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Abstract 

 
Financial networks' study and understanding has become extremely important since the global 
financial meltdown in           when the inter-connectedness of institutions has surfaced as one of 
the major culprits for the magnitude of the distress. This paper aims at providing a new approach to 
describe and better understand the networks of institutions and their global properties. It is based on 
Directed Cyclic Graphs - a subset of Probabilistic Graphical Models which have already found use in 
other domains such as physics and computer science. The paper draws some parallels and contrasts 
with other studies in the field of Network Theory. It then concludes with a stylized example. 
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1. Introduction and Motivation 
 
The study of financial networks is not new and neither 

the awareness of its importance. In late      the 

European Central Bank (ECB) hosted a workshop 

called "Recent advances in modelling systemic risk 

using network analysis" (see ECB (2010)) which 

gathered practitioners and academics from around the 

world to share and discuss advances in network 

theory. At that time the organization of such 

discussion can be seen a little bit as post factum given 

that the contagion started by a few defaulted SIFIs 

had already spread. The importance of the discussion 

was not to acknowledge that the world is vastly 

interconnected - this is a well known fact - but rather 

to attract the attention around the need of more 

systematic investigative approach to the properties 

and sources of instabilities that such 

interconnectedness can entail
16

. 

This paper contributes to the existing literature 

by introducing the concept of cyclical graphs and 

their properties to the study of financial networks. 

Directed Cyclic Graphs (DCG) is a subset of the more 

general toolkit of Probabilistic Graphical Models 

which has already found applications in Finance, 

Engineering, Computer Science and Medicine. Unlike 

Bayesian Networks (BN) and Markov Random Fields 

(MRF), they allow both directed and undirected edges 

in the graph as well as cycles. This provides a natural 

representation of a network of debt relations where an 

institution can have debt with a chain of other 

institutions and some of them can be in turn indebted 

with it, something that cannot be represented by 

                                                           
16

 policy makers are currently not only refining the regulatory 
and institutional set-up, but also looking for new analytical 
tools that help to better identify, monitor and address sources 
of systemic risk" in ECB (2010). 

acyclic graphs
17

. Neither a structure that allows cycles 

but with fully undirected edges (like MRF) can be 

satisfactory since it precludes accounting for 

interventions and manipulations in the network. 

The model we are going to introduce here is a 

simple static one period model which will provide us 

with the distribution of defaults, let's say, over   year 

horizon
18

, given the mutual debt structure in the 

network. We thus ignore the complication of a 

dynamic multi-period model which can complicate 

the entire apparatus by introducing difficult to 

calibrate, difficult to manage parameters (e.g volatility 

of the assets, re-configuration of the debt in each 

period). We believe that important messages can be 

distilled in the simple setting here and that can be 

obscured by introducing additional parameters
19

. 

In Section 2 we review some of the existing 

literature on the topic and try to distinguish between 

some different strands of thought. In Section 3 we 

introduce cyclic graphs and give a simple example in 

Section 4. We treat the general case in Section 5 and 

describe interventions and give a more complex 

example in Sections 6 and 7. We then conclude. 

 

2. Literature Review 
  

The recent paper of Acemoglu et al (2013) studies the 

network properties of a group of interconnected banks 

and tries to answer the normative question of which 

network connectivity and under which conditions, 

                                                           
17

 The word institution can be interpreted in the broader 
sense of a company, not necessarily a financial institution 
18

 This is the horizon for the banking book     in Basel II 
and the horizon of rating models. Other choices are, of 
course, acceptable 
19

 We will, however, show a recipe of how to make an 
extension to a multi-period setting 
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provides the most resilient setup. The conclusions are 

in the middle of two opposing views in some previous 

papers like Allen (2000) and Vivier-Lirimont (2006) 

that claim that either a better bank interconnectivity 

can play a stabilizing or destabilizing role
20

. In this 

paper we will adopt a descriptive point of view but 

will show a method to study a financial network as is, 

by also making use of market implied information. 

We will show a distribution of the different defaults 

configurations. 

