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Abstract 
 

This paper studied the relationship between investment and savings in South Africa for the period 
1990 quarter 1 to 2014 quarter 3. The unit root test confirmed the non-stationarity of the series prior 
to first differencing. The correlation coefficient and the model assessing a full capacity mobility 
hypothesis were significant and passed all the diagnostic examinations. The estimated parameter 
provided evidence of imperfect capital mobility. ARIMAX (5, 1, 0) out-performed all the five models 
and was used for pre-whitening process. This model was later used to produce a two year forecasts of 
investment. The error forecast measure provided enough evidence to conclude that ARIMAX (5, 1, 0) 
provided valid forecasts. These results are recommended when embarking on future saving-
investment plans in South Africa. 
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1. Introduction 
 

Using a simple linear regresssion for model 

estimation could give misleading results about the 

relationship between the output and input variables. 

Possible problems to this may involve for example, 

(1) feedback from the output to the input series, (2) 

ommitted time-lagged input term, (4) an 

autocorrelated disturbance series and (4) common 

autocorrelation patterns shared by the variables that 

could produce spurious correlations. 

This paper tries to set out a practical model 

identification procedure designed to handle the four 

problems mentioned. The details for model 

identifcation used in this study differ from those 

proposed by Box and Jenkins (1976) but the idea is 

similar. The authors extensively studied the 

autoregressive moving average (ARMA) models. 

They effectively put together, in a comprehensive 

manner relevant information required to understand 

the use of univariate time series ARMA models. 

These models are specifically effective when the 

purpose of the study is forecasting of an output 

variable on the basis of its past values. Only one 

variable is needed to achieve the task in this instance.  

Key objective of this investigation is to build a 

model that extends the Box-Jenkins ARMA 

framework. This model is intended to show the 

relationship between the output {𝑌𝑡}𝑡 𝜖 𝑧 and the 

input time series {𝑋𝑡}𝑡 𝜖 𝑧 implementing the Box-

Jenkins transfer function framework. The reseacher 

hopes that any model chosen might be interesting in 

its own right but the interest will also be in using it to 

forecast savings from future values of investment. 

Priestley (1981) vouch for this framwork especially 

when both time series fall into the class of ARMA 

type models. The said framework combines 

characteristics of both the univariate process and 

those of simple linear regression analysis. Thus, the 

framework combines time series approach with the 

causal approach to perform forecasting.  

Makridakis, Wheelwright and Hyndman (1998) 

prescribe the use of this framework as a powerful tool 

when appropriate conditions for its use exist. The 

transfer function framework generalise the three 

phases of Box-Jenkins univariate procedure such as 

the identification, estimation and cheking, and 

application. To extend this model, an input variable is 

introduced as an exogenous variable resulting to a 

bivariate framework simply known as the ARIMAX. 

The thrust of this paper is the identification and 

application with an investment as an exogenous 

variable to model and forecast savings in South 

Africa. Both the autocorrelation and cross correlation 

structures of the input and output variables are 

exploited in the identification stage. 

The saving-investment investigation is relevant 

for different countries as it may hold the key to the 

positive correlation between saving and economic 

growth. Additionally, if capital accumulation is 

deemed the engine of growth, understanding the 

interaction between saving investment is crucial to 

assessing the validity of the traditional recipe that 

raising saving is the surest way to increase growth. 
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This is a notion that implicity require each country’s 

extra saving to be automatically translated into higher 

domestic investment (Wahid et al., 2008). 

Conventional thinking holds that saving is an 

essential element in promoting investment, therefore 

economic growth. Esso and Keho (2010) emphasise 

that low levels of domestic saving in some 

developing countries condemn them to an 

uncomfortable choice between low investment and 

growth or excessive reliance upon foreign capital 

which makes them vulnerable. 

The application of Box-Jenkins transfer function 

framework in this study to saving-investment 

relationship is advantageous in that trends in these 

two series will be viewed for better understanding 

and decision making. The framework will also help in 

constructing and selecting the model that reasonably 

describe the nexus between these variables. The best 

model among competing models will be chosen on 

the basis of the associated error forecasts. The 

framework is recommended especially when one or 

more input variables are incorporated in the analysis 

and longtime forecasts are to be produced. This duty 

cannot be performed with the traditional Box-Jenkins 

univariate framework. Furthermore, the Box-Jenkins 

transfer function framework allows the researcher to 

make a reflection about the data based on its past, 

present and future state (Moroke, 2005). 

Based on the findings of this study, better 

suggestions may be formulated and submitted to 

policy makers. It is almost impossible for policy 

makers to come up with feasible plans about saving-

investment when proper and reliable information 

about these variables is not available. When valid 

information is provided, appropriate strategies may be 

articulated and devised. Moroke (2014) emphasise on 

the application of proper modelling techniques so as 

to achieve improved forecasting accuracy. The 

application of Box-Jenkins transfer function 

framework has not been exhausted; as a result this 

paper explores its effectiveness and validity. This 

analysis could further contribute to existing body of 

knowledge and a better understanding of saving-

investment association in middle income developing 

countries with relatively poor social indicators like 

South Africa may be gained. Policy decisions aimed 

at promoting economic growth and development in 

the country may be attained if saving-investment 

process is understood.  

 

There is no evidence in literature about studies 

that applied the Box-Jenkins transfer function 

framework to savings-investment nexus. Nonetheless, 

the framework has been employed by researchers on 

numerous fields. Among others, Bambang et al., 

(2009) used the framework to build transfer function 

model for rainfall index data in Indonesia. The study 

compared the forecast accuracy among ARIMA, 

ASTAR, Single input transfer function, and multiple 

input transfer function models. Another study by 

Khin et al., (2011) proposed transfer function model 

to predict electricity prices based on both past 

electricity prices and demand. The rational to build 

this model was also discussed in this study. 

