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1 Introduction 
 

This paper aims to demonstrate how an effective 

operational risk management provides mitigating 

effects on capital-at-risk in banking. The paper 

provides evidences that an implementation of an 

operational risk transfer strategy saves capital 

requirement and reduces the cost of capital in 

banking. To estimate the regulatory capital the paper 

adopts an advanced measurement approach, and 

particularly the loss distribution approach. Such 

approach is based on a bottom-up methodology. Then, 

the analysis is conducted on a simulated operational 

losses database. The estimation of the loss distribution 

has been carried out using Monte Carlo simulation 

and copula methodologies. 

The analysis is carried out in two parallel steps. 

In the first one, the operational risk capital 

requirement is estimated. In the second one, an 

operational risk transfer policy is implemented 

through the insurance market. Such policy provides a 

mitigating impact on the regulatory capital. 

The structure of this paper is as follows. Section 

II introduces operational risk in banking. It aims to 

frame the specific nature of operational risk. Section 

III provides a regulatory perspective of the operational 

risk with reference to the first, second, and third pillar 

of the New Basel Capital Accord. Section IV analyses 

the loss modelling process that is based on a separate 

estimation of the frequency distribution and severity 

distribution of a single operational event. Section V 

provides a simulated operational losses database that 

supports the operational risk transfer strategy in 

banking. Section VI concludes.  

 

2 An introduction to operational risk in 
banking 
 

The operational risk is one of the most important risk 

in the economics of banking. It is defined for the first 

time by the Basel Committee on Banking Supervision 

(2001) as “the risk of loss resulting from inadequate 

or failed internal processes, people and systems or 

from external events”. This definition has been 

incorporated into the New Bank Capital Accord 

(Basel Committee on Banking Supervision, 2006). 

The Basel Committee’s definition incorporate the 

legal risk but excludes the reputational and strategic 
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risks.   

Under the 1988 Capital Accord, there were no 

capital buffers for such kind of risk. Only with the 

New Capital Accord in 2006 the Basel Committee 

recognizes the importance of operational risks, in 

addition to credit and market risks.  

Operational risk management in banking has 

assumed such importance during the last decades. It 

has become increasingly important to measure, 

manage, and assess the impact of operational risk in 

the economics of banking. Operational risk events 

may have considerable economic consequences in 

banking that could compromise the business 

continuity. As stated by the Basel Committee on 

Banking Supervision (2001, p. 1) “developing 

banking practices such as securitization, outsourcing, 

specialized processing operations and reliance on 

rapidly evolving technology and complex financial 

products and strategies suggest that these other risks 

are increasingly important factors to be reflected in 

credible capital assessments by both supervisors and 

banks”.  

The definition is based on the underlying causes 

of operational risk. Briefly, the drivers of operational 

risk are: internal processes, people, information 

systems, and external events. The operational risk 

comes from very different causal factors (event risk) 

and it is inextricably linked to bank activities. From 

an organization point of view, this kind of risk is 

pervasive, transversal and similar to a “pure risk”. A 

greater risk is not associated with a higher expected 

return. The operational risk is not taken in return for 

an expected reward, like financial risks.  

Operational risk is a kind of risk that affects all 

financial institutions (Santomero and Babbel, 2012). 

Operational risk is a normal part of banking. There is, 

however, a trade-off problem in defining an 

appropriate balance between the benefit of eliminating 

the risk and the cost of the risk reduction/mitigation 

(Bessis, 2009). The principles for the management 

and supervision of operational risk issued by the Basel 

Committee on Banking Supervision (2011a) recognize 

that it is essential that banks have a comprehensive 

risk management process in place that effectively 

identifies, measures, monitors and controls 

operational risk exposures, and that is subject to 

appropriate board and senior management oversight. 

Sound risk management practices are essential to the 

prudent operation of banks and the stability of the 

financial system. A sound risk management process 

may be divided into four steps. The first one is the 

identification and understanding of operational risk. 

The second step is the analysis and the identification 

of the drivers and principal components of the 

operational risk in banking. The next step is the 

measuring of the operational risk, using different 

models and approaches that are available for different 

kinds of banks. A bank has to balance between the 

cost of using a model and the benefits in terms of 

quality and reliability of risk measures. The final step 

is the management of operational risk, in order to 

reduce/mitigate or eliminate the impact of the 

operational rate risk in the economics of banking.  

Briefly, the introduction of Basel II is important 

not only because it imposes some standards 

methodologies for assessing the operational risk 

capital requirement in banking, but also because it 

predicts radical changes in the management structures 

and processes in banking (Birindelli and Ferretti, 

2006, 2009; Resti and Sironi, 2007, 2008; Scannella, 

2005; Sironi, 2003). A proactive operational risk 

management, a strong involvement of the top 

management, a constant auditing activity by the bank 

Internal Audit, a recurrent review of the operational 

risk management processes, and well-defined 

reporting systems and responsibility frameworks at 

business unit levels are all principles for an effective 

operational risk management implementation in 

banking.  

 

3 Operational risk in banking: a 
regulatory perspective 
 

The New Basel Accord (Basel Committee on Banking 

Supervision 2006) introduces a capital charge for 

operational risk in banking. The Basel Committee on 

Banking Supervision established a minimum 

regulatory capital charge for operational risk under 

Pillar 1.  

The New Basel Accord presents three methods 

for calculating operational risk capital charges in a 

continuum of increasing sophistication and risk 

sensitivity. The availability of different methodologies 

aims to ensure correspondence between the 

complexity of the approaches, and the improvements 

of risk management practices in banking (Gabbi et al., 

2005; Hull, 2012). 

