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Abstract 
 
This study aims to investigate whether the phenomena found by Shnoll et al. when applying histogram 
pattern analysis techniques to stochastic processes from chemistry and physics are also present in 
financial time series, particularly exchange rate and index data. The phenomena are related to fine 
structure of non-smoothed frequency distributions drawn from statistically insufficient samples of 
changes and their patterns in time. Shnoll et al. use the notion of macroscopic fluctuations (MF) to 
explain the behaviour of sequences of histograms. Histogram patterns in time adhere to several laws 
that could not be detected when using time series analysis methods. In this study special emphasis is 
placed on the histogram pattern analysis of high frequency exchange rate data set. Following previous 
studies of the Shnoll phenomena from other fields, different steps of the histogram sequence analysis 
are carried out to determine whether the findings of Shnoll et al. could also be applied to financial 
market data. The findings presented here widen the understanding of time varying volatility and can 
aid in financial risk measurement and management. Outcomes of the study include an investigation of 
time series characteristics, more specifically the formation of discrete states. 
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Introduction and statement of the 
problem 
 
One of the most important magnitudes in the financial 
environment that we need to understand is the 
volatility of price changes. Volatility of price changes 
is unfortunately not directly observable in the 
financial markets. Market volatility reflects different 
events, happening in succession or synchronously. 
Volatility increases with increasing time scale as 
information about the future is either inaccurate or 
unknown. If we can enhance our understanding of 
volatility, we may be able to accurately forecast price 
changes and successfully manage financial risk and 
therefore maximize shareholder wealth. The 
prediction of price movements is not only important 
for devising a profitable trading strategy, but also for 
creating warning mechanisms to protect against or 
balance abrupt changes that would otherwise lead to 
losses. To learn about the timing of price changes of 
any magnitude could aid in managing trading 
processes aimed at valuing assets more accurately. 

Many different models have been developed in 
recent years in an attempt to understand and model 
volatility. Fat tails and volatility clustering are two 
stylised facts that are often encountered in financial 
time series analyses. Apart from determining or 
estimating the volatility of a magnitude, an attempt is 
also made to find patterns in time series that may 
repeat themselves over the course of time. We often 
calculate the standard deviation based on historic 
price changes. However, this figure is certainly only 
at best a rough estimate of future volatility. 

This study focuses on further extending the 
knowledge of the nature of the mechanisms that drive 
price changes. Volatility represents a measure of the 
way financial asset prices change. If financial markets 
record large declines of asset prices in short periods, 
one refers to a crash. The international financial 
system is highly linked, which often results in 
financial crises spanning more than one economy.  
 
Objective of the study 
 
The main objective of this study is to apply the 
method of histogram pattern analysis to financial data, 
searching for the phenomena found by Shnoll et al. in 
their investigations of stochastic processes from the 
natural sciences. This research describes layer 
histogram formation based on the work of Shnoll et 
al., applied to a financial time series. Two layer 
histogram methods are applied to a South African 
Rand (ZAR) data set of one minute frequency from 2 
months.  

The study includes an empirical analysis of a 
foreign currency exchange rate where the objective is 
to evaluate aspects of its distributional structure 
through compiling non-smoothed layer histograms of 
the currency dataset. 

 
Data used 
 
One minute frequency exchange rate data of the South 
African Rand (ZAR) against the American Dollar 
(USD) have been obtained from Reuters for the time 
period covering 25 August 18:17 until 14:46 on 25 
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October 2006. The data set size comprises 38 006 
values.  
 
Overview of approaches to modelling 
financial time series 
 
Financial markets are influenced to a large extent by 
human reactions of players in the marketplace to news 
that enter the market during trading times. This is 
especially true of the foreign exchange markets since 
they are influenced to a large extent by economic 
activities and trade between countries and generally 
by economic conditions prevalent in a country. 

Many different models have been developed over 
a number of years in an attempt to encapsulate those 
variables that drive price changes. In the financial 
markets, volatility is not the result of a single 
magnitude that changes but rather represents the 
outcome of many different events and processes that 
happen simultaneously. Volatility is an important 
underlying magnitude that affects financial markets 
and is usually measured by the standard deviation. 
However, this is a very simplistic representation in 
one figure from a complex and dynamic system, 
where different players interact on different time 
scales under the influence of information feedback. 