Arumugam and Anithakumari (2013) used the 

Transfer function model to fit the model of natural 

rubber production where sales were used as an 

influential variable. Eni et al., (2013) adopted the 

framework to develop a three input Transfer function 

to forecast rainfall in Calabar.  

 

2. Data 
 

The study uses quarterly data retrieved from the 

South African Reserve Bank covering the period 

1990 Q1 to 2014 Q3. A total of 98 observations are 

used for the analysis. The choice of this period will 

allow us to track trends of saving-investment before, 

during and after democracy of South Africa. The 

number of observations used will help in 

safeguarding the normality assumption. Two 

variables considered are ratio of gross savings to 

gross domestic product measured in percentages and 

gross fixed capital formation in millions. These 

variables are subjected to log transformations in order 

to take care of irregularities borne as a result of non-

constant time series stochastic terms such as the mean 

(𝜇𝑡) and variances (𝜎2).  
Sadowski (2010) suggested log transformation 

as the optimal variance stabilizing factor specifically 

when standard deviation of the original time series 

increases in a linear fashion with the series mean. 

This transformation as highlighted by Montgomery et 

al. (2008) does well to physically interpret the 

variance percentage change. This can be shown in a 

time series with 𝑦𝑖 , … 𝑦𝑡, where the interest is more in 

the percentage change in 𝑦𝑇 , say, 

 

𝑥𝑡

100(𝑦𝑡 − 𝑦𝑡−1)

𝑦𝑡−1

 (1) 

 

The approximate percentage change in 𝑦𝑡 can be 

calculated from the differences of the log-transformed 

series 𝑥𝑡 ≅ 100[𝑙𝑜𝑔(𝑦𝑡) − 𝑙𝑜𝑔(𝑦𝑡−1)].The Statistical 

Analysis Software (SAS) version 9.3 is used for data 

analysis. It is reasonable to assume a unidirectional 

causal relationship between the variables used in 

transfer function framework, i.e., past values of 

savings (𝑋𝑡) influence future values of 

investment (𝑌𝑡), not vice versa. Otherwise, if a 

bidirectional relationship is evidenced, the use of this 

framework becomes futile. The study is interested in 

using the following model to assess a full capacity 

mobility hypothesis: 

 
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐺𝐷𝑃
= 𝛽0 + 𝛽1 (

𝑆𝑎𝑣𝑖𝑛𝑔𝑠

𝐺𝐷𝑃
)

𝑡
+ 𝜀𝑡 , (2) 

 

where 𝛽0 and 𝛽1 are the estimated coefficients 

using the ordinary least squares regression method. In 
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particular, 𝛽1 is the savings-investment retention 

coefficient and 𝜀𝑡 is the error term. 

 

3. Methodology 
 

A transfer function model differs from the ARMA 

model in that the latter is univariate and the former 

can accommodate multivariate time series. No 

relationships can be determined with ARMA model 

as only one variable is involved in the analysis. The 

transfer function model overrides ARMA models in 

that both the output and the input variables are used 

in model building. This study uses a single input 

(investment) to construct a forecasting model. 

Assume the two series 𝑋𝑡  and 𝑌𝑡  have properly been 

transformed so that both they are stationary. In a 

single input, single output linear system, the output 

series 𝑌𝑡  and the input series 𝑋𝑡 are related through a 

linear filter as; 

 

𝑌𝑡 = 𝜈(𝐵)𝑋𝑡 + 𝜂𝑡 , (3) 

 

where 𝜈(𝐵) = ∑ 𝜈𝑗
∞
𝑗=−∞ 𝐵𝑗  is referred to as the 

transfer function filter according to Box and Jenkins 

(1976), 𝜈𝑗 is an impulse response weights and B is a 

coefficient of 𝑋𝑡 , 𝜂𝑡 is the noise series of the system 

that is independent of the input series 𝑋𝑡 . When 

𝑋𝑡 and 𝜂𝑡 are assumed to follow some ARMA 

models, the transfer function model [3] is known as 

ARIMAX.  

The coefficients in the transfer function model 

are the impulse response weights. Transfer function 

models are said to be stable if the sequence of 

impulse response weights is absolutely summable 

(Wei, 2006), i.e., ∑|𝜈| < ∞. In a stable system, a 

bounded input always produces a bounded output. A 

transfer function modelling serves the purpose of 

identifying and estimating the transfer function 𝜈(𝐵) 

and a noise model 𝜂𝑡 based on the available 

information of the input series, 𝑋𝑡  and the output 

series, 𝑌𝑡 . One of the difficulties associated with this 

model is that the information on the two series is 

finite and this causes the transfer function to contain 

an infinite number of coefficients. Such difficulties 

can be alleviated by representing the transfer function 

as; 

 

𝜈(𝐵) =
𝜔𝑠(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
. (4) 

 

Operators 𝜔𝑠(𝐵) = 𝜔0 − 𝜔1𝐵 − ⋯ − 𝜔𝑠𝐵𝑠 and 

𝛿1(𝐵) = 1 − 𝛿1𝐵 − ⋯ − 𝛿𝑟𝐵𝑟 are polynomials in B, 

where B is a parameter estimating the delay between 

the variables. The aim of this study is to extend the 

univariate ARMA process; 

 

∅𝑥(𝐵)𝑋𝑡 = 𝜃𝑥(𝐵)𝛼𝑡 , (5) 

 

where 𝛼𝑡 follows a white nose process.  