The basic approach to measure operational risk 

is the Basic Indicator Approach. It uses a single 

indicator as a proxy for the overall operational risk 

exposure. The bank capital requirement is determined 

applying a 15% coefficient to the average of the last 

three years’ positive annual gross income. It is an 

extremely easy approach to implement across banks. 

A bank’s gross income is the only component that is 

taken into consideration to evaluate the operational 

risk capital charge.  

The second approach is the Standardised 

Approach. The main difference from the first 

approach is that a bank’s activities are divided into a 

number of standardised business units and business 

lines. For each of them it is associated a beta 

coefficient, which is then multiplied by the last three 

years’ average gross income. The resulting operational 

risk capital requirement is then obtained as a sum of 

each business line. Differences in the beta coefficients 

are linked to the different impact of operational losses 

on the income capacity of each business lines.  

Within each business line, the capital charge is 

calculated by multiplying a bank’s financial indicator 
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by a “beta factor”. It represents a rough proxy for the 

relationship between the industry’s operational risk 

loss experience for a given business line and the broad 

financial indicator representing the banks’ activity in 

that business line. The gross income serves as a scale 

of operational risk exposure within each business line.   

The differentiation among business lines 

represents a step forward in comparison to the basic 

approach. Nevertheless, the Standardised Approach is 

also affected by many simplifying assumptions: the 

existence of a perfect correlation among different loss 

events, mitigation policies are neglected, extreme 

events are not caught, and the gross income of each 

business line is a rough proxy of the bank’s risk 

exposure. In addition, it does not seem to foster the 

development of appropriate techniques and strategies 

to face effectively up operational risks in banking.  

The third approach is the Advanced 

Measurement Approach. This approach, in 

comparison to the previous two, is much more 

complex and requires qualitative and quantitative 

standards, in terms of organizational requirements, 

effective internal control mechanisms and operational 

risk management techniques. The Advanced 

Measurement Approach is based on the estimation of 

a loss frequency and loss severity distribution. The 

estimation is supported by internal and external 

historical data. This approach aims to quantify the 

operational risk exposure, without using any kind of 

proxy, and differentiate it by business lines. It 

recognises that the operational risk is the result of two 

factors: the probability that an event will occur and 

the consequences of the adverse event. Banks are 

allowed to implement risk mitigation strategies, use 

risk transfer mechanisms, and hedge risk exposure 

with insurance policies (Basel Committee on Banking 

Supervision, 2003). The Advanced Measurement 

Approach requires Value at Risk methodologies 

(Operational VaR) to evaluate the operational 

unexpected loss, using a 99,9% confidence level and a 

1-year time horizon (Basel Committee on Banking 

Supervision, 2006, 2011b).  

In order to implement an Advanced 

Measurement Approach banks need to categorize 

operational risks and business lines, according to the 

Basel Committee-specified event types and business 

lines. The categorization of operational risk is as 

follows: internal fraud; external fraud; employment 

practices and workplace safety; clients, products and 

business practices; damage to physical assets; 

business disruption and system failures; execution, 

delivery and process management. The categorization 

of business lines is as follows: corporate finance; 

trading and sales; retail banking; commercial banking; 

payment and settlement; agency services; asset 

management; retail brokerage. Banks need to estimate 

their exposure to each combination of type of risk and 

business line. Ideally this will lead to 7×8=56 VaR 

measures that can be combined into an overall VaR 

measure. 

The Advanced Measurement Approach provides 

incentives for banks to develop measurement 

methodologies and techniques to internally estimate 

operational risk and calculate regulatory capital 

requirements. The Advanced Measurement Approach 

is the most risk sensitive of the approaches currently 

being developed for regulatory capital purposes. As 

market risk capital requirements, the operational risk 

capital requirements are based on internal models that 

are developed by banks. These models are subject to 

qualitative and quantitative standards. They use 

internal and external loss data (industry loss data).  

Nevertheless the above mentioned advantages, 

the Advanced Measurement Approach is affected by 

several concerns and criticisms, such as the 

difficulties to measure the operational risk, the 

complexity of the calculations, and the non-normal 

distribution of loss frequency and loss severity 

(Birindelli and Ferretti, 2006, 2009; Resti and Sironi, 

2007, 2008; Tutino, Birindelli and Ferretti, 2011, 

2012).  

A key issue in the development and 

implementation of regulatory capital requirements and 

internal approaches to measure the operational risk is 

the collection and analysis of loss data, as well as the 

definition of industry standards to share loss data 

across banks. Banks need to develop advanced 

information systems to support an internal 

measurement approach for operational risk 

management (Aprile, 2007; Cosma, 2008; Gabbi et 

al., 2005).  

Banks are encouraged to develop sophisticated 

techniques and practices to manage and monitor their 

operational risks. The financial regulation issued by 

the Basel Committee on Banking Supervision aims 

not only to ensure that banks have adequate capital to 

support risks (Pillar 1), but also to ensure that banks 

improve internal control processes, methodologies, 

and practices to increase the effectiveness of the 

operational risk management (Pillar 2). Banks have to 

identify and strengthen policies and strategies that 

support the assessing, monitoring and 

controlling/mitigating the operational risk, and 

establish adequate internal systems for measuring, 

monitoring, and reporting operational risk exposures. 

Pillar 2 recognizes that the risk faced by a bank 

depends on qualitative aspects, such as: organizational 

structure, internal control systems, and risk 

management practices.  