A new research field known as econophysics 
emerged from the vast increase in data availability 
since the 1990s coupled with the similarities of 
financial markets to stochastic processes known in the 
natural sciences. It spans a wide set of approaches to 
modelling and understanding the dynamics of 
financial markets, such as statistical analysis of the 
time evolution of asset prices and microscopic trading 
models. (Paul and Baschnagel, 1999, 131-132) 
Roehner also described stock markets from the 
viewpoint of statistical physics as an "open, out of 
equilibrium system" (2005, xiii), where different sorts 
of particles interact and where rules change over time.  

Some of the more well known models developed 
in an attempt to understand financial time series 
include generalised autoregressive conditional 
heteroskedasticity ((G)ARCH) models. GARCH 
modelling builds on advances in the understanding 
and modelling of volatility in the last decades 
(Bollerslev 1986, Engle: 1982). It considers excess 
kurtosis (i.e., fat tail behaviour) and volatility 
clustering. These are two important characteristics of 
financial time series. It provides relatively accurate 
forecasts of variances and covariances of asset returns 
through its ability to model time-varying conditional 
variances. GARCH models may be applied to diverse 
fields such as risk management, portfolio 
management and asset allocation, option pricing, 
foreign exchange, and the term structure of interest 
rates. 

In general, randomness implies incomplete 
knowledge of the process on which it is based. One 
assumes in constructing a financial model of price 
changes that useful information relevant for the future 
may be obtained from the patterns and frequencies of 

past price changes. Furthermore, one may assume in 
this context that these frequencies reflect some 
intimate mechanism of the markets themselves. In 
such a case one may hope that these frequencies 
would remain stable over the course of time. 
(Bouchaud and Potters, 2003, 1-3)  

The statistical approach to financial markets is 
based on the notion that whatever evolution takes 
place, it will do so sufficiently slowly, so that what 
happened in the past is relevant for predicting the 
future. However, this ‘weak stability’ hypothesis is 
often quite erroneous and particularly unreliable in 
times of financial crises. Hence the statistical 
description of financial fluctuations is imperfect, but 
nevertheless helpful to describe risks. While the 
prediction of future returns on the basis of past returns 
is much less justified, the amplitude of possible price 
changes - and not their sign - is to a certain extent 
predictable. (Bouchaud and Potters, 2003, 1-3) This 
amplitude reflects the intensity of price changes - in 
other words their volatility. Forecasting volatility in 
the financial environment is challenging as volatility 
cannot be observed directly in the market place 
(Mantegna and Stanley, 2000, 57, 76). At best, even a 

posteriori, volatility is only approximately available. 
The volatility process is non-trivial and several 
stylised facts arise from its behaviour (Zumbach et al., 
nd, 1). Over the years, various researchers have 
developed several discrete-time and continuous-time 
volatility models. In particular, the modelling of 
volatility is based on the following stylised facts 
(Fasen et al., 2006, 108): 

• time variation, 
• randomness, 
• heavy tails, 
• volatility clustering on high levels (long 

memory of the volatility). 
The different modelling approaches take one or 

more of these stylised facts into account. Bouchaud 
and Potters (2003, 122) noted that volatility 
fluctuations are a multiscale phenomenon. Therefore, 
the dynamics of volatility cannot be properly 
characterised on a single time scale. As far as 
volatility clustering is concerned, Zumbach et al. (nd, 
1) pointed out that because of the slow decay of 
autocorrelations this clustering occurs on all time 
horizons. Several models have been developed to 
study one specific aspect of the behaviour of stock 
price movements, namely the clustering of volatility. 
Besides volatility clustering, other interesting 
properties of prices have also been described. These 
include jumps and downfalls in prices, heavy tails of 
price distributions, and their long memory. Non-linear 
models evolved from these findings, as they cannot be 
understood in the framework of linear models 
(Schiryaev, 2000, 152). Bouchaud and Potters (2003, 
130) described how price-volatility correlations lead 
to anomalous skewness and volatility correlations 
induce anomalous kurtosis, i.e. fat tails. The failure of 
linear models to capture important characteristics of 
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real time series also led some researchers to consider 
chaotic modelling for financial markets.  