3.1 Identification of the model 
 

The first step in the identification of the transfer 

function model is to pre-whiten the input 

𝑋𝑡  and the output 𝑌𝑡  series. The pre-whitening filter 

may be applied to both series. It helps in removing 

the corrupting influence of the autocorrelation within 

the input series while maintaining the same functional 

relationship between the two series (Yaffee and 

MacGee, 2000). Instead of solving for 𝑋𝑡 , the 

equation is inverted to solve for 𝜀𝑡 .The pre-whitening 

filter is formulated from the existing ARMA model. 

Pre-whitening of the series is preceded by 

differencing to achieve stationarity as; 

 

𝜔𝑡 = (1 − 𝐵𝑑)𝑋𝑡, (6) 

 

and  

 

𝑍𝑡 = (1 − 𝐵𝑑)𝑌𝑡  (7) 

 

The transfer function analysis is not fussy about 

the degree of differencing. This need not be the same 

for the 𝑋𝑡 and 𝑌𝑡. The stationarity of the series is 

tested with the Augmented Dickey-Fuller (ADF) unit 

root test estimated from; 

 

∆𝑌𝑡 = 𝛼0 + 𝛽0𝑌𝑡−1 + ∑ 𝛽𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡 .

𝑘

𝑖=1

 (8) 

 

The symbol ∇ is the first difference operator; t is 

the time drift; k represents the number of lags used 

and 𝜀𝑡 is the error term; 𝛼′𝑠 and 𝛽′s are the model 

bounds. The ADF test may include a constant and 

time trend depending on the analysis. Assuming that 

the series, {𝑌𝑡𝑡𝑇 − 1} follows the AR (p) process, 

Hamilton (1994) shows that the rejection or 

acceptance of the null hypothesis of a unit root is 

based on running the regression; 

 

𝑍𝑡 = 𝜇 + (𝜙1 − 1)𝑌𝑡−1 + ∑ 𝐶𝑗∆𝑍𝑡−𝑗 + 𝜀𝑡 ,

𝑝−1

𝑗=1

 (9) 

 

where 𝑍𝑡−1 = 𝑌𝑡−1 − 𝑌𝑡−𝑗−1 for j =

 0, 1, 2, . . . , 𝑝 − 1 and 𝜀𝑡 is a white noise process. The 

ADF test statistic is given as; 

 

𝜏𝐴𝐷𝐹 =
𝜙1 − 1

𝑠𝑒(�̂�1)
, 

(10) 

 

where 𝑡𝜙1−1 is the test statistic of 𝜙1 − 1, 

𝑠𝑒(�̂�1) is the standard error of 𝜙1 − 1. The null 

hypothesis of a unit root 𝐻0: 𝜙1 − 1 is rejected if [10] 

is less than the appropriate critical value at some level 

of significance. Alternatively the test statistic rejects 

the null hypothesis if the corresponding probability 

value exceeds the level of significance. 
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Once stationarity conditions have been 

addressed, a tentative model is identified by 

examining the autocorrelations calculated from the 

autocorrelation (ACF) and partial autocorrelation 

function (PACF). The observed ACFs and PACFs are 

compared with the theoretical characteristics found in 

Box and Jenkins (1976) to determine the orders of 

𝐴𝑅𝑀𝐴 (𝑝, 𝑞).  
The filtered series are obtained from differenced 

series as;  

 

𝛼𝑡 =
1−∅𝑥(𝐵)

1−𝜃𝑥(𝐵)
𝑋𝑡 , (11) 

 

and  

 

𝛽𝑡 =
1 − ∅𝑥(𝐵)

1 − 𝜃𝑥(𝐵)
𝑌𝑡, (12) 

 

respectively. 

In the second step of this framework, the sample 

cross correlation function (CCF) �̂�𝛼𝛽(𝑘) between 

[11] and [12] is calculated to estimate 𝜈𝑘 as; 

 

�̂�𝑘 = �̂�𝛼𝛽(𝑘)
�̂�𝛽

�̂�𝛼

. (13) 

 

The significance of the CCF is assessed by its 

comparison with the associated standard error (𝑛 −

𝑘)−1
2⁄ . 

 

3.2 Estimation of the model 
 

The general preliminary transfer function model is of 

the form; 

 

𝑌𝑡 =
�̂�𝑠(𝐵)

�̂�𝑟(𝐵)
 𝐵𝑏𝑋𝑡 + �̂�𝑡 . (14) 

 

However, this section requires an estimation of 

the noise model as; 

 

�̂�𝑡 = 𝑌𝑡 − �̂�(𝐵)𝑋𝑡 = 𝑌𝑡 −
�̂�𝑠(𝐵)

�̂�𝑟(𝐵)
 𝐵𝑏𝑋𝑡 . (15) 

 

The appropriate model for the noise is identified 

by observing the associated ACF and PACF. Later 

the transfer function and the noise models are 

combined to produce the function; 

 

𝛼𝑡 =
𝜔𝑠(𝐵)

𝛿𝑟(𝐵)
𝑋𝑡−𝑏 +

𝜃𝑥(𝐵)

∅𝑥(𝐵)
𝜂𝑡. (16) 

 

The parameters 𝛽′ = (𝜔′, 𝛿′, 𝜃′, ∅′) =

(𝜔0, 𝜔1, … , 𝜔𝑠, 𝛿1, … , 𝛿𝑟;  𝜃1, … , 𝜃𝑞 , ∅1, … , ∅𝑝) in 

[16] are estimated from the past data (𝑋𝑡 , 𝑌𝑡), 
𝑡 = 1, 2, … , 𝑛. 