Supervisors review and evaluate banks’ internal 

capital adequacy assessment and strategies, as well as 

their ability to monitor and ensure their compliance 

with regulatory capital requirements. Briefly, capital 

ratios are not more important than the adequacy and 

effectiveness of operational risk management 

practices in banking. The qualitative analysis of the 

operational risk in banking is put at the center of the 

Internal capital adequacy assessment process 

(ICAAP) and the Supervisory review and evaluation 

process (SREP). There is a strong interlinking 
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between ICAAP and SREP in banking. It recognizes 

the relationship that exists between the amount of 

regulatory capital that a bank has to hold against its 

operational risk and the strength, soundness, and 

effectiveness of a bank’s risk management and 

internal control processes. In that view, the ICAAP 

and SREP are complementary in banking. They are 

parts of a wider supervisory review process covered 

by Pillar 2.  

To complement the capital requirements and the 

supervisory review process, the Basel Committee 

developed a set of risk disclosure requirements (Pillar 

3) that aims to remove obstacles that prevent market 

discipline, and inform the market about a bank’s risk 

exposure. Pillar 3 provides a disclosure framework 

based on qualitative and quantitative disclosure 

requirements. Banks are required to disclose: scope 

and application of Basel regulation; nature of capital 

held; regulatory capital requirements; risk 

management objectives, policies, processes and 

structures; nature of banks’ risk exposures. The 

market discipline of Pillar 3 addresses the issues of 

transparency in banking.  

 

4 Modelling operational losses in banking 
 

In this section the paper aims to analyse an advanced 

measurement approach, and particularly the “loss 

distribution approach”, to estimate the regulatory 

capital requirement in banking. Such approach is 

based on a bottom-up methodology in which 

operational loss data coming from internal databases, 

external consortiums, public data, and scenario 

analysis are used to develop an assessment activity at 

every business process in order to identify and 

quantify all types of operational risks (Alexander, 

2003; Frachot et al., 2001). The loss distribution 

approach is characterized by the following steps: 

- risk class definition: operational risk data are 

classified in homogeneous categories, in such a way 

to satisfy the independence and identical distribution 

hypotheses. The number of classes determines greater 

or less granularity of the model. The financial 

regulation requires to test such hypothesis. Collecting 

data for event type and business line could be 

considered as a minimal risk class. 

- estimation of the severity of operational loss: it 

identifies a monetary loss caused by an operational 

event. In order to estimate such severity it is necessary 

to select a list of possible distribution functions, find 

out the parameters that best match the observed data 

to the distribution, and test the distribution functions 

in order to select the best model.  

- estimation of the frequency of operational loss: 

it is necessary to determine the distribution function 

that represents the number of observed operational 

events. The probability distribution should fit the 

empirical data. 

- aggregation of severity and frequency 

distributions to obtain the aggregate loss distribution. 

For each risk class, it is necessary to compound 

severity and frequency into one aggregated loss 

distribution (Figure 1). It allow to forecast operational 

losses with a certain degree of confidence. 

 

Figure 1. Aggregated loss distribution 

 

 
 

- aggregation of the loss distribution of each risk 

class to determine the overall annual loss distribution. 

Adopting a conservative approach (it is based on the 

assumption of a perfect linear correlation among 

different risk classes), the operational risk capital 

requirement is the sum of the Capital-at-Risk for each 

risk class. However, the Basel Accord allows to use 

other aggregating techniques that better take into 

account the correlation among different risk classes. 

- estimation of capital-at-risk: from a regulatory 

perspective the capital-at-risk is determined as the 

Value-at-Risk of the overall annual loss distribution 

with a 99,9% confidence level. 

Let us analyse some details of the above 
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mentioned steps in the following sub-sections.  

 

4.1 Estimation of severity distribution 
 

In order to select all possible distributions that best fit 

observed data it is necessary to analyze the features of 

an operational loss database. Most empirical 

distribution show a positive skewness and high 

kurtosis. It happens because generally an operational 

loss database is characterized by many low intensity 

losses and few high intensity losses or extreme losses. 

In this regard, the most commonly used distribution is 

the Log-normal, although there exist a quite list of 

distributions that can be used in modelling the 

severity of operational losses like Weibull, 

Exponential, Gamma etc. (Dahen and Dionne, 2010; 

Klugman et al., 2012). The main issue is related to the 

fact that they tend to underestimate the losses in the 

right tail of the distribution. In order to avoid such 

problem, it is common practice to split up the 

monetary distribution impact in two parts. One for the 

body and one for the tail. They are then aggregated 

through a mixture function to obtain a single model. 

Such a new distribution will result more reliable in 

taking into account the impact of rare events. Crucial 

to this process is the threshold “u”, which will be used 

as discriminatory element to separate the body from 

the tail of the distribution. Therefore, the severity 

distribution function of a single internal operational 

loss is a mixture between two different distributions 

(Figure 2).  

 

Figure 2. Mixture function 

 

 
 

In addition, a bank may not keep recording of 

very low impact losses. In this case the body 

distribution must be modified in such a way to take 

into account the truncation effect of data below a 

threshold T. With this regard it is necessary to modify 

the body distribution function, and introducing the left 

truncated conditional probability distribution. The 

most widely used approaches to estimate parameters 

are the followings: a system of equations equal to the 

number of parameters (the popular methods are: 

moments, percentile matching, probability weighted 

moments) and an optimization process. As far as tail 

parameters estimation concerns, Extreme Value 

Theory (EVT) provides a theoretical framework for 

studying rare event by focusing on the tails of the 

probability distributions. Two different approaches are 

used to estimate the tail distribution when dealing 

with EVT: Block Maxima and Peaks Over Threshold 

methodology (Abbate et al., 2009; Cruz, 2002; Da 

Costa Lewis, 2004).   