Cont et al (2010) analyze a realistic connectivity 

case - that of the Brazilian banking system. They 

examine the distribution and the properties of 

connections, such as fat-tails and concentration. Once 

the networks structure is completely crystallized by 

the data, it is subjected to macroeconomic stress 

scenarios by shocking the capital buffer an institution 

  by an amount       where   is the common 

macroeconomic shock. Thus a market shock affects 

the capital of all institutions in the network, which 

makes it more vulnerable to potential losses and 

increases the likelihood of large default cascades i.e 

domino effects. 

A slightly different point of view is the one 

presented in Filiz et al (2012). Filiz et al. adopt 

Markov Random Fields (MRF) as a tool to study 

financial networks. MRFs have a straightforward 

application in physical systems where they can used 

to model a system of interacting atoms - the Ising 

model. Similarly, a financial network can be seen as a 

system of atoms (and the interactions between them) 

where the default of a set of debtors institutions to 

institution  , can 'flip'   into default. Relations 

between institutions are hardly symmetrical and there 

is always a net debtor/creditor. By postulating a MRF 

we assume a symmetry. One may argue that, as long 

as, we are interested in obtaining a joint probability 

distribution it does not matter. However, as stated in 

the Introduction, MRFs, apart from being a less 

intuitive non-directional representation, cannot 

account for manipulations in the network. As Schmidt 

et al. (2009) point out undirected graphs do not offer 

the possibility to distinguish between `seeing' and 

`doing'. Therefore, we cannot answer queries of the 

type: what would happen if a set of institutions 

defaults (or is forced to default) for reasons external 

to the debt structure. An institution may go bankrupt 

for a series of reasons which are exogenous. An 

institution may also be bailed-out by a government 

and 'forced' not to default. Unlike, Filiz et al. we will 

model a financial network as-is, and not hierarchically 

by inserting intermediate levels for sectors because 

such setup is not necessary for what we will want to 

show. 

 

3. Directed Cyclic Graphs 
  

Probabilistic graphical models (PGM) are a very 

useful way of decomposing complex distributions in 

                                                           
20

 See also the paper of Gai (2010) 

smaller interacting parts. PGM can be either directed, 

undirected or both (hybrid). Directed graphs with no 

cycles or Directed Acyclic Graphs (DAG)
21

 are also 

known as Bayesian Networks. Their introduction in 

Risk Management and Asset Allocation is due to 

Rebonato (2010) and later Rebonato and Denev 

(2012, 2013). DAGs are very useful in telling 

temporal stories. In fact, there is no way an event in 

the future in a given scenario can influence an event 

in the past
22

. However, acyclic graphs can be limited 

in their representational capacity in certain 

applications, especially when treating spatial 

relationships. For example, if we consider the network 

of debt between companies there is always the 

possibility of the 'flow' of debt relations to come again 

to a given company. For example, the companies in 

Fig.1 have a cyclical debt structure
23

. This means that 

  is indebted  ,   is indebted   and   is indebted  . 

The nodes of the network are boolean random 

variables which represent that company defaulting or 

not
24

. 

 

 
 

Figure1. A cyclic debt relationship 

 

Of course, cyclical nets include acyclical nets as 

a particular case and, if there are not cyclical relations 

in a structure, we can use DAGs and their semantics. 

Cyclical graphs are well described in Schmidt (2009). 

The advantage of cyclical nets with respect to Markov 

Random Fields (MRF) is that they allow interventions 

and manipulations, as we will explain later. 

Our aim is to define a joint probability 

distribution of a graph which will give the probability 

of different combinations of companies defaulting or 

not. So, for the example in Fig.1, we have    

combinations and for each of them we have to deduct 

the probability of occurring. The task, in general, is 

                                                           
21

 DAGs are constituted from a collection of vertices (nodes) 
and directed edges, each edge connecting one vertex to 
another, with no cycles which means that there is no way to 

start from a vertex    and follow a sequence of edges that 
leads back to   . 
22

 NB This is a very different statement from the one that 
events of today incorporate expectations about the future 
23

 The orientation of the arrow is that of the net debt. We are 
supposing here a netting agreement in place 
24