A conditional least squares method is used to 

estimate the parameters of both the noise and the final 

transfer function models. The following formulas 

describe a conditional least squares; 

 

�̂�𝑡(𝑘) = 𝐸(𝑁𝑡+𝑘|𝑁𝑡 , 𝑁𝑡−1, … ), (17) 

 

assuming 𝑁𝑡 = 0 for 𝑡 < 0, 
 

𝜎𝑡
2(𝑘) = 𝜎2 ∑ 𝜓𝑗

2
𝑘−1

𝑗=0
, (18) 

 

where ψ𝑗 are coefficients of the power series 

expansion of 
𝑀𝐴

∆𝑥𝐴𝑅
. 

The results of the estimated parameters are 

compared for optimal goodness-of-fit. Yaffee and 

MacGee (2000) recommend the ultimate reasonable 

magnitude of parameter estimates and statistically 

significant associated t − ratios >  1.96. The authors 

further recommend that non-significant parameters 

should be trimmed from the model. 

 

3.3 Diagnostic checking 
 

A battery of diagnostic tests is used to validate model 

assumptions and to also evaluate its adequacy. These 

tests involve the residuals of the model. One of the 

basic assumptions is that the residuals follow a white 

noise process. Another assumption concerns the 

residual correlations. To check the two 

aforementioned residual assumptions, the associated 

residual estimates are needed. The error term 

estimates are automatically calculated at the 

estimation stage along with the conditional least 

squares estimation for model parameters.  

Model adequacy: This assumption concerns the 

examination of the error terms. For the assumption to 

hold, the standardised residuals should look random 

in an ACF. If the error terms are statistically different 

from zero, the model is not adequate. The adequacy 

of the transfer function models is dependent on the 

significant estimated parameters. Yaffee and MacGee 

(2000) advise that the decay parameters should 

conform to the bounds of stability for transfer 

function models. The authors further advise that if the 

model is one of first-order decay, then parameter 

estimates should not be too close to the value of 1.00. 

Another recommended guideline by these authors is 

to have parameters not too close to 0.96, otherwise 

the model may be unstable and further differencing 

may also be needed. A model with insignificant 

parameters may require pruning of these parameters.  

Consequently, the Ljung-Box (1978) test may 

be used. This test is defined as; 

 

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌𝜂

2(𝑘)

𝑛 − 𝑡

𝑘

𝑡=1

. (19) 

 

The statistic is asymptotically distributed as 𝜒2 

with m degrees of freedom (Vogelvang, 2005), where 
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ρ is called the sample ACF, n is the length of time 

series, k is the highest order for autocorrelation for 

which to test and 𝜌𝑗
2 is the 𝑗𝑡ℎ autocorrelation. If the 

observed value exceeds the critical value, the noise 

model is considered inadequate  

Autocorrelation check: The study uses the 

Durbin-Watson (DW) as a measure of residual 

autocorrelation. The DW has been successfully used 

in the past to test for first-order autocorrelation of the 

regression model residuals. The test compares the 

residuals for time period 𝑡 with the residuals from 

time period 𝑘 − 1. The DW test statistic is calculated 

as; 

 

𝐷𝑊 =
∑ (𝜀𝑡 − 𝜀𝑡−1)2𝑛

𝑡=1

∑ 𝜀𝑡
2𝑛

𝑡=1

 (20) 

 

The decision rule for the DW test is as follows; 

If 𝑑 <  𝑑𝐿 reject 𝐻0 ∶  𝜌 =  0 
If 𝑑 >  𝑑𝑈 do not reject  𝐻0: 𝜌 =  0 

If 𝑑𝐿 <  𝑑 <  𝑑𝑈 test is inconclusive. 

 

3.4 Forecasting with transfer function 
models 

 

Once the transfer function model has passed all the 

diagnostic tests discussed, the model can be used for 

forecasting of the output series by using past values 

of the input series.  

Suppose 𝑋𝑡 and 𝑌𝑡 are stationary process in 

model [5] and [14], where 𝜔𝑠(𝐵),  𝛿𝑟(𝐵), 𝜃(𝐵),
∅(𝐵) are finite order of polynomial of 𝐵; the roots of 
𝜔𝑠(𝐵) = 0,  𝛿𝑟(𝐵) = 0, 𝜃(𝐵) = 0 and ∅(𝐵) = 0 are 

all outside the unit circle, and 𝑎𝑡 and 𝛼𝑡 are 

independent zero mean white noise series with 

variances 𝜎𝜂
2 and 𝜎𝛼

2 respectively. 

Let 

 

𝑢(𝐵) =
𝜔𝑠(𝐵)𝐵𝑏 , ∅𝑝(𝐵)

𝛿𝑟(𝐵)𝜃𝑞(𝐵)
= 𝑢0 + 𝑢1𝐵 + ⋯ (21) 

 

and  

 

𝜓(𝐵) =
𝜃𝑞(𝐵)

∅𝑝(𝐵)
= 1 + 𝜓0 + 𝜓1𝐵 + ⋯ (22) 

 

This paper forecast h leads into the forecast 

horizon. This is achieved on the basis of a model that 

includes both a transfer function and a noise 

component as highlighted by (Box et al., 1994 and 

Granger, 1999). The transfer function forecasting 

model proposed by these authors is given as;  
 