 

4.2 Estimation of frequency distribution 
 

The estimation of frequency distribution of 

operational loss implies the representation of the 

pattern of observed operational events through a 

discrete random variable. The most commonly used 

distribution is the Poisson (Table 1). 

 

Table 1. Poisson distribution 

 

Distributions  Parameters 

Poisson 
        

        

  
       

 

When a bank decides not to account operational 

losses below a certain threshold T, it is necessary to 

estimate the parameter   taking into account the 

truncation effect: 

    
   

         
 

 

Where     is the estimated parameter from the 

loss events database. After having computed the 
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parameter, it is possible to estimate the parameter for 

the body and the tail of the distribution. 

 

4.3 Aggregation of loss distribution 
 

Having separately assessed both frequency and 

severity distributions, it is now necessary to combine 

them into one aggregate loss distribution. The most 

used aggregation methodology is Monte Carlo 

simulation. However, before moving on the 

simulation itself we need to satisfy the independence 

hypothesis between frequency and severity in order to 

adopt that methodology. The aggregate loss 

distribution comes from a convolution process 

between the previous estimated frequency and 

severity distributions. As well as in the previous stage 

we need to carry out the Monte Carlo simulation 

separately for the body and tail. After that, through a 

convolution process we can join them to estimate the 

aggregate loss distribution. 

The Monte Carlo simulation involves different 

steps for the body and tail of the loss distribution: 

sampling the number of annual losses, generating as 

many uniform random variables as demanded by the 

frequency, using such variables as probabilities to find 

out the quantile in the chosen severity distribution 

function. After repeating several times and sorting out 

the loss data from the smallest to the largest, the 

aggregate loss distribution is obtained. Finally, the 

aggregate loss distribution for the body and the tail are 

summed to obtain the annual aggregate loss 

distribution.  

 

4.4 Aggregation of risk classes and 
estimation of capital-at-risk 
 

The most conservative approach requires to estimate 

the total capital as the sum of the capital-at-risk of 

each risk class. This approach assumes a perfect linear 

correlation hypothesis among different risk classes. To 

remove such limitation and estimate the overall 

annual loss distribution may be used an aggregating 

technique based on a Copula methodology.  

A Copula distribution function is obtained by 

starting from marginal distributions and dependence 

structure. The main dependence measures between 

random variables are the followings: the Pearson 

linear correlation, the rank correlation coefficients, 

and tail dependence. The main Copula functions 

exploited for their technical prescriptions in the 

operational risk framework are the Archimedean 

Copula and the Elliptical Copula functions (Chernobai 

et al., 2007; McNeil et al., 2005). Once identified the 

most suitable copula that represents the operational 

loss multivariate distribution, then it is possible to 

determine the capital requirement using Value-at-Risk 

measurements.  

 

5 A simulated operational risk transfer 
strategy 
 

This section of the paper aims to demonstrate how an 

operational risk transfer policy based on insurance 

contracts can mitigate the impact on the bank 

regulatory capital. The analysis is based on simulated 

data instead of empirical ones because of the high 

sensitivity and confidentiality of banks’ operational 

loss databases. The simulation is conducted on the 

Loss Data Collection Exercise that has been carried 

out by the Operational Risk Subgroup of the 

Standards Implementation Group (SIGOR). The 

analysis is performed using the statistical language R. 

The analysis is carried out in two parallel steps. In the 

first one, after a comprehensive description of the 

datasets, the operational risk capital requirement is 

estimated. In the second one, the mitigating impact on 

the regulatory capital is the result of a transferring 

operational risk policy. 

In order to carry out the analysis, two aspects are 

crucial. Firstly, the definition of operational risk class 

in order to satisfy the hypotheses of independence and 

identical distribution. Secondly, the number of risk 

classes to be considered in the analysis. As regards the 

number of risk classes, the low amount of data stored 

within the database would not provide full robustness 

of the statistical results. Thus, it would be not possible 

to use as risk class the minimum one – i.e. intersection 

of business line and event type – because almost each 

bank lies at the initial stage in the use of such 

methodology. In addition it will be used the 

breakdown by event type rather than business line, 

since the former provides a direct insight into 

transferring techniques, and therefore the effects on 

regulatory capital (Cruz, 2002; Davis, 2006). 

In particular, the data on which the analysis will 

be performed are extracted from a simulated 

operational losses database. Such database will 

represent the internal operational database that a bank 

may hold. Moreover, in order to get closer to the 

reality it is assumed that a bank does not keep 

recording of losses under 2,000 euro. The features of 

such database are summarized in Table 2 and Table 3.  