Forecasting financial time series involves an 
element of uncertainty. Merely a fraction of the 
information about future price evolution can be 
known, based on the stochastic nature of financial 
systems. A longer prediction time horizon implies 
more inaccurate results and any prediction thus 
becomes more difficult due to greater uncertainty.  

It is often assumed that the evolution of stock 
prices is driven by a noise sequence. Gaussian white 
noise is usually used as a first approximation. This 
distributional assumption is central to many financial 
applications, such as portfolio risk management and 
option pricing. Assuming a Gaussian distribution has 
many important consequences and comforts. 
Empirical research, however, does not confirm this 
assumption. The Gaussian distribution does not 
incorporate important findings such as heavy tails, 
asymmetry and excess kurtosis. (Stoyanov and 
Racheva-Jotova, 2004, 299-300)  

Stable non-Gaussian distributions have been 
proposed as an alternative. As the name suggests, they 
have a desirable stability property as well as domains 
of attraction. Their use is complicated by their lack of 
closed-from expressions for probability density 
functions and cumulative distribution functions as 
well as their infinite second moment. According to 
Stoyanov and Racheva-Jotova (2004), the use of an 
infinite variance model for bounded financial asset 
returns seems inappropriate. However, since any 
empirical distribution possesses finite variance, 
infinite variance distributions may seem inappropriate 
for any application. Large deviations occurring in 
stock market price changes suggest that “any 
statistical theory based on finite-variance distributions 
is impossible to predict accurately” (Stoyanov and 
Racheva-Jotova, 2004, 300). 

Shnoll referred to two aspects of the nature of 
fluctuations in analysing the similarity of histogram 
shapes, namely the histogram fine structure and the 
periodic recurrence of histogram shapes. Long-term 
investigations of various time series measurements, 
led Shnoll (2006) to believe that the laws that may be 
discovered by examining the fine structure of 
histograms, are not captured by traditional time series 
analysis methods. These phenomena have been found 
in the study of biological, chemical and physical 
stochastic processes. Stochastic processes and their 
properties are also at the core of financial modelling 
today. Shnoll et al. pointed out that accepted 
statistical methods, based on the central limit theorem, 
are not suitable for a histogram fine structure analysis. 
These techniques do not consider the fine structure of 
distributions, and they are insensitive to the particular 
shape of histograms. As Shnoll et al. explained, 
statistical techniques “overlook” (Shnoll et al., 1998, 
1034) the fine structure, since they have been 
developed for different purposes.  

Shnoll et al. (2000) formed histograms from an 
insufficient number of measurements and focused on 

their fine structure. In contrast to analysing smooth 
histograms, which Shnoll et al. (1998, 1026, 1033) 
view as artefacts, their analysis focuses on empirical 
distributions that have only been smoothed a few 
times in succession so as to not destroy the extremes 
present in the distributions. Shnoll posed the question: 
Given a histogram pair that passed a test of similarity 
based on a visual comparison, what is their time 
distance and is there a time period that can be 
expected to occur more often than expected due to 
chance? According to this reasoning some predictive 
power may be gained if a particular histogram were 
known to reoccur periodically.  

Shnoll and Mandelbrot referred to the concept of 
probability. Shnoll et al. (1998, 1035) state that the 
concepts of probability and stochasticity by 
themselves do “not yet predetermine the answer to the 
question concerning the distribution of fluctuations” 
(1998, 1035). According to Shnoll et al. these two 
concepts are closely associated with the concept of 
chaos. In this context they claimed that a distinction 
should be made between those types of chaos that 
differ in their distributions of fluctuations. On the one 
hand, the probability of fluctuation may fall 
monotonically with its magnitude, which they agreed 
is the real (or ideal) chaos. On the other hand they 
suggested that another chaos may be invented in 
which the distribution of fluctuations will be non-
monotonic, corresponding to the histograms they 
present. Similarly, Mandelbrot proclaimed the 
usefulness and even necessity of recognising the 
existence of several distinct states of randomness and 
random and non-random variability. He denoted these 
distinct states of randomness as mild, wild and slow 
variability. (Mandelbrot, 1999, 2-3)  
 
Layer Histograms according to Shnoll 
 
Shnoll et al. originally applied the method to data 
from stochastic processes other than financial. The 
noise sequences that resulted from measurements of 
the original data resemble white noise. Thus, no 
structure or repeatable patterns would be expected. 
Financial data used in this study is inherently different 
to chemical reactions or radioactive decay. It is more 
likely that patterns may be revealed. 