𝑌𝑡+ℎ

= 𝛿1𝑌𝑡+ℎ−1 + ⋯
+ 𝛿𝑝+𝑑+𝑟𝑌𝑡+ℎ−𝑝−𝑑−𝑟 +𝜔0𝑋𝑡+ℎ−1 + ⋯

+ 𝜔𝑝+𝑑+𝑠𝑋𝑡+ℎ−𝑏−𝑝−𝑑−𝑠           +𝜀𝑡+ℎ

− 𝜃1𝜀𝑡+ℎ−1 − ⋯ − 𝜃𝑞+𝑟𝜀𝑡+ℎ−𝑞−𝑟 , 

(23) 

where 𝑡 is the time period, ℎ the lead time 

period, p the order of auto-regression, 𝑑 the order of 

differencing, 𝑟 the order of decay, 𝑏 the delay, 𝑠 the 

order of regression and 𝑞 the order of moving 

average. The forecast error variance and forecast 

interval limits are defined as; 
 

𝑉𝑎𝑟(ℎ) = 𝜎𝜀
2 ∑ 𝜂𝑗

2
ℎ−1

𝑗=0
+ 𝜎𝜀

2 ∑ 𝜓𝑗
2

ℎ−1

𝑗=0
 , (24) 

 

where 

𝜂𝑗 = error of the transfer function, Ŷ𝑡+ℎ =

±1.96[𝑉(ℎ)]1 2⁄ .  
To evaluate the predictive power of the model, 

the study uses error some forecast measures. 

Different authors prefer different measures. Mean 

absolute percentage error (MAPE) is preferred as it is 

not vulnerable to outlier distortion. Mean square 

forecast error (MSFE) is also regarded as an ideal 

measure and is found not to be susceptible to 

distortion due to estimates that approaches zero 

(Fildes et al., 1998). The two forecast errors are 

explored for the sake of this study. 
 

4. Empirical analysis 
 

This section provides and discusses the preliminary 

and primary analyses results. 
 

4.1 Preliminary results 
 

Certain underlying assumptions need to be considered 

when analyzing macroeconomic time series. 

Stationarity and normality are two main assumptions 

made about time series data. The secondary task of 

this section is to investigate whether or not the two 

time series data under investigation comply with 

these assumptions. Prior to the analysis, the data were 

transformed into logarithmic form to iron out 

irregularities such as noise and heteroscedasticity. 

This happens so because the scale which the variables 

are measured drastically is compressed (Gujarati and 

Porter, 2009). 

By observation, the descriptive statistics 

measuring these assumptions confirmed that the two 

series are approximated by a normal distribution. The 

observed probabilities for the Jacque-Bera statistics 

calculated as 0.09 and 0.51 for investment and 

savings respectively are greater than 0.05 significance 

level. This is a confirmation that the variables are 

approximately normal.  

Figures 1 and 2 are time series display of the 

two variables. A visual inspection of these series 

confirms that they are non-stationary, suggesting that 

differencing may be required to induce stationarity. 

The plot suggests that investment in South Africa is 

explained by an upward moving trend, while savings 

follows an irregular pattern. This suggests that no co-

integration and causal effect could be expected 

between the variables. The results allow the 

application of Box-Jenkins transfer function 

framework for further analyses. 
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Figure 1. Plot of log (investment) 

 

 
 

Figure 2. Plot of log (savings) 

 

 
 

Figures 3 and 4 present an overlay of the single-

differenced logarithmic data. Also displayed in these 

figures are the ACFs and the PACFs of these series. 

A visual examination of this single-differenced 

logarithmic series suggest that the two series are 

integrated with order one. However, formal tests of 

integration are required to support this view. To 

formally test for stationarity, the ADF unit root test is 

used with lags up to 5. The results of this test are 

summarized on the appendix in Tables 1 and 2. The 

selection of the optimal lag length is done on the 

basis of the Akaike information criterion (AIC). The 

remarks underneath are also with alluded to Figures 1 

and 2. 
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Figure 3. Overlay plot of single difference log (savings) 

 

 
 

Figure 4. Overlay plot of single difference log (invest) 

 

 
 

From Figure 1, log (invest) exhibits an upward 

trend, suggesting that the ADF test should be of the 

form; 

 

∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + (𝜌 − 1)𝑌𝑡−1

+ ∑ 𝛽𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡 ,

𝑘

𝑖=1

 
(25) 

 

The log (savings) exhibits no upward trend and 

the following ADF model is suggested; 

 

∆𝑌𝑡 = 𝛼 + (𝜌 − 1)𝑌𝑡−1 + ∑ 𝛽𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡 .

𝑘

𝑖=1

 (26) 

 

Based on these assertions, ADF tests conducted 

for log (savings) and log (invest) confirmed that the 

series are stationary in the presence of features [25] 

and [26] after first difference. Figure 3 and 4 reveal 

the differenced stationary savings and investment 

plots located on the upper left corners. This allows 

the analysis to be further conducted with this 

information in mind. 

Upon realizing that the data satisfies the 

conditions for stationarity, the study continues to 

assess if there is a relationship between savings and 

investment using a correlational analysis. However, 

these analyses are just meant to confirm the nexus of 

savings and investment level. It does not form part of 

the transfer function framework and only important 

selected results are highlighted. The correlation 

coefficient confirms a negative correlation (-0.507) 
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between the variables. A full capacity mobility 

hypothesis was also assessed. Please note that the 

results of the estimated model are not shown here. 

The initial estimated model proved to be significant, 

and a reasonable amount of variation in the two 

variables is explained. However, the Durbin-Watson 

statistic suggests the presence of serial correlation. As 

a result, the model was re-estimated taking into 

consideration the presence of autocorrelation factor. 

The re-estimated model also proved to be significant, 

this time no serial correlation was revealed. The 

coefficient of savings was even larger and nowhere 

near zero proving evidence of imperfect capital 

mobility. This coefficient simply accentuates the 

presence of the relationship between the variables. 

Capital mobility as defined by Ogbokor and Musilika 

(2014) is the ability of private funds to move across 

national boundaries in pursuit of higher returns. This 

mobility is dependent on the absence of currency 

restriction on the inflows and outflows of capital. 

