This is sometimes referred to in the Bayesian 

literature as the 95% Highest Probability Density 

region. 

In order for volatility in asset market 1 to 

Granger cause volatility in asset market 2, two 

conditions must be met. Firstly, the parameter 

which relates the log-volatility of asset market 1 to 

asset market 2 in equation (11) must be significantly 
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different from zero. To be significantly different from 

zero, a parameter must not have zero within its 5% 

Credible Interval region. Secondly, its DIC score must 

be lower than that of the non-causal model‘s DIC 

score, indicating that a better complexity adjusted fit 

is obtained by the causal model over the non-causal 

model.   

Reviewing results for the non-causal model 

 in Table 4 shows that all parameters are 

significantly different to zero, other than . We can 

see that there is a high persistence in log-volatilities 

for both the equity and bond markets, with values of 

and being 0.9199 and 0.9958 respectively. 

Correlation in the bivariate innovations on the return 

equation (2), represented by , is small at -0.0322. 

Finally, variance in the log-volatility process of 

equities appears to be significantly larger than for the 

log-volatility of the bond market, with  being 

3.339 compared to and 0.0053 for .  

All parameters for the first causal model 

 in Table 5, are significantly different than 

zero except for  and  Importantly the 

parameter , which includes the effect of the equity 

market‘s log-volatility in the bond market‘s log-

volatility is significant with a value of 0.0315. The 

inclusion of has resulted in a reduction in the 

persistence parameter, , of the bond markets log-

volatility which has declined from 0.9958, for the 

non-causal model, to 0.1693 for the causal model. 

Interestingly, the comparatively high log-volatility 

volatility  found in the non-causal model has 

reduced with the inclusion of equity market log-

volatility into the log-volatility process for the bond 

market for . Granger causality can be said to 

be present when on the inclusion of a lagged or 

contemporaneous variable, model prediction 

improves. When we compare the DIC of   

with the non-causal , we find that the non-

causal model has a lower DIC, indicating a better fit. 

This suggests that volatility in the equity market does 

not Granger cause bond market volatility, despite the 

presence of a significant as model fit 

performance decreases.   

 

Table 4. Summary of posterior distributions for the non-causal bivariate stochastic volatility model for Equity 

(1) and Bond (2) markets 

 

      Quantiles Geweke’s  

 Mean CI (95%) Std.dev Naive 

SE 
T-S SE 2.5% 25% 50% 75% 97.5%  Z Score 

 -0.0001 (-0.3872, 0.3900) 0.1986 0.0006 0.0076 -

0.3897 

-

0.1347 
0.0002 0.1340 0.3880  -0.5460 

 -0.4136 (-0.7882, -

0.0342) 
0.1918 0.0006 0.0064 -

0.8002 

-

0.5401 

-

0.4109 

-

0.2834 

-

0.0440 
-1.0150 

 0.9199 (0.8646, 0.9667) 0.0274 0.0001 0.0031 0.8545 0.9046 0.9244 0.9397 0.9613 1.9020 

 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

 0.9958 (0.9906,0.9996) 0.0026 0.0000 0.0001 0.9892 0.9945 0.9962 0.9976 0.9993 -1.7440 

 -0.0322 (-0.0561,-0.0092) 0.0126 0.0000 0.0015 -

0.0590 

-

0.0406 

-

0.0311 

-

0.0226 

-

0.0110 
0.7455 

 3.339 (1.929,4.864) 0.7718 0.0022 0.0713 2.072 2.779 3.261 3.809 5.108  -0.9710 

 0.0053 (0.0028,0.0084) 0.0015 0.0000 0.00011 0.0031 0.0042 0.0051 0.0062 0.0090 1.1120 

            

DIC 5886.5           

Burn In 60,000           

#Iterations 180,000           

 

Table 5. Summary of posterior distributions for the Granger Causality model of volatility in equity 

market volatility in bond market 

 
      Quantiles Geweke’s 

 Mean CI (95%) Std.dev Naive SE T-S SE 2.5% Z Score 50% 75% 97.5% Z Score 

 0.0297  (-0.3601, 0.4236) 0.1997 0.0005 0.0012 -0.3619 -0.1049 0.0299 0.1645 0.4220 -1.099 