In their research regarding layer histograms and 
histogram patterns in time, Shnoll et al. involved as a 
first step the conversion of the pointwise time series 
to a series of successive histograms. Shnoll et al. then 
analysed the properties of histogram shapes in time, 
where each histogram is compared to each other 
histogram on an individual basis. (Panchelyuga and 
Shnoll, nd, 1) (Shnoll et al., 1998) (Shnoll et al., 2000, 
207) Their goal was to verify the “fairly high 
probability of similar fine structure of distributions 
governing the results of simultaneous measurements 
of any processes in each time interval” (Shnoll et al., 
2000, 205). For the layer histogram, the position in 
time is not the central focus of attention. The fine 
structure of the layer histogram provides information 
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on the shape of the distribution. More likely values 
would be represented by several pronounced peaks in 
the distribution, and less likely ones by troughs. 
Shnoll et al. refer to polyextremity of the distributions 
exhibiting alternating peaks and troughs, and thus 
several (poly) extremes.  

Distributions with one extreme value can result 
from smoothing procedures. Shnoll et al. show in 
their work how after successive smoothing of 
histograms the distributions become bell-shaped. 
However, Shnoll et al. (1998, 1026, 1033) state that 
the smooth distributions may be regarded as artefacts. 

Layer histograms represent one of several 
phenomena found by Shnoll et al. The phenomena 
that are named under the general term 'macroscopic 
fluctuations effect' are the near neighbour effect, 
synchronism, and monthly and annual recurrence of 
similarly shaped histograms. Our focus lies on the 
discrete states that become apparent in layer 
histograms. Other phenomena of the MF effect are not 
dealt with in this study. The focus is on the formation 
of discrete states in a financial data set by 
investigating the fine structure of unsmoothed layered 
histograms. 

 
Discrete States in Unsmoothed 
Distribution: Peak and Trough Formation 
in Layer Histograms 
 
Layer Histogram Construction Details 
Before the layer histograms are calculated, the time 
series should be standardised. Figure 1 shows the data 
in raw format. The outliers are then limited to the 
specified threshold determined as a multiple of the 
series standard deviation. The effect of the 
thresholding may be seen in the higher outermost bins 
where the outliers are grouped. This ensures that bins 
represent the same sub-ranges for all layer 
histograms. Bins represent the frequency of 
occurrence of particular values within a certain 
subrange of the minute currency data. After 
standardisation, the subperiods are formed and layer 
histograms calculated.  

 
Figure 1. ZAR/USD raw time series points with 

missing data on weekends 
 

Layer histograms were drawn from ZAR/USD 
exchange rate data. Table 1 below illustrates that, if 
the constant increment method is used, each 
successive histogram is drawn on the total number of 
data points from the first time series point. Figure 2 
illustrates the daily ZAR recordings and from what 
subsets of the data layer histograms are drawn for 
each period. Figure 3 illustrates the input data for the 
layer histogram construction using the increment 
doubling method. 

The fine structure of a data set may be 
represented by layered histograms. Shnoll found that 
in the construction of layered histograms, peaks and 
troughs emerge as more measurements are added. A 
layer histogram is composed of frequency 
distributions of a stepwise increasing number of 
observations. At each step, a fixed number of 
measurements are added and a histogram of all 
previous values and the new values is calculated. This 
step is repeated until the entire data set is exhausted. 

Since each new subset contains the previous 
subset, each bin height of the new histogram will be 
equal to or larger than the respective bin of the 
previous histogram, thus giving rise to layers of 
histograms when all histograms are graphed on the 
same figure. 