 This is not a very strict requirement as nodes can be 
multinomial and express states such as e.g. distress, severe-
distress, insolvency 
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made easier by virtue of the sparsity of connections 

that we can have in a more realistic structure 

compared to the fully connected one in 

Fig.Ошибка! Источник ссылки не найден.. We 

follow Schmidt (2009) in defining the joint 

distribution over a set of discrete variables    (for 

         ) in a DCG as a globally normalized 

product of non-negative interventional potential 

functions:  

 

                
 

 
∏   

                          (1) 

 

 where      is the set of parents of  25. This 

means that we have to assign quantities that depend 

on the parents only i.e. local interactions. Formula (1) 

will allow us to glue them to obtain a global quantity - 

the joint probability. The potential is a positive real 

valued function over a discrete domain  :  

 

                                                                (2) 

 

 in this case the domain is the discrete set of 

possible configurations of each node given its parents. 

The normalization constant   is given by:  

 

  ∑              
∏   

                                        (3) 

  

Table 1. Balanced sheet of company X with 

total assets = 85 $ 

 
- Assets Liabilities 

X 65 35 

Y 20 50 

Z 0 0 

 

Table 2. Balanced sheet of company Y with 

total assets = 100 $ 

 
- Assets Liabilities 

X 50 20 

Y 50 5 

Z 0 75 

 

Table 3. Balanced sheet of company Z with total 

assets = 75 $ 

 
- Assets Liabilities 

Y 75 0 

Z 0 75 

 

We define Markov blanket        of a node    

in a Cyclic Graph as the set of nodes composed of   's 

parents, children, and the parents of its children. 

                                                           
25

 The pair of nodes connected by undirected edges are 
called neighbors. A set of nodes from which there is an arrow 
pointing to another one are called its parents. A set of nodes 
reached by an arrow from to another one are called its 
children, which together with their neighbors and their 
children are called descendants. Since we will deal with 
DCGs (although we will continue mentioning MRFs) the 
notion of neighbor is not strictly needed 

       separates    from all other nodes in the graph 

  which means that all the information we need for a 

node is the configuration of its blanket which screens 

it from what happens in the rest of the graph. This 

means that:  

 

                                            
 

No subset of        has this property. This 

allows achieving significant savings in terms of the 

parameters to provide. 

 

4. Why Directed Cyclic Graphs 
  

We can start illustrating our point with a simple 

network of   nodes only. Consider the nodes 

representing   institutions  ,   and   which have 

equity and some mutual amount of debt. Their 

balance sheets can be represented as those shown in 

Tables 4
26

, 4 and 4. The balance sheet of the third 

institution   is very simple since we want to focus 

mainly on the relationship between   and   27. 

 Each row shows the asset/liabilities held by the 

company itself and the other company. So, for 

example, company   will have own assets such cash, 

bonds, immovable assets etc. plus receivables owed 

by company   to company  . The liabilities, on the 

other hand, will also be composed of what owed by 

company   to company   and an equity stake 'owned' 

by   itself. These balance sheets are consistent from 

an accounting point of view as can be easily verified. 

Now, what if company   defaults? This will 

have a net effect on the balance sheet of   of 

increasing its probability of default since the assets 

will go down by the amount owed by   minus the 

recovery rate   . If the assets shrink, also the equity 

will do so by a certain amount
28

. Of course, in a low-

concentration and well diversified portfolio we expect 

the effect of one obligor default to be negligible. 

 

 

                                                           
26

 The asset side of this balance sheet shows what is owed 
by other companies to  . The amount owed by   to   is the 
amount of assets of   which stay in the company. The liability 

side shows what   owes to the others. The amount owed to 
  by   is the equity 
27

 An example involving only   and   would have been 
excessively simplistic 
28

 It will depend on how much also the liabilities will be 
reduced by netting 
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 Figure 2. a) A simple two node acyclic BN b) 

A simple two node BN with a feedback loop (cyclic) 

c) A MRF   

We can represent the relationship between   and 

  as the graphical model shown in Fig. 2a
29

. Each 

node is boolean random variable representing the 

event the default of that entity. So      will be the 

probability of default (PD) of  30. In this 

representation   owes money to   and not vice versa. 