Likewise, Chow’s test showed no indication of a 

structural break in the data. 

 

4.2 Transfer function model results 
 

The ACFs and PACFs displayed on Figures 3 and 4 

are used to identify a tentative model for the input 

series. The patterns of ACFs and PACFs of AR (p) 

and MA (q) processes look different and may as a 

result identify different models. Trial and error 

method is used to identify the models describing 𝑋𝑡 . 
Summary of the results is presented in Table 3. 

 

Table 3. Model identification for Savings 

 

Model AIC 

𝐴𝑅𝐼𝑀𝐴𝑋 (5, 1, 0) -252.1 

𝐴𝑅𝐼𝑀𝐴𝑋 (5, 1, 5) -245.9 

𝐴𝑅𝐼𝑀𝐴𝑋 (0, 1, 5) -250.2 

 

The AIC is used in selecting the model that best 

explain the variables. 𝐴𝑅𝐼𝑀𝐴𝑋 (5, 1, 0) has the least 

AIC. Box and Jenkins (1976) suggest that upon 

selection of the appropriate model describing 𝑋𝑡 , the 

same model should be used in pre-whitening the 

values of 𝑋𝑡 and 𝑌𝑡 . In this instance; pre-whitening of 

the series is a preliminary step to determining the 

relationship between the variables. The results of the 

selected model are summarised in Table 4.

 

Table 4. Conditional Least Squares estimation of 𝐴𝑅𝐼𝑀𝐴𝑋 (5, 1, 0) 

 

Parameter Estimate Standard Error t-Value Approx Pr > |t| Lag 

AR1,1 -0.27733 0.09943 -2.79 0.0064 1 

AR1,2 -0.26086 0.10376 -2.51 0.0137 2 

AR1,3 -0.23993 0.10457 -2.29 0.0240 3 

AR1,4 -0.05955 0.10400 -0.57 0.5683 4 

AR1,5 -0.32670 0.10082 -3.24 0.0017 5 

 

The pre-whitened filter contains autoregressive 

factors according to the output in Table 4. The 

mathematical form of the model is presented as; 

 

1 - 0.27733 B**(1) - 0.26086 B**(2) - 

0.23993 B**(3) - 0.05955 B**(4) - 0.3267 

B**(5). 

(25) 

 

The point estimates of this model are all 

significant (t-ratios exceed 1.96) except for the 

parameter estimate of AR 1,4 and all have negative 

parameters. These results are in accordance with 

those of the correlational and full capacity mobility 

hypothesis obtained in the preliminary analyses. 

Moreover, the estimates are all less than one and are 

in accordance with the recommended guidelines by 

Yaffee and MacGee (2000). Note that a first-order 

regular differencing was used to obtain stationary 

savings and investment values. Equation [27] 

represents both the pre-whitened 𝑋𝑡 and 𝑌𝑡 values. 

None of the parameters is discarded. Further analysis 

is based on this pre-whitened series. 

Next, the CCF between pre-whitened series is 

calculated to help identify a preliminary transfer 

function model describing relationship between 

savings and investment. The results are presented in 

Figure 5. 
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Figure 5. Cross correlation check of log differenced investment and savings 

 

 
 

The first thing noted is that there are no spikes 

in the CCF at all lags save for lag eight. This implies 

that 𝑟−1(𝛼𝑡 , 𝛽𝑡) is not statistically different from zero 

i.e. present values of savings are not related to past 

values of investment. This further confirms that 

savings is a leading indicator of investment. The 

spike at lag 8 follows that 𝑟8(𝛼𝑡 , 𝛽𝑡) is statistically 

different from zero, which says that investments in 

the present quarter are related to savings eight 

quarters or two years ago. Simply, it can be 

concluded that it take two years for savings to affect 

investment in South Africa. The results obtained in 

this section are a prerequisite for applying the transfer 

function models.  

Presented next in Table 4 is the output for the 

estimation and diagnostic checking of the tentative 

model.

 

Table 5. Cross correlation Check of Residuals with input savings 

 

To Lag Chi-Square DF Pr > ChiSq Cross correlations 

5 0.55 3 0.9070 -0.017 -0.044 -0.053 -0.013 -0.031 0.029 

11 1.28 9 0.9985 -0.047 -0.071 0.031 -0.008 0.024 -0.020 

17 3.15 15 0.9995 -0.032 0.035 0.107 0.051 -0.071 -0.049 

23 4.72 21 0.9999 0.010 0.063 -0.002 0.013 -0.064 -0.108 

 

Since the observed probabilities of chi-square 

from column 4 of Table 5 are large, it is concluded 

that the pre-whitened input series 𝛼𝑡  is statistically 

independent of the error component 𝜂𝑡. This is a 

necessary condition for the validity of transfer 

function modelling. To determine a noise model 

 𝜂𝑡  [14], note that the ACF in Appendix B dies down 

quickly and the PACF which has a spike at lag 1 also 

dies down quickly. The mathematical function of the 

noise model in Appendix C according to [15] is 

represented as; 

 

 

An appropriate estimated final transfer function 

model employing the non-seasonal autoregressive 

operator of order 5 becomes; 

 

�̂�𝑡

= −0.13323

−
1 +  0.51323 B ∗∗ (1)  −  0.21783 B ∗∗ (2)  −  0.08015 B ∗∗ (3)  +  0.46459 B ∗∗ (4)  +  0.72777 B ∗∗ (5)

1 −  0.04787 B ∗∗ (1)  −  1.01565 B ∗∗ (2)  −  0.32022 B ∗∗ (3)  +  0.37145 B ∗∗ (4)  +  0.16099 B ∗∗ (5)
 𝐵𝑏𝑋𝑡. 