The first method, also used by Shnoll, adds a 
constant number of measurements (constant 
increment method) to the previous subset of values.  

 
Table 1. Illustration of time series data points used for the constant increment method of layer histogram 

construction 
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Figure 2. Constant increment method of layer histogram construction 
 

 
 

Figure 3. Increment doubling method of layer histogram construction 
 

Figure 2 illustrates how the time series are 
divided into successively larger subsets using the first 
2 400 values of the ZAR time series. The number of 
values added to each new subperiod is determined by 
the increment size. Two methods are used for the 
incrementing. 

The second approach (increment doubling 
method) deviates from the Shnoll layer histogram 
construction method. Instead of using constant 
increments at each step, the increment size is doubled. 
Thus, the doubling of time series subsets at each step 
of the layer histogram formation leads to a notable 
decrease in the number of calculated layer histograms 
as compared to the constant increment method.   

Having described the data that enters the 
histogram calculation and two possible incrementing 
approaches we now describe the histogram 
construction parameters given the data. Instead of 
normalising the entire data set before subsets are 
formed, an alternative approach to construct layer 

histograms would be first to normalise the data at 
each step before a layer histogram is calculated. 
However, this would lead bin ranges to vary as more 
measurement points are added because the range 
varies as subsets change.  

Especially for the first layer histograms a 
changing data range changes the bin ranges. Because 
of the influence of a changing range on the 
subdivision into bin ranges, the same data point may 
be counted in different bins for different layer 
histograms. This approach was not followed, since a 
consistent bin range subdivision from the first to the 
last layer histogram was chosen. To illustrate the 
layered histograms and detect whether discrete states 
form, it is necessary for the bins to refer to the same 
interval range at each step. 

The convergence of histogram bins to their final 
assignment makes it necessary to specify bin ranges 
before any layer histogram could be calculated. 
Otherwise the bin assignment will only be converging 
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to the final assignment as determined by the outlier 
threshold once a section that includes the top and 
bottom outlier occurs. Thus the programme 
calculating the layer histograms specifies the bin 
edges to ensure that bin ranges are fixed from layer 
histogram one, instead of a gradual convergence of 
bins to their final values. If an outlier to the top and an 
outlier to the bottom occurred in the first section from 
which a layer histogram is calculated, the bins would 
be fixed at their correct value from the beginning, also 
without the prior bin assignment. 

If this procedure of fixing bin widths from step 
one is not followed in constructing layer histograms 
and the outliers do not occur in the first section, bins 

will shift around for the first few steps. This shifting 
continues until outliers are reached for the first time 
fixing the maximum bin range.   

 
Polyextremes in a subset of data set 

 
The representation of each time series in sequential 
layers is now provided. Figure 4 shows the first five 
layer lines of the ZAR layer histogram using the 
constant increment method. This illustration shows 
that the polyextremes already become apparent for a 
subset of the ZAR data from a few days. Compare the 
subset layer histogram (Figure 4) to the entire layer 
histogram figure (Figure 5). 

 

 
Figure 4. Constant increment method applied to the first 5 layer histograms (layer 

histogram construction parameters: 400, 40, 2) 
 

 
 

Figure 5. Constant increment method applied to all ZAR data (layer histogram construction parameters: 400, 40, 
2) 

 
The sensitivity of the structure of successively 

drawn layers to parameter settings is illustrated in the 
next section. These parameters include the number of 
increments that are added after each layer line, the 

number of bins, and the outlier limitation threshold. 
Figures 5-10 show that the formation of peaks and 
troughs grows more pronounced as layer lines are 
added and they show the sensitivity of the fine 
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structure to changing the number of bins into which 
measurements are classified. Thus this study shows 
that the discrete formation effect found by Shnoll for 
other stochastic processes is also present in financial 
data sets.  

 
Comparison of Methods   

 
Two methods of layer histogram construction were 
employed. The original method also used by Shnoll 
was complemented with another method of 
incrementing. This serves to test the effect of the 
incrementing procedure on the final layer histogram 
shape. Since the addition of a constant number of 
increments gradually decreases the relative 
contribution of the latest time series section that is 
added to the layer histogram shape, the same relative 
number or measurements has also been used for 
incrementing in the increment doubling method.  