 

5.1 Modelling the severity distribution 
 

Earlier we explained the reason why we need to spilt 

up the severity distribution in two parts. One for the 

body and the other for the tail. In addition, we need to 

take into consideration the truncation effect since we 

are assuming a bank does not keep recording for 

losses under 2,000 euro. Over the course of this paper 

we present the analysis exclusively for the Event Type 

1, as we can easily extend the same conclusions to the 

other risk classes. Firstly, for each risk class we need 

to justify the use of Extreme value theory and 

demonstrate that loss data satisfies the hypothesis of 

independence and identical distribution (Abbate et al., 

2009; Klugman et al., 2012).    
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Table 2. Loss frequencies by event type 

 

Code Event Type Event Type Operational Events within one year 

Et1 Internal Fraud 1374 

Et2 External Fraud 8564 

Et3 Employment. Practices. & Workplace. Safety 5714 

Et4 Clients Products & Business Practices 5915 

Et5 Damage to Physical Assets 383 

Et6 Business Disruption & System Failures 642 

Et7 Execution, Delivery & Process Management 9970 

 All 32562 

 

Table 3. Loss severity by event type 

 

Event 

Type 

Minimum 

Loss 

Maximum 

Loss 

Median 

Loss 

Mean 

Loss 

Standard 

Deviation 
Skewness Kurtosis 

Et1 2,058   398,6143 33,228 85,065 186,318 9.8 159 

Et2 2,006 4,089,191 23,861 5,2347 109,477 11.8 282 

Et3 2,000 3,424,911 25,816 71,738 159,956 7.8 97 

Et4 2,021 343,170,300 293,599 1,548,775 7,400,414 24 887 

Et5 2,023 375,254 12,177 25,469 37,946 4.38 27 

Et6 2,119 765,084 10,564 24,754 50,163 8,28 96 

Et7 2,094 42,775,230 146,408 416,194 1,070,166 14 381 

 

Figure 3. Event type 1 - Box plot (left) and log-scale box plot (right) 

 

 
 

Figure 4. Autocorrelation plot 
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From the box-plot (Figure 3) we can 

immediately observe that data are showing a highly 

skewed to the right such that to justify the use of 

Extreme value theory. In order to check the 

independence and identical distribution hypothesis we 

have to look at the autocorrelation plot and to the 

Box-Jenkins test. 

Assuming that the sample data is sorted by 

accounting date, the autocorrelation plot (Figure 4) 

shows that the independency hypothesis is satisfied 

since the autocorrelation values are within the 95% 

confidence level. Whereas, Box-Jenkins test returns a 

statistic value X-squared = 0.277 with consequent p-

value=0.5987. Therefore, we can apply the 

methodology that has been introduced so far. 

Now, it is possible to move onto the parameters 

estimation for the body distribution. In order to 

explain the procedure and make it simple, we choice 

to fit our simulated internal data to two theoretical 

distributions, the left-truncated log-normal 

distribution and the left-truncated Weibull 

distribution. Before moving on the parameters 

estimation itself, we need to identify the threshold 

over which the tail has to be estimated through 

extreme value theory. In particular we decided to 

recur on Peaks Over Threshold methodology, in order 

to find out the generalized Pareto distribution which 

explains the tail behavior. As mentioned earlier a 

primary tool is the Sample mean excess plot.  

 

Figure 5. Sample mean excess plot for different level of T 

 

 
 

The four graphs pictured in Figure 5 represent 

the sample mean excess function for different 

threshold levels. If the Generalized Pareto distribution 

is a good fit to the tail, the plot should become 

approximately linear. Our purpose here is to pick the 

largest threshold beyond which the plot starts to 

become linear. Indeed, if the threshold is chosen too 

high, then there are not enough exceedance over the 

threshold to obtain good estimators of the extreme 

value parameters, and consequently, the variances of 

the estimators are high. Conversely, if the threshold is 

too low, the Generalized Pareto distribution may not 

be a good fit to the excesses over the threshold and 

there will be bias in the estimations. Other useful tools 

are the parameter stability plots (Figure 6), which help 

us to pick a right threshold. They should become 

stable above the right threshold (Horbenko et al., 

2011). 

In our example a threshold of T = 400,000 seems 

good enough both in terms of linearity of the sample 

mean excess and stability of the parameter estimates.  

Once we have identified the right threshold we 

can estimate the parameters from the left-truncated 

log-normal distribution. So, firstly we need to find out 

the log-likelihood for a left-truncated log-normal 

distribution. In general we define the likelihood of a 

particular model the following expression: 

 

               

 

   

 

 

Where the maximum likelihood estimate is: 
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Figure 6. Parameter stability plots 

 

 
 

Actually, it is more convenient to deal with the 

log-likelihood, specified as: 

 

                  

 

   

 

 

Maximizing the log-likelihood first requires 

taking the partial derivatives with respect to the 

parameters and setting them equal to zero:  

 
        

  
   

 

Sometimes it is not possible to get an explicit 

expression, in those cases we recurr to numerical 

optimization methods. Comig back to the issue 

regarding to left-truncated distributions we need to set 

up the likelihhod function of a conditional density 

function, as in the following expression: 

 

        
       

         

 

   

 

 

With corresponding log-likelihhod function: 

 

           
       

         

 

   

                             

 

   

 

 

Firstly, we proceed with fitting our data sample 

with the left-truncated log-normal distribution. As 

regards to the left-truncated log-normal, we cannot 

obtain an explicit expression for the MLE estimate. In 

such a case we decide to perform the estimate 

recurring to the Nelder-Mead numerical optimization 

method in order to find out the two parameters 

characterizing the distribution. We report the R code 

to process the MLE estimates: 

ltlnorm<-function(x,meanlog,sdlog) 

dlnorm(x, meanlog, sdlog) / plnorm(2000, 

meanlog, sdlog,lower.tail=FALSE) 

fitdistr(x,ltlnorm,start=list(meanlog=5,sdlog=2)) 

The resulting estimates are: 

 

                  

 

In order to check how well our model fits a set 

of observations, we perform both graphical and 

quantitative tests. Firstly, we report the Q-Q plot 

relative to the body of the severity (Figure 7).  