(28) 
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𝛼𝑡

=
1 +  0.34897 B ∗∗ (1)  −  1.45196 B ∗∗ (2)  −  0.7827 B ∗∗ (3)  −  0.40376 B ∗∗ (4)  −  0.4928 B ∗∗ (5)

1 +  1.14276 B ∗∗ (1)  +  0.26819 B ∗∗ (2) +  0.79391 B ∗∗ (3)  +  1.08853 B ∗∗ (4)  +  0.20643 B ∗∗ (5)
𝑋𝑡−𝑏

+
1 

1 −  0.86318 B ∗∗ (1)  +  0.42825 B ∗∗ (2)  −  0.36364 B ∗∗ (3)  +  0.35403 B ∗∗ (4)  −  0.21753 B ∗∗ (5)
𝜂𝑡 

(29) 

 

The parameters of the noise model [28] have 

insignificant t-ratios (see appendix C). However, all 

the parameters of the autoregressive factors for the 

final transfer function model are significant with t-

ratios greater than 1.96 according to Yaffee and 

MacGee (2000). This is a confirmation that the final 

transfer model is adequate and may be used for 

forecasting. The calculated observed standard errors 

are (0.039 and 0.0199) and the AICs are (-295.665 

and -404.033) for the noise and final transfer function 

models respectively. These measures further confirm 

the adequacy of the transfer function model [29]. The 

residuals of this model [29] are further assessed for 

randomness and the results are summarised in Table 

6.

 

Table 6. Autocorrelation Check of Residuals of Final transfer function model 

 

To Lag Chi-Square DF Pr > ChiSq Autocorrelations 

6 0.77 1 0.3804 0.023 -0.042 0.028 -0.022 0.066 -0.026 

12 10.55 7 0.1595 -0.094 0.102 -0.030 0.130 -0.037 -0.246 

18 11.76 13 0.5477 0.013 0.003 -0.031 -0.030 -0.083 -0.048 

24 15.80 19 0.6704 -0.015 -0.046 0.052 -0.102 -0.031 0.133 

 

The chi-square test has all insignificant observed 

probabilities at all lags implying that the residuals are 

not correlated. Reference can also be made to the 

autocorrelation coefficients in Table 6. The next and 

final step provides the forecasts of investment using 

the final transfer function model [29]. Numerical 

results of the forecasts are given as Appendix E and 

plotted in Figure 6. 

 

Figure 6. A two year forecasts of investment using 𝐴𝑅𝐼𝑀𝐴𝑋 (5, 1, 0) 

 

 
 

The forecasts shows that investment in South 

Africa is expected grow to in the next two years. 

These forecasts are estimated within confidence 

bounds of 95%. The estimated MAPE associated with 

these forecasts is 0.1335. This forecast error is so 

small and provides a sensible reason to conclude that 

the fitted model is valid and reliable. The forecasts 

produced with this model are with no doubt reliable 

and may be referred to when embarking on new 

policies. 

 

5. Conclusions 
 

This paper is an attempt to investigate the relationship 

between saving and investment in South Africa. Data 

spanning the period 1990 quarter 1 to 2014 quarter 3 

was used. As a preliminary step, the series were 

tested for stationarity using the ADF unit root test. 

The test confirms both savings and investment are 

non-stationary in their level but stationary in their 

first difference. This gives a degree of confidence on 

the models estimated and incorporates the stylized 
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facts. The coefficient correlation matrix obtained 

implies a negative relationship between the two 

variables. Feldstein and Horioka (1988) argue that the 

association between domestic savings and investment 

is perfect in a closed economy but the presence of 

capital mobility breakdown is considered.  

However, by employing Chows’ structural break 

test, the study find that in the estimated model, the 

fact that the estimated coefficient is nowhere near 

zero provides evidence of imperfect capital mobility. 

In other words, this confirms that savings and 

investment are related. This is a good indication for 

South African economy implying that investment-

promoting strategies are likely to be a success and 

economically efficient. This however does not mean 

that the resources should not be focused more on 

savings-promoting initiatives. It simply means that 

the current in-house strategies could be augmented to 

ensure even better performance by this sector. 

Furthermore, the government could also consider a 

reduced income tax rates and rethink economic and 

political steadiness to help stabilize domestic savings. 

Availability of more employment opportunities to 

residents of the country could also boost savings 

behavior. 

The primary analysis of data was conducted 

following the Box-Jenkins transfer function 

framework. As a first step in building a transfer 

function model, the order of the operators and the 

pure delay is identified. As suggested, good 

preliminary estimates of the impulse response 

weights should be significant to help in guessing the 

orders of the model. The final transfer function model 

outperformed the noise model according to the error 

forecast measures. At face value, it is tempting to use 

this model to forecast trends of investment into the 

future reasonably well. The model is significant 

according to battery of tests used. Additional analysis 

shows forecasts of savings from the pre-whitened 

transfer function model increasing over time, backing 

the conclusion drawn from the preliminary analysis. 