The study expands further on the method 
employed by Shnoll et al. (1998, 126-1028). It could 
be expected that the fine structure of layered 
histograms would grow more pronounced as 
measurements are increased because of the way 
Shnoll et al. propose to increment the number of 
measurements for successive layer histograms. For 
the method employed by Shnoll et al., the addition of 
the same constant number of measurements at each 
step will likely develop the fine structure that is there 
already.  

As data are added, each new increment becomes 
less influential because the number of added values is 
constant in absolute terms. The distribution then 
necessarily represents a similar fine structure to the 
previous histogram. The presence of fine structure 
will now be tested for using an alternative layer 
histogram construction method. 

Instead of adding the same absolute number of 
measurements each time, the second method 
constructs layer histograms by adding the same 
relative number of measurements at each step. This 

means that at each step the number of measurements 
used is doubled, resulting in an exponential growth of 
the subset size until the entire data set is included. The 
original method's subsets grow linearly, and therefore 
the method is referred to as constant increment 
method in contrast to the increment doubling method.  

The number of increments influences the layer 
histogram shape less than  the number of bins or the 
outlier limitation, i.e. the outlier limitation and the 
number of bins determine the layer histogram end 
result the most. The variations of layer histograms 
resulting from different parameter choices and 
different construction methods make it apparent that 
there is a fine structure in the data. Furthermore, as 
Shnoll et al. found in their data, peaks and troughs 
also emerge in financial layer histograms.  

It is important to understand that there is no one 
correct layer histogram. Different shapes and 
structures may be detected, where the parameter 
choices play an important role. The first method 
calculated increments taking much smaller steps, and 
thus more layer lines were drawn. These represent 
incrementally less additional information. For the 
construction method that doubled the increments of 
previous steps, much less layer lines were necessary.  

The sensitivity to parameter settings, as well as 
the layer histogram construction method, are 
compared using the ZAR data set. Different settings 
for the number of bins are illustrated. In doing this, 
the discrete state structure becomes apparent at 
different resolutions. The number of increments is 
kept unaltered among the data sets, namely 400 for 
ZAR layer histograms. Outlier limitation is kept the 
same for the ZAR data to focus the illustration on the 
sensitivity of the final shape to the number of bins 
used. The effect of a change in the outlier limitation is 
the reassignment of bin widths and possibly a 
decrease in the number of empty bins as the total bin 
range becomes smaller. 

  

 
 

Figure 6. Increment doubling method applied to all ZAR data (layer histogram construction parameters: 400, 40, 
2) 
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Figure 7. Constant increment method (parameters: 400, 80, 2) 

 
 

Figure 8. Increment doubling method (parameters: 400, 80, 2) 
 

 
Figure 9. Constant increment method (parameters: 400, 160, 2) 
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Figure 10. Increment doubling method (parameters: 400, 160, 2) 

 
 
Figure 6 shows the same parameter settings as 

Figure 5 using the increment doubling method. 
Figures 7 to 8 show a finer resolution (80 bins) and 
Figures 9 to 10 show layer histograms using 160 bins. 
It can be detected that more peaks and troughs emerge 
as the number of bins is increased. The three major 
polyextremes at about 13, 21 and 30 is apparent in all 
illustrations. Thus, besides the most likely value 
(centre extreme), in a time series of 2 months we 
found two more likely states that the process 
occupies. When looking back again at Figure 2, the 
three polyextremes already become apparent after 
applying this method to only 2 days data. Layer 
histograms consider time information (date and time) 
of time series values deterministically in presenting 
the distributional structure of the data. The subsets of 
each layer histogram are increased by counting the 
subsequent number of values to be added, which 
disregard their position in time. A particular layer 
histogram counts the frequency distribution of values 
in respective bins and ignores the sequential 
information as any histogram does. It may be 
expected by construction that the information that is 
added to sequential layer lines represents new 
information occurring later in time.  

 
Summary 

 
We find that discrete states form in the financial data, 
similar to that found by Shnoll et al. in the data that 
were used by them. Both methods for constructing 
layer histograms discussed above show similar 
structures forming in the data. These structures are 
represented by polyextremes growing more 
pronounced.  