As the picture shows the model seems to fit well 

the observations especially for values under the 

threshold u (green line), while for values above u the 

model seems to lose adaptabilty to the data. This is 

not a problem since those observations will be 

processed and modeled in the tail of the distribution. 

Regarding to the quantitative tests, we report the well 

studied Kolmogorov-Smirnov test and Anderson-

Darling test for left-truncated data (Table 4). 

All the p-values are sufficiently high. So, the 

null hypothesis is not rejected. The same analysis has 

been carried out assuming as theoretical distribution a 

left-truncated Weibull distribution.  

The resulting MLE estimates are: 

 

                     

 

We report the Q-Q plot resulting from these 

estimates (Figure 8). 
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Figure 7. Q-Q plot for left truncated Log-Normal distribution 

 

 
 

Table 4. Goodness test results between the left-truncated log-normal distribution and the sample data 

 

Test Statistics p-value 

Kolmogorov-Smirnov  0.7335 0.185 

Anderson-Darling 2.0298 0.618 

Anderson-Darling up  71.9778 0.346 

 

Figure 8. Q-Q plot for left truncated Weibull distribution 

 

 
 

As showed by the picture, the model seems to fit 

well the observations especially for values under the 

threshold u (green line), while for values above u the 

model seems to lose adaptabilty to the data, as well as 

the previous case. Regarding to the quantitative tests, 

again we report the Kolmogorov-Smirnov test and 

Anderson-Darling test for left-truncated data 

(Table 5).  

 

Table 5. Goodness test results between the left-truncated Weibull distribution and the sample data 

 

Test Statistics p-value 

Kolmogorov-Smirnov  1.13 0.0099 

Anderson-Darling 9.52 0.0222 

Anderson-Darling up  3397.245 0.009259 

 

All the quantitative tests do not reject the null 

hypothesis. Therefore the body of the severity 

distribution relating to Event type 1 will be modeled 

as a log-normal distribution. Once identified the body 

distribution we can move forward to the estimation of 

the tail distribution. Relating to the parameter 

estimates, we apply again maximum likelihood 

estimation. The resulting scale and shape parameters 

are: 
 

                       
 

We report the Q-Q plot for the tail distribution 

(Figure 9). 
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Figure 9. Q-Q plot for generalized Pareto distribution 
 

 
 

As the picture shows the model seems to fit well 

the observations for values over the threshold u. 

Now for any event type we report the model and 

the corresponding parameter estimates (Table 6).   
 

Table 6. Body and tail severity distributions parameter estimates 
 

Event 

Type 

Model 

Body 
      

Boundary 

threshold (u) 

Model 

tail 
                    

Et1    Lognormal 10.38 1.38 400,000 GPD 368,400 0.181 

Et2 Lognormal 10.04 1.24 500,000 GPD 385,600 0.111 

Et3 Lognormal 10.05 1.48 600,000 GPD 439,600 0.084 

Et4 Lognormal 12,58 1.80 5,000,000 GPD 1,130,000 0.279 

Et5 Lognormal 9.38 1.18 50,000 GPD 50,030 0.104 

Et6 Lognormal 8.96 1,41 100,000 GPD 115,600 0.183 

Et7 Lognormal 11.87 1.46 5,000,000 GPD 4,114,000 0.1054 

 

5.2 Modelling the frequency distribution 
 

The Poisson distribution represents the frequency 

distribution of an operational event. The only 

parameter   is estimated through the method of 

moments (Horbenko et al., 2011). We only use the 

annual frequency of occurrence for operational losses 

higher than the threshold T = 2,000 euro.  
 

          
   

   
   

   
  

    

   
      

 

This value does not take into account the effect 

of operational events causing a loss below a threshold 

T. Thus, in order to deal with a more reliable estimate 

we have to consider the truncation effect: 

 

    
        

                
  

    

         
 

    

         
=3.85 

 

Starting from this estimation, we can define the 

frequency of loss for the body and the frequency of 

occurrence for the tail, as it follows: 

                                                    

 

                                                                 

 

                                                 

 

Now for any event type we report the 

corresponding parameter estimates (Table 7).   

 

 

Table 7. Body and tail frequency distributions parameter estimates 
 

Event Type Model               

Et1         Poisson 3.85 0.13 

Et2 Poisson 23.29 0.16 

Et3 Poisson 15.34 0.24 

Et4 Poisson 15.25 0.95 

Et5 Poisson 0.91 0.13 

Et6 Poisson 1.69 0.08 

Et7 Poisson 27.09 0.22 
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5.3 Severity and frequency convolution 
 

After estimating the severity and frequency 

distribution, the next step involves their aggregation 

in order to perform the aggregate loss distribution. 

Such aggregating procedure is based on a convolution 

process. It is a mathematical operation through which 

two functions return a third function (Da Costa Lewis, 

2004; Frachot et al., 2001; Shevchenko, 2010). 

Assuming that the two distributions satisfy the 

independence hypothesis necessary to exploit the 

convolution mechanism, it is therefore possible to 

implement the algorithm based on Monte Carlo 

simulation. As mentioned, such algorithm provides 

subsequent sampling from the frequency and severity 

distribution to return the aggregate loss distribution. 

Once again we report the analysis only for Event type 

1. In details, we run the simulation 10
6
 times to obtain 

a suitable distribution.  

Let   = 1……… N, the Monte Carlo simulation 

methodology involves the following steps: 

a. Sampling the number of annual losses for the 

body: 

 

                     
 

b. Generating as many uniform random variables 

as demanded by the frequency.  

c. Those variables will be used as the probability 

(p) that we use to find out the quantile in the chosen 

body severity distribution function.  