This translates in the probability of default of   being 

greater in the case of default of   i.e.        
     ̃ , where by  ̃ we mean the negation of the 

event 'default of  '. By virtue of the Bayes theorem 

we have that:  

 

        
          

    
 

          

                ̃    ̃ 
 

and hence in general:  

             

 

this means that the default of   has also influence on 

 . But how is it possible that a default of   can 

influence  , given that   does not owe any net 

amount to  ? We have to be careful of how we 

interpret directed edges. In fact, they are endowed 

with causal as well as with diagnostic probabilistic 

interpretation i.e. inference opposite to the direction 

of an arrow. Here the legitimate question is: given 

that we know that   has defaulted, how much does 

this increase our belief that also   has defaulted? 

Well, if we know that   defaulted this must certainly 

increase our faith in the fact that also   might have 

defaulted
31

. 

In the case of absence of netting agreement
32

, we 

can model the interaction with a feedback loop as in 

Fig. 2b. This may seem as overkill since ultimately in 

a court settlement most probably, with some 

provisions, offsetting positions will be netted. This 

could, however, take time in which no cash flows 

exchange hands and be with an uncertain outcome. 

Sometimes, if we are not interested in manipulations 

of the network, we can collapse the opposite arrows in 

an undirected edge as shown in Fig. 2c. 

A default of   does not necessarily means a 

default of  :         . In fact, some of the assets 

of   can be still recovered after default. When 

assigning a number we have to respect the sensible 

constraint that             ̃  but we can use also 

some market implied information e.g. a CDS price or 

a credit bond spread to deduct the marginal 

probability of   and   defaulting
33

:  

                                                           
29

 We don't need the entity   for the point we will try to make 
30

 Being this a boolean variable means that the probability of 

non-default equals    ̃        . 
31

 Of course, company Y can default for other reasons. For 
example, invest its assets which are not receivables (50) in a 
project which could fail and thus lose the entire amount 
32

 Such as e.g. ISDA Master Agreement and/or netting of 
loans and deposits and/or AR/AP netting 
33

 Of course, the CDS price does not give directly a PD as it 
is in the risk neutral measure 

                      ̃    ̃  

This leaves with   more parameter to estimate 

out of the   parameters needed to estimate a joint 

probability distribution
34

. For        we can use a 

scoring model (or a Merton mode, for example) which 

assigns a PIT    according to a leverage which will 

obviously increase in case the asset side of the 

balance sheet is downsized more than the liability 

side. This means that more a company contributes to 

the receivables of another, the more impact it will 

have in case of default
35

. The aim of this paper is not 

to pinpoint exact estimates of PDs - that is the role of 

rating models - but to show network effects. 

However, the guidelines we have just given narrow 

down the space of the available values for the 

parameters to estimate. 

An important question to answer is why we 

believe that a probabilistic, and not deterministic 

model of network interactions, would yield a more 

appropriate description. In first place, in the case of 

default the recovered amount, given by a LGD 

distribution, is random quantity. We know that it 

defined between    and     36. This means the the 

asset side of a lender would shrink by a number 

between   and the exposure at default (   ). Second, 

the asset shrinkage caused by an obligor's default will 

decrease the equity (when written-off) and so increase 

the leverage, but the leverage is just one of the 

determinants of a company default. In a rating model 

it is one of the most important factors but not the only 

one. Liquidity, profitability, debt-servicing ratios also 

play their role. In the Merton model, for example, it is 

also the volatility of the assets that matters, not just 

the leverage. Let's remind that the aim of this paper is 

to study the effect of the network of debt on the 

mutual local increase/decrease of probabilities of 

default and be able to deduct the global properties of 

the network, regardless of the way to estimate the 

local PDs, so will not dig deep in this aspect although 

we have (and we will) provide useful pointers. Let's 

start by introducing some formalism in the next 

section. 