The unsmoothed distributional character of the 
entire data set was illustrated via layer histograms. 
The fine structure of the entire distribution and the 
effect of polyextremity became apparent. The shape 
of a layer histogram differs according to the parameter 

choice used to calculate it. The construction parameter 
choices are the number of increments chosen to 
calculate each successive layer histogram line, the 
number of bins into which these measurements are 
classified, and the outlier limitation threshold.  

The method Shnoll et al. applied to construct 
layer histograms was implemented and extended. 
Both methods showed that the polyextremes present 
in the histogram of the entire data set appear already 
in small subsets, i.e. after a few layer histogram lines 
were drawn. The polyextremes shown by both layer 
histogram construction methods coincide 
approximately. Previously it was shown (van Zyl, 
2007) that the increment size has a mild effect on the 
final layer histogram shape, while the choice of the 
outlier limitation threshold and the number of bins 
substantially affect the layer histogram shape. The 
outlier limitation directly influences the bin 
assignment.  

Too many polyextremes - especially when they 
appear jagged - and empty bins may be an indication 
that too many bins have been chosen. To calculate a 
meaningful layer histogram that provides insight into 
the statistical properties of the process, the relation of 
the number of bins to the increment size needs to be 
well chosen. The bin width could be controlled by the 
outlier limitation threshold.  

If polyextremes are present in the layer histogram 
of the entire data set, as well as in the first layer lines, 
this means that information from a smaller subset of 
the data could provide information relevant for a 
longer time scale.  

Several (poly-) extremes of a layer histogram 
provide more detailed information about the expected 
value of the process. In the ZAR example, there are 3 
more likely states for the entire 2 months, which are 
already apparent after the data of a few days has been 
represented by a layer histogram. These states are the 
polyextremes, namely bins 13, 20, and 30. This 
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information could be made useful for the purpose of 
prediction.   

Layer histograms focused on distributional 
characteristics of price changes without taking their 
time explicitly into consideration. Discrete state 
formation was detected, as predicted by Shnoll. 
Shnoll's method of constructing layer histograms was 
applied first, and a new method was proposed to 
investigate the fine structure of these distributions. It 
was shown that discrete states also form and fine 
structure also emerges from the use of this alternative 
method.  

It must be remembered that the choice of 
parameters may substantially influence the final shape 
of histograms. These parameters include outlier 
limitation, the selection of the number of bins from 
which histograms are constructed, not so much the 
number of measurements. 

 
Conclusion 

 
The research underlines the fact that, according to the 
histogram analysis, the currency values as contained 
in the financial time series, are the result of non-
random events/actions of participants in the market 
place. The patterns that emerge from the layer 
histograms analysis reflect the cumulative actions of 
dealers. The analysis as is carried out in this research 
attempts to find patterns that may be used to better 
manage exposure to market changes to maximise 
profit and eventually shareholder’s wealth. The 
research further illustrates that the findings of Shnoll 
et al. (applied in the natural sciences field) can also be 
applied to financial market data. 

 
Suggestions for further research 

 
This research draws attention to the variation inherent 
in financial data sets as well as preferred states of a 
financial process. Traditional statistical techniques 
describe different aspects of the variation in price 
changes. For this reason visual comparison of 
histogram shapes was attempted by Shnoll et al. to 
show a different aspect of time series variation in an 
attempt to bypass some of the inherent weaknesses of 
traditional statistical analysis techniques.  

Further research may include developing 
intelligent computer systems that will search for such 
patterns in data sets and present the results in such a 
way that management may be able to use it for risk 
management and profit maximisation purposes. 
Artificial intelligence systems may be helpful in this 
respect.  

The other phenomena found by Shnoll et al. can 
also be built upon, namely the synchronous variation 

of price changes, the near neighbour effect and the 
recurrence of similar histogram shapes after one 
week, one month, or one year. The findings of Shnoll 
show two specific year periods where histogram 
shape recurrence probability peaks. The methods used 
to detect the phenomena could be automated and 
comparison methods could use a variety of 
appropriate distance measures.  
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