 

                                       

 

With           

d. Repeating several times the process to obtain 

the aggregate loss distribution for the body. 

In the same way we proceed to get the aggregate 

loss distribution for the tail: 

a. Sampling the number of  annual losses for the 

tail: 

 

                     
 

b. Generating as many uniform random variables 

as demanded by the frequency. 

c. Those variables will be used as probabilities 

(p) that we use to find out the quantile in the chosen 

tail severity distribution function: 

 

                                   
 

With           

d. Repeating several times the process to obtain 

the aggregate loss distribution for the tail. 

Lastly, in order to obtain the annual aggregate 

loss distribution for a certain risk class we compute it, 

as it follows: 

                 

  

   

  

   

 

 

Where c is the mean of the operational loss data 

empirical distribution below a certain threshold T.  

Once produced seven aggregate simulated loss 

distributions, we can as well as extract the expected 

loss and the Value-at-Risk, with a 99,9% confidence 

level, and assuming to use the conservative approach, 

compute the capital at risk for the bank as a whole 

(Table 8). 

 

Table 8. Value-at-risk 

 

Code Event Type Expected Loss € Unexpected Loss € Value-at-Risk 99,9% € 

Et1 361,728 4,379,121 4,740,849 

Et2 1,233,710 3,675,625 4,909,335 

Et3 1,186,874 6,996,498 8,183,372 

Et4 24,360,690 297,000,914 321,361,604 

Et5 29,027 489,534 518,561 

Et6 47,414 1,001,130 1,048,545 

Et7 12,442,230 52,922,301 65,364,531 

Capital-at-Risk € 39,661,674 € 366,465,123 € 406,126,797 

 

In the graphs below (Figure 10) we report the 

histograms of the square root transformations of the 

seven aggregate annual loss distributions. These 

graphs show the existence of a strong lack of 

homogeneity among different event types, pointing 

out that each event type is characterized by different 

risk drivers. Heterogeneity, which is explained by the 

different impact that each individual operational event 

has in terms of operational loss. Moreover, we can 

immediately observe, as well as which types of events 

have a greater weight in determining the capital at 

risk, which ones represent major concerns for the 

operational risk manager and the bank as a whole. In 

particular, the graphs show that the event type 4 

represents the major bank’s source of operating losses, 

given that approximately 18% of operational events 

explains more than 79% of regulatory capital. 

  



Risk governance & control: financial markets & institutions / Volume 5, Issue 2, 2015, Continued - 1 

 

 
154 

Figure 10. Histograms for the sqrt transformation of the seven event type distribution 
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Figure 10. Histograms for the sqrt transformation of the seven event type distribution (continued) 

 

 

 
 
5.4 The overall annual loss distribution 
 
The sum of 7 value-at-risk measures that has been 
calculated on the annual loss distributions to 
determine the bank’s capital at risk involves the 
implementation of an extremely protective policy in 
terms of regulatory capital. In fact, we are implicitly 
assuming that there is a perfect correlation among 
operational loss distributions. If we remove such 
hypothesis it will be necessary to carry on with the 
overall annual loss distribution. Consequently, we can 

estimate the value-at-risk with a 99,9% confidence 
level. Such solution leads to a more appropriate 
estimation of the capital-at-risk in banking.  

In this regard, we carry out the analysis using the 
elliptical copula family, since it allows to take into 
consideration the real dependency structure among 
different event types and to mark the role of the 
dependence structure in the proximity of extreme 
values. 

 

  

 

 
 
 
 
 

                     
                                                  
                                           
                                 
                           
                   
            
     

 
 
 
 
 

 

 
We estimate the overall annual loss distribution 

with the Monte Carlo simulation method. Then we 
compare the results of Gaussian copula with those of 
t-Student copula. For the latter, it is necessary to 
estimate the parameter v, through the use of the 
maximum likelihood estimator. 

The algorithm for both distributions has been 
carried out for a number of simulations equal to 10

6
. 

In the following figures, we report the square root 
transformation of the histograms of the overall annual 
loss distribution in three cases: the existence of a 
perfect positive correlation among all risk classes, the 
Gaussian copula, and the t-Student copula (Figure 11). 

The results are summarized in the following 

Table 9.  
The above mentioned results confirm two 

important conclusions. The first one refers to a 
substantial saving capital requirement by 
implementing an aggregation mechanism, which takes 
into account the correlation among different risk 
classes. We obtain a lower regulatory capital when we 
use the Gaussian or t-Student copula in comparison to 
the sum of single value-at-risk for each annual loss 
distribution. The second one refers to the tail 
dependence of the t-Student copula. Such peculiarity 
brings to a higher regulatory capital of the t-Student 
copula in comparison to the Gaussian copula one.  
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Figure 11. Histograms for the sqrt transformation overall annual loss distribution 

 

 

 

 
 

Table 9. Value-at-risk using different aggregating mechanisms 

 

Aggregating Mechanism Expected Loss € Unexpected Loss € Value-at-Risk 99,9% € 

R=1 39,661,674 366,465,123 406,126,797 

Gaussian Copula 39,666,040 290,961,758 330,627,798 

t-Student Copula 39,641,997 328,155,528 367,797,525 

 

5.5 Hedging against operational risk 
 

This section of the paper aims to illustrate how an 

effective operational risk transfer strategy can result in 

saving regulatory capital. In order to analyse the risk 

mitigating strategy, let us suppose a bank decides to 

negotiate 5 insurance contracts that aim to attenuate 

the negative impact of operational risk. In particular, 

the structure of each insurance contract has been set to 

avoid moral hazard problems. For this purpose, 

insurance contracts fix deductibles (amounts of 

money subtracted from the value of a loss, which is 

not covered by insurance) and policy limits, in such a 

way to not encourage bank’s opportunistic behavior. 