 -1.0889 (-1.214, -0.9613) 0.0644 0.0002 0.0065 -1.2170 -1.1320 -1.0890 -1.0450 -0.9634 1.237 

 0.9936 (0.9856, 0.9994) 0.0042 0.0000 0.0004 0.9830 0.9920 0.9944 0.9964 0.9988 2.009 

 0.0315 (0.0131, 0.0517) 0.0101 0.0000 0.0011 0.0145 0.0243 0.0305 0.0375 0.05400 -0.7931 

 0.1693 (-0.0526, 0.4070) 0.1182 0.0003 0.0038 -0.0432 0.0880 0.1624 0.2430 0.4198 -0.6437 

 -0.05812 (-0.1098, -0.0153) 0.0256 0.0000 0.0020 -0.1155 -0.0740 -0.0547 -0.0389 -0.0186 -0.3698 

 0.9573 (0.3897, 1.6184) 0.3332 0.0008 0.0266 0.4476 0.7215 0.9091 1.1423 1.7331 -1.166 

 0.3561 (0.2357, 0.4755) 0.0610 0.0001 0.0014 0.2366 0.3157 0.3557 0.3962 0.4766 0.2321 

            

DIC 5943.9           

Burn In 20,000           

#Iterations 180,000           
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Table 6. Summary of posterior distributions for the Granger Causality model of volatility in bond 

market volatility in equity market 

 

      Quantiles Geweke’s 

 Mean CI (95%) Std.dev Naive SE T-S SE 2.5% 25% 50% 75% 97.5% Z Score 

 -0.1108 (-0.5059, 0.2760) 0.1981 0.0004 0.0026 -0.4985 -0.2450 -0.1109 0.0230 0.2767 -0.6270 

 -0.0030 (-0.1835, 0.2094) 0.0928 0.0002 0.0066 -0.1754 -0.0670 -0.0068 0.0573 0.1888 -2.0350 

 0.9993 (0.9970, 0.9998) 0.0008 0.0000 0.0000 0.9968 0.9982 0.9988 0.9992 0.9998 1.550† 

 0.0770 (0.0396, 0.1311) 0.0204 0.0000 0.0020 0.0446 0.0620 0.0744 0.0896 0.1231 -1.330 

 0.0717 (-0.1300, 0.2820) 0.1053 0.0002 0.0016 -0.1232 -0.0004 0.0672 0.1392 0.2914 1.494 

 -0.8331 (-0.8523, -0.8133) 0.0100 0.0000 0.0002 -0.8518 -0.8401 -0.8334 -0.8266 -0.8127 -1.120 

 7.3867 (2.1280, 16.040) 3.2365 0.0069 0.3111 2.8390 5.0190 6.8110 9.0930 15.3000 0.7619 

 3.1723 (2.2850, 4.1770) 0.5029 0.0010 0.0058 2.3730 2.8210 3.1120 3.453 4.3320 0.8732 

            

DIC  5854.0           

Burn In 60,000           

#Iterations 220,000           

* Fraction in first window 0.2, fraction in second window 0.5.  

 

Table 7. Summary of posterior distributions for the non-causal bivariate stochastic volatility model for equity 

and money markets 

 

      Quantiles Geweke’s  

 Mean CI (95%) Std.dev Naive SE T-S SE 2.5% 25% 50% 75% 97.5%  Z Score 

 0.0348 (-0.3582,0.4405) 0.1974 0.0005 0.0248 -0.3323 -0.0951 0.0313 0.1469 0.4771 -1.987 

 -1.967 (-2.086, -1.858) 0.0582 0.0001 0.0002 2.081 2.006 1.967 1.928 -1.853 0.1102 

 0.8780 (0.6506,0.9986) 0.1118 0.0003 0.0107 0.5903 0.8234 0.9104 0.9656 0.9933 -1.560 

 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

 0.1982 (0.1252,0.2729) 0.0377 0.0001 0.0001 0.1243 0.1729 0.1982 0.2235 0.2721 -0.2181 

 0.0027  (-0.0410, 0.0458) 0.0219 0.0001 0.0003 -0.0414 -0.0113 0.0026 0.0170 0.0455 0.9780 

 0.0182 (0.0020, 0.0538) 0.0189 0.0001 0.0019 0.0039 0.0078 0.0120 0.0207 0.0731 -0.6957 