 

5. The General Case 
  

We will show how to deal with more complicated 

structures as the one shown in Fig. 3. Given a network 

of   companies, we will denote by   and   the asset 

and liabilities matrices that determine the debt 

structure. Each row   of   will denote the percentage 

                                                           
34

   boolean nodes need      parameters. The    comes 
from the normalization condition for probabilities 
35

 Another option is to use the equity correlations to proxy for 
the asset correlation and hence the default correlation. See 

Eq. 11 for how default correlation is linked to       ,      
and     . Attention must be paid to use this market based 
approach as the parameters estimated in this way contain 
information both about the market expectations and risk 
aversion 
36

 Empirical evidence shows that the distribution has high 

probability masses around    and     . 
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of debt owed to   by each of of the companies in the 

columns  . The element       of   will represent the 

assets of   held by   i.e. that part of the assets is not 

lent to other companies e.g. cash, buildings etc. 

Similarly, each row   of   will show what percentage 

of the liabilities is owed to each company in the 

columns. The element       will represent the equity 

of  37. The following identities must hold
38

: 

 

 
 

Figure 3. A more complex network of debt 

dependencies 

 

 ∑              ∑                (8) 

 

 which are the normalization conditions for each 

row and by rewritting in terms of debt and equity:  

 

    ∑                                (9) 

 we will introduce the two vectors    and    
whose components will be the asset and liabilities of 

each company   in dollar amount. The following is an 

accounting identity:  

 

                 
 

and obviously:  

  

   ∑          ∑                     (10) 

 

 we also know that the liabilities of   must be 

'come' from somewhere i.e. from the assets of all 

other companies. This is expressed through:  

                                                           
37

 In this formalism we include the equity in the liabilities side. 
When we will want to refer only to the debt structure we will 
use the symbol   and the equity structure by the vector   
38

 One entity which have to take into consideration in a more 
realistic scenario is the household sector who acts both as 
borrower and lender for the banking sector. We cannot model 
all the agents individually but we could, for example, assign 
one node    to the entire retail sector. We will not treat the 
subtleties of this case here 

 

 ∑                      (11) 

 

 and:  

 

 ∑                       (12) 

 

If company   defaults we have to revise the  -th 

column of matrix   in those rows that correspond to 

the non-  columns of   and the  -th column of the   

matrix. We have to revise also the row   of  . 

Symmetrically, we have to revise also the  -th row of 

  and all the non-  rows of  -th column of  . Also the 

diagonal elements of   need to be updated. The 

leverage of a company   is given by:  

 

      
   

      
 

   

      ∑       
 

 

if the company   defaults we have to revise this 

number for each   as follows (assuming   recovery):  

 

       
   ∑        

   ∑            ∑          
 

 

It must be:  

            

if we calculate it in the direction of the arrows 

i.e. if   is a parent of  . This increase in leverage will 

be used to calculate conditional probabilities as will 

be discussed below. 

Our next task is to specify a joint probability 

distribution given the local assignments. We have to 

make use of Eq. (1) to do so. One simplification 

comes immediately in mind. If a node is not part of a 

cycle and has only parents (i.e. no neighbors) and 

children which are not part of a cycle, we can use 

directly the language of conditional probabilities 

instead of potentials. For example, we can assign to 

the nodes     and     the quantities           , 

       ̃   ,           and        ̃   without 

normalizing. Our life would be much easier had all 

the relations been of this type. In all other cases i.e. 

we have to assign a potential to account for 

unavoidable cycles and undirected edges. This might 

be cognitively difficult as the entire network has to be 

normalized through   in Eq. (3) which couples the 

potentials assigned to the components of the graph. 

We can well think to equalize the potential to 

conditional probabilities but, as remarked above, this 

rarely will correspond to the 'final' probabilities, if not 

in a handful of cases, by virtue of the definition of  . 

It can be cognitively easier to assign 

probabilities rather unnormalized potentials. If this is 

the case, we can constrain the parameters of the 

potentials of the graph to a set of probabilities we are 

able to provide. To start with we can assign PDs to all 
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the nodes taken from CDSs, external
39

 or internal PIT 

rating systems. We can assign conditional 

probabilities          by calculating the effect on the 

leverage of   of the default  . It is always more 

intuitive to proceed in the direction of the arrow. In 

case of the lack of netting, one of the two directions 

can be chosen
40

. 