With reference to the insurance pricing, we consider 

the pure risk premium. The Table 10 shows some 

details of 5 insurance contracts.  

 

Table 10. Insurance contracts: some details 

 

Code Event Type Premium € Deductible € Policy Limit € 

Et-1 46,189 800,000 1,700,00 

Et-2 8,930 2,000,000 3,800,000 

Et-3 22,725 3,000,000 5,800,00 

Et-4 1,680,030 55,000,000 95,000,00 

Et-7 237,234 20,000,000 40,000,00 

 €1,995,108   
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In order to show how insurance contracts work, 

it is necessary to observe the following graph, where 

we report the Event type 1 annual loss distribution in 

the presence of an insurance contract that has the 

above mentioned characteristics (Figure 12). 

 

Figure 12. Event type 1 - Insurance coverage effect 

 

 
 

The insurance contract transforms the 

distribution in a step function that is characterized by 

the followings: 

 

 

                                 

                      

                            

  

 

with      the loss value, and    and    the value 

of deductible and policy limit respectively. 

Briefly, the insurance contract modifies the 

monetary impact coming from an operational event. 

Thus, we need to modify the severity distribution 

(Banks, 2004; Committee of European Banking 

Supervisors, 2009; Cruz, 2002). Conversely, if 

insurance contracts have not any effects on the 

occurrence of an operational event we will not need to 

modify the previously estimated frequency 

distribution.   

The measurement of the new capital requirement 

takes into account the mitigating effect of insurance 

contracts. The estimation of the overall annual loss 

distribution has been carried out using Monte Carlo 

simulation and copula methodologies. The following 

pictures report the histograms of the overall annual 

loss distribution, respectively for the Gaussian and t-

Student copula aggregating mechanisms 

(Figure 13, 14).  

 

Figure 13. Histograms for the sqrt transformation overall annual loss distribution  

with insurance contracts (using Gaussian Copula) 
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Figure 14. Histograms for the sqrt transformation overall annual loss distribution  

with insurance contracts (using t-Student Copula) 

 

 
 

Finally, in order to summarize the results of an 

operational risk transfer strategy, the Tables 11 and 12 

show the estimation of value-at-risk using the 

different aggregation mechanisms (under insurance 

contracts) and a comparison between regulatory 

capital with insurance contracts and regulatory capital 

without insurance contracts.  

 

Table 11. Value-at-risk under insurance contracts (using different aggregation mechanisms) 

 

Aggregating Mechanism Expected Loss € Unexpected Loss € Value-at-Risk 99,9% € 

Gaussian Copula 72,218,751 206,547,581 278,766,332 

t-Student Copula 72,172,803 218,604,831 290,777,634 

 

Table 12. A comparison of capital requirements with and without insurance contracts 

 

Aggregating 

Mechanism 

Var 99% without  

insurance contracts 

Var 99,9% with insurance 

contracts 

% Saving on Capital 

Requirement 

Gaussian 330,627,798 278,766,332 16% 

t-Student 367,797,525 290,777,634 21% 

 

The operational risk transfer strategy involves a 

regulatory capital saving to an extent of 16% when we 

use a Gaussian copula and 21% when we use a t-

Student copula. Although the capital adequacy 

regulation imposes a maximum level (20%) of the 

mitigating effect on the capital requirement (Basel 

Committee on Banking Supervision, 2006, 2010). 

Therefore, with the adoption of t-Student copula 

methodology the regulatory capital should not be less 

than the 80% of the value-at-risk without insurance 

contracts.  

 

6 Conclusion 
 

Banking industry has made significant progress over 

the past years in understanding, measuring and 

managing operational risk. Banking authorities have 

been pressuring banks to adopt a proactive operational 

risk management. In addition they have imposed 

protective measures based on the provision of a 

minimum level of regulatory capital to absorb risk 

operational losses.  

The paper has been designed to demonstrate how 

an effective operational risk management provides a 

regulatory capital saving, and a resulting reduction of 

bank capital costs. A simulated operational losses 

database supported the operational risk transfer 

strategy. The estimation of the overall annual loss 

distribution has been carried out using Monte Carlo 

simulation and copula methodologies. The operational 

risk transfer strategy involves a regulatory capital 

saving to an extent of 16% when we use a Gaussian 

copula and 21% when we use a t-Student copula. 

In addition, it is important to note several aspects 

that need further developments. Firstly, nowadays 

only a limited number of banks are using an advanced 

methodology to estimate the regulatory capital. 

Nevertheless, it is only through the use of advanced 

measurement tools that it is possible to implement an 

effective hedging strategy. Therefore, in a perspective 

of proactive risk management, it is necessary to 

stimulate the adoption of AMA methodologies. 

Sources of incentives may arise from the 

standardization of the methodologies to estimate the 

regulatory capital, and the increasing accessibility of 

AMA methodologies to smaller banks.  

Finally, in order to avoid that the operational risk 

transfer market becomes a possible source of financial 

instability in the banking industry it is necessary to 

develop transparent procedures and policies, to ensure 
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that a certain amount of operational risk still stays 

within the responsibilities of the bank management.     
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