 2.897 (2.507, 3.276) 0.1959 0.0005 0.0007 2.523 2.762 2.893 3.026 3.293 0.9102 

            

DIC 3574.1           

Burn In 20,000           

#Iterations 180,000           

 

Table 8. Summary of posterior distributions for the Granger Causality model of volatility in equity 

market volatility in money market 

 
      Quantiles Geweke’s 

 Mean CI (95%) Std.dev Naive SE T-S SE 2.5% 25% 50% 75% 97.5%  Z Score 

 0.0298 (-0.3560, 0.5404) 0.1927 0.0004 0.0117 -0.3445 -0.1005 0.0288 0.1589 0.4104 0.2436 

 -0.4165 (-0.8719, -0.0514) 0.1865 0.0004 0.0138 -0.7842 -0.5416 -0.4158 -0.2913 -0.0522 -1.2730 

 0.9980 (0.9956,    1.0000) 0.0012 0.0000 0.0000 0.9952 0.9974 0.9982 0.9988 0.9998 -0.0351 

 0.6822 (0.4247,  1.1650) 0.1485 0.0003 0.0179 0.4302 0.5701 0.6703 0.7870 0.9876 -0.2107 

 0.0722 (-0.0034, 0.1494) 0.0389 0.0001 0.0007 -0.0042 0.0458 0.0722 0.0986 0.1480 0.3026 

 0.0009 (-0.0441, 0.0473) 0.0234 0.0001 0.0001 -0.0451 -0.0149 0.0009 0.01667 0.0468 -1.3630 

 0.0195 (0.0036,  0.0367) 0.0111 0.0000 0.0011 0.0075 0.0122 0.0169 0.0236 0.0479 -1.4750 

 2.5671 (2.2040, 2.9280) 0.1848 0.0004 0.0025 2.2170 2.4400 2.5630 2.6900 2.9400 0.1255 

            

DIC  
3544.4           

Burn In 80,000           

#Iterations 240,000           
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Table 9. Summary of posterior distributions for the Granger Causality model of volatility in money 

market volatility in equity market 

 

      Quantiles Geweke’s  

 Mean CI (95%) Std.dev Naive SE T-S SE 2.5% 25% 50% 75% 97.5%  Z Score 

 -0.0060 (-0.3961, 0.3865) 0.2001 0.0004 0.0118 -0.3917 -0.1422 -0.0083 0.1286 0.3911 0.2526† 

 -0.3971 (-0.7691, -0.0141) 0.1931 0.0004 0.0157 -0.7692 -0.5293 -0.3988 -0.2670 -0.0141 1.2490 

 0.9980 (0.9960, 0.9998) 0.0011 0.0000 0.0000 0.9954 0.9974 0.9982 0.9990 0.9998 -0.1859 

 -0.6320 (-0.9194, -0.4156) 0.1316 0.0002 0.0168 -0.9674 -0.6949 -0.6073 -0.5404 -0.4418 1.0060 

 0.0726 (-0.0052, 0.1478) 0.0391 0.0000 0.0008 -0.0042 0.0462 0.0726 0.0990 0.1488 -1.8790 

 0.0000 (-0.0012, 0.0012) 0.0006 0.0000 0.0000 -0.0012 -0.0003 0.0000 0.0003 0.0012 -1.1890 

 0.0209 (0.0055, 0.0406) 0.0101 0.0000 0.0009 0.0074 0.0137 0.0191 0.0256 0.0459 1.8000 

 2.5640 (2.2090, 2.9310) 0.1844 0.0003 0.0024 2.2140 2.4370 2.5600 2.6850 2.9370 -1.6030 

            

DIC 3547.8           

Burn In 20,000           

Iterations 300,000           

† Fraction in first window 0.2, fraction in second window 0.5.  

 

For the results of the reversed causal 

model , as shown in Table 6, we find that 

 and  are not significantly different from 

zero. The parameter is significant at 0.0770, but 

its small value indicates that very little of the  

log-volatility in the bond market is translated to the 

log-volatility in the equity market. Interestingly, 

we see now that given is small but significant, 

and is insignificant, greater persistence of  

log-volatility for the bond market is recorded with 

estimated at 0.9993. With the reduction in the 

effects of and , the volatility of the log-

volatility processes,  and grows in magnitude. 