It is convenient to cast the potential in the 

following form
41

: 

 

(9) 

               (      
   ∑              

    )  

 where    
 is a scalar bias for each node   and 

      
 is the interaction weight between   and  . We 

remind that a capital letter   represents a random 

variable, and not its instantiation which we denote by 

small letter  . Therefore,    
 and       

 assume   and 

  values respectively
42

 and they are 'activated' when 

the nodes they multiply are  . With the 

normalization constant   given by:  

 

  ∑  

         

   (      
   ∑  

      

      
    ) 

 

We can provide the following information to 

specify the parameters       
 and       

:   

    • For each   the marginal probability        

    • For each pair {   } the conditional 

probability         43  

 Is this information sufficient to pin point all the 

parameters? The first sanity check would be count the 

numbers of parameters we provide versus those we 

need to specify the DCG. They are, in fact, the same - 

for each       
 we associate       and for each       

 

we have         44. We note that trivially the set of 

statistics above is equivalent to the following set of 

constraints  :   

    • For each   the marginal probability        

    • For each pair {   } the joint probability 

          

                                                           
39

 Most of the institutions will have an external rating 

assigned by at least one of the   agencies 
40

 NB For example, for    , both        and        can be 
assigned but then we need just one more parameter - either 

     or      
41

 This is similar to causal independence. See Heckerman 
(1998). 
42

 In general,       
 is not symmetric i.e.       

       
   in 

case of   being the parent and   the child. We can enforce 
symmetry in the case of a feedback loop to avoid redundancy 

of the parameters as we need only   of them to fully define 
the interaction 
43

          is linked to          by the Bayes theorem. If we 

know         ,       and       we can derive         . 
44

 We remind such association is only for enumeration 

purposes and, if this assignment was made, the       and 
         will lose the meaning of the probabilities we want 

them to represent because of the presence of   

 In fact,                       . Filiz et al. 

(2012) show (see Theorem    ) that there is a unique 

set of parameters       
 and       

 that match the set 

of constraints   for potentials of the form (9). We 

show a numerical example in Section 7
45

. 

 

6. Interventions 
  

We have claimed that the advantage of DCGs over 

MRFs is in the possibility to intervene on the 

network. Let's first distinguish between manipulation 

and observation. If we happen to know that    has 

defaulted we can immediately update the joint 

probability by setting in it      and re-calculate 

           for all the other nodes   and obtain a 

new joint probability. In our context, we do not 

observe defaults when we build a network. We 

usually build it on non-defaulted entities. Defaults 

will happen (or not) during the 1-year observation 

horizon. We have full information on all the entities at 

all times i.e. we do not have partial observations
46

. 

We can ask, however, the normative question of what 

would happen if we manipulate the network by 

forcing some  s to take a certain value. If we are a 

central bank, we may want to know what would 

happen if we guarantee a bank or decide to remove its 

license and discontinue its activities e.g. if it has 

violated laws against money laundering and the 

financing of terrorism. Or simply an exogenous 

operational event can be uncovered e.g. Barings. 

 

Table 4. Marginal probabilities for the nodes   

              

            

           

           

           

 

 Table 5. Conditional probabilities for the nodes   

 

             

            

             

             

 

 The rule is very simple. We remove             

from the Eq. (1) for the entity   and recalculate the 

rest of the product by setting    to the manipulated 

value. In the graph what we have to do is delete the 

                                                           
45

 We note in closing that the setup here is extendable to a 
multi-period case. We can assume that the network is re-
configured at the end of each period by removing the 
defaulted nodes and recalculating everything on the 
remaining ones for the number of periods in the future we 
want. We could use the CDS curves of the institutions to 

deduct the   s for the future periods (we remind again here 
the caveat of switching between   and   measures). 
However, the mutual debt structure, which is the other 
determinant of the potentials, is unlikely to remain static in 
the future 
46

 Like it can happen, for example, in medical diagnosis 
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arrows incoming to   but keep the outgoing ones. In 

case of feedback loops (or undirected edges that can 

be viewed as such) we delete only the incoming 

arrows to  . 
7. An example 

  

For presentation purposes we will limit ourselves to a 

stylized network of   banks. The reasoning behind is, 

however, universally applicable. We will show results 

for the graph in Fig. (4)a which contains one cycle 

        and one undirected edge    . We 

will show what changes after the intervention on node 

  shown in Fig. (4)b. 