Literature supports that low investment levels in 

South African economy are consistently identified as 

the principal factor behind the suboptimal growth 

rates. Despite the increasing recognition of the 

importance of investment, there is alarming little 

analytical research available in South Africa on the 

savings-investment behavior. On this basis, the study 

recommends an inclusion of more determinants of 

investment in the model. Econometric techniques that 

include the estimation of non-linear models or neural 

networks may also be used. The study can be 

expanded upon by adding different countries in order 

to form cross sectional or panel data study. When 

formulating policies that concern investment–saving, 

the study recommends the application of multivariate 

transfer function framework where variables such as 

growth among others is also factored in the model. 
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Appendix A 

 

Table 1. ADF Unit Root Test for log differenced savings 

 

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F 

Zero Mean 0 -117.444 0.0001 -12.10 <.0001     

  1 -163.251 0.0001 -8.92 <.0001     

Single Mean 0 -117.779 0.0001 -12.09 <.0001 73.15 0.0010 

  1 -165.718 0.0001 -8.94 <.0001 39.92 0.0010 

Trend 0 -117.911 0.0001 -12.04 <.0001 72.49 0.0010 

  1 -166.042 0.0001 -8.89 <.0001 39.53 0.0010 

 

Table 2. ADF Unit Root Test for log differenced investment 

 

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F 

Zero Mean 0 -20.1163 0.0012 -3.32 0.0011     

  1 -17.8612 0.0024 -2.94 0.0037     

Single Mean 0 -41.1352 0.0009 -5.14 <.0001 13.20 0.0010 

  1 -47.3633 0.0009 -4.86 0.0002 11.81 0.0010 

Trend 0 -41.1881 0.0003 -5.10 0.0003 13.05 0.0010 

  1 -47.4446 0.0003 -4.82 0.0009 11.68 0.0010 

 

Appendix B 

 

Figure 1. Residual correlation diagnostics 
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Appendix C  

 

Table 1. Noise model 

 

Parameter Estimate Standard Error t-Value Approx  

Pr > |t| 

Lag Variable Shift 

SCALE1 -0.13323 0.07057 -1.89 0.0630 0 savings 5 

NUM1,1 -0.51323 1.08218 -0.47 0.6367 1 savings 5 

NUM1,2 0.21783 0.92720 0.23 0.8149 2 savings 5 

NUM1,3 0.08015 0.88726 0.09 0.9283 3 savings 5 

NUM1,4 -0.46459 0.82213 -0.57 0.5737 4 savings 5 

NUM1,5 -0.72777 0.81605 -0.89 0.3754 5 savings 5 

DEN1,1 0.04787 1.01592 0.05 0.9625 1 savings 5 

DEN1,2 1.01565 0.61315 1.66 0.1019 2 savings 5 

DEN1,3 0.32022 1.44776 0.22 0.8256 3 savings 5 

DEN1,4 -0.37145 0.61688 -0.60 0.5489 4 savings 5 

DEN1,5 -0.16099 0.80153 -0.20 0.8414 5 savings 5 

 

Appendix D  

 

Table 2. Final transfer function model 

 

Parameter Estimate Standard Error t Value Approx 

Pr > |t| 

Lag Variable Shift 

MU 0.02925 0.0061435 4.76 <.0001 0 invest 0 

AR1,1 0.86318 0.12216 7.07 <.0001 1 invest 0 

AR1,2 -0.42825 0.15995 -2.68 0.0093 2 invest 0 

AR1,3 0.36364 0.16311 2.23 0.0291 3 invest 0 

AR1,4 -0.35403 0.16048 -2.21 0.0308 4 invest 0 

AR1,5 0.21753 0.12384 1.76 0.0836 5 invest 0 

SCALE1 -0.03566 0.03054 -1.17 0.2470 0 savings 5 

NUM1,1 -0.34897 1.73564 -0.20 0.8413 1 savings 5 

NUM1,2 1.45196 2.84491 0.51 0.6115 2 savings 5 

NUM1,3 0.78270 2.64965 0.30 0.7686 3 savings 5 

NUM1,4 0.40376 2.45091 0.16 0.8696 4 savings 5 

NUM1,5 0.49280 1.55397 0.32 0.7521 5 savings 5 

DEN1,1 -1.14276 0.69498 -1.64 0.1048 1 savings 5 

DEN1,2 -0.26819 0.64534 -0.42 0.6790 2 savings 5 

DEN1,3 -0.79391 0.19403 -4.09 0.0001 3 savings 5 

DEN1,4 -1.08853 0.55475 -1.96 0.0539 4 savings 5 

DEN1,5 -0.20643 0.68825 -0.30 0.7652 5 savings 5 
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Appendix E  

 

Table 1. Forecasts of investment by transfer function model 

 

Obs Forecast Std Error 95% Confidence Limits 

99 13.4845 0.0200 13.4453 13.5237 

100 13.5088 0.0422 13.4260 13.5916 

101 13.5347 0.0607 13.4158 13.6536 

102 13.5447 0.0779 13.3920 13.6974 

103 13.5825 0.0926 13.4011 13.7640 

104 13.6049 0.1049 13.3993 13.8104 

105 13.6413 0.1168 13.4124 13.8703 

106 13.6675 0.1286 13.4155 13.9196 

107 13.6974 0.1399 13.4232 13.9716 

108 13.7177 0.1510 13.4217 14.0136 

109 13.7439 0.1615 13.4273 14.0604 

110 13.7771 0.1714 13.4411 14.1130 

111 13.8057 0.1809 13.4512 14.1603 

112 13.8430 0.1900 13.4707 14.2154 

113 13.8645 0.1987 13.4751 14.2540 

114 13.8960 0.2072 13.4899 14.3020 

115 13.9164 0.2153 13.4944 14.3384 

116 13.9515 0.2232 13.5141 14.3890 

117 13.9807 0.2308 13.5282 14.4331 

118 14.0138 0.2382 13.5469 14.4807 

119 14.0425 0.2454 13.5615 14.5236 

120 14.0664 0.2524 13.5717 14.5612 

121 14.0974 0.2592 13.5893 14.6055 

122 14.1218 0.2659 13.6007 14.6429 

 

 

 