The correlation coefficient on the return series 

innovations becoming significantly more negatively 

correlated when compared with models  and 

The DIC score for model , which 

hypothesizes Granger causality in volatility from the 

bond to equity market, is 5854. This suggests, prima 

facie, that the inclusion of the lagged bond volatility 

improves the model fit of observed returns in the 

equity market, therefore indicating that bond volatility 

Granger causes equity volatility.   

Results for the equity and money market models 

are shown in Table 7 through to Table 9. Beginning 

with the non-causal model  in Table 7, we 

find that and are not significantly different from 

zero. The model‘s results also show strong, but less 

persistence in the log-volatility for the equity 

market, but a comparatively smaller persistence 

for the log-volatility for the money market 

returns. Volatilities of the log-volatility process for 

equity and money market,  and also vary 

being comparatively small for the equity market and 

much larger for the money market.  

Results for the first of the equity and money 

market causal models, is shown in Table 8. These 

estimates show that parameters and are not 

significantly different to zero at a 5% credibility 

interval. The volatility persistence is strong in the 

equity market with  at 0.9980. The influence of 

equity volatility on money market volatility is quite 

strong, with registering a 0.6822 estimate. Once 

again, as shown in the non-causal bivariate stochastic 

volatility model, volatility in the equity market log-

volatility is small at 0.0195, but much larger in the 

money market log-volatility process at 2.5671.  

Results for the final causal model between 

money and equity markets are reported in Table 9. 

Interestingly, the results are very similar to those 

reported in Table 8. As with the causal , 

 and  in the  are not significantly 

different than zero. The interesting result however is 

in the value of which is of a similar magnitude as 

that in Table 8, but of reversed sign, suggesting a 

damping effect on the log-volatility of the equity 

market returns. This suggests that higher lagged log-

volatilities in the money markets have a damping 

effect on later log-volatilities in the equity markets. 

This contrasts with the  model which 

suggests that lagged log-volatilities in the equity 

market influences larger log-volatilities in the money 

markets. Interpretation of such a result suggests that 

although higher volatility in the equity markets may 

cause higher volatility in the money markets, the 

higher resulting volatility in the money market may 

then proceed to dampen further volatility in the equity 

markets. Alternatively, proceeding from an initial 

exogenous volatility increase in the money market, 

higher volatility may well dampen volatility in the 

equity market, which in turn dampens volatility in the 

money market.   
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When comparing the DIC results for each of the 

equity and money market models, we find that both 

the  and  have similar DIC scores, 

3544 and 3547 respectively, which are lower than that 

of the non-causal  model with 3574. Such 

results suggest that although Granger causality exists 

between the equity and money market, based on the 

lower DIC scores for the causal models, feedback 

between them overwhelms any dominate causal 

direction.  

 

Conclusion 
 

In the paper we have described a Bayesian analysis of 

Granger causality between volatilities in the 

Australian equity and short term and long term debt 

markets. The Bayesian approach has been found to be 

comparatively straightforward to implement using 

freely available Bayesian analysis software tools. 

Setting up of the models, and carrying out analysis on 

the MCMC samples has required only minimal 

programming, with many useful analytical functions 

being already available through the R statistical 

software and packages. A drawback however of using 

standard MCMC algorithms as contained within the 

tools is that simulation and convergence of the 

estimates can be somewhat prolonged if one is not 

using fast computing resources.  

Analysis and interpretation of each model 

suggests that bond market volatilities Granger cause 

equity market volatilities. In the equity and money 

markets however, there is prima facie evidence that 

Granger causality may be at work between volatilities 

in each market, but no dominate direction can be 

found suggesting the existence of volatility feedback 

between each. Interestingly, estimated parameter 

results for  in models  and  

suggest a damping effect between volatilities.  

Although our results provide interesting 

findings, care must be taken in their interpretation. 

This is due to the potential problems of spurious 

regression. Granger, Hyung and Jeon (2001) suggest 

an approach to reducing the risk of spurious 

regressions, by the inclusion of further lags of the 

dependent and independent variables. In this early 

stage of our causal research, we settle for making the 

problem known, and recommending care in 

interpreting results. Future research will look at 

adding further lag variables to the models, and 

comparing the Granger causality implied by these 

extensions.   
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