 

 
 

Figure 4. The graph used in the example a) 

before intervention on node   b) after intervention on 

node   

 

The probabilities we used are in Tables 7 and 7. 

 We found the parameters in Eq 9 which satisfy 

these probability constraints. We report them in Table 

7. The   matrix in the Table has on the main diagonal 

the scalar bias for each node, while the couplings for 

the other nodes are the other elements of the matrix 

      
. The calculation of the joint probability table 

(JPT) is straightforward and it gives: 

 

Table 6. The matrix w(xi,xj) 

 

      0           

               

               

               

 

  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (10) 

 

The most probable event is 'nothing happens' in 

row  47. We can count the defaults and show a bar 

chart statistics for the number of defaults as shown in 

Fig.5. 

 The distribution is just for   nodes and it is 

difficult to see fat tail effects. We can make some 

sanity checks, however. For example, if the events 

were independent we can calculate the probability of 

one and only one institution defaulting which is: 

 

                                 
                              

                                   
                
           

 

and which gives        instead of        as 

calculated from the JPT. Similarly, for   defaults the 

results are        and       . This means that the 

probability of having more than   default in the   

cases is       and       respectively. As expected, 

the independence case is more shifted to the left. 

                                                           
47

 Row    and    are not zero but the significant digits are 
after the fourth one 



Corporate Ownership & Control / Volume 11, Issue 4, 2014, Continued - 6 

 
527 

 
 

Figure 5. Distribution of the number of defaults 

 

Table 7.  Exposures of the four banks in $   

 

          

         

         

         

 

 

Another useful statistics is the default correlation 

matrix for   variables   and   as defined by the 

formula:  

     
                   

√                             
 (11) 

 and in this concrete case given by:  

 

[
 
 
 
 
                      
              
              
              
              ]

 
 
 
 

 

Given the low values of the probabilities in the 

network also the default correlations are low. The 

node that is on average the more correlated with the 

others is node  . We expect it to play an important 

role in the distribution of losses. 

 In Table 7 we show the vector of exposures for 

the   banks. By assuming      the loss 

distribution can be seen in Fig.6. The Expected Loss 

is         while the loss at     confidence is 

          . 

We then intervene on node   by setting it to   

and trim the graph according to the rules in Section 6. 

The result is shown in Fig. (4)b. The Expected Loss is 

        while the loss at     confidence is 

          . The loss at     confidence level is 

reduced by       . Whether to intervene or not on 

the institution   would depend on whether the equity 

buffer to inject/guarantee is less then the loss on the 

entire network. The loss distribution is shown in 

Fig.7. 
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Figure 6. Distribution of losses 

 

 

Figure7. Distribution of losses after the intervention on   

 

The example presented here is overly simplistic 

and a real world study could require the consideration 

of hundreds of companies. The inference problem 

becomes more burdensome but numerical methods 

such as Gibbs sampling exist to perform efficiently 

the task. See Koller (2009) for a review of different 

inference methods. JPTs can become of millions of 

lines but their row-by-row scrutiny becomes also 

unnecessary as summary graphs and distributions as 

those in Figs. 5 and 6 can be used to inspect the 

information. 

We note in closing that we can input stressed 

parameters in the network and make inference also in 

that case. PDs, LGDs, EADs (or EPE) can be linked 

to macroeconomic variables such as credit cycles, FX 

and interest rates etc. We can assume certain values of 

those macrovariables under a stress scenario to obtain 

stress inputs to the network. We can then calculate a 

stressed joint probability table. 

 

Conclusions 
 

We introduced the theory of Directed Cyclical Graphs 

to the study of Financial Networks. We believe that 

such tool provides a good model of such networks as 

it is takes into account the directionality of influence 

and the existence of cycles in real world cases. The 

framework presented here allows for normative 

queries about how manipulating exogenously the 

network will propagate through it. Moreover, the 

contagion effects of one or more entities in default are 

easily inspectable in terms of joint probability tables. 
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The results are transparent (no black boxes!) and can 

be easily examined through visual tools and graphs of 

probability distributions.  
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