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Abstract 
 

In this paper, the underwriting risks of the insurance industry of Iran were aggregated using various 
vine copula classes and historical data of loss ratios which corresponds to each business line. The 
estimated economic capital (EC) for the entire insurance industry considerably varies across different 
risk measures and vine copula models. In addition, less than the risk-based capital (RBC) charge 
assessed based on the standard model of RN69 and amounted to 96,943,391 million of Iran Rials. 
Therefore, it was concluded that using the Vine copula method and allowing symmetry and tail 
dependence for pairs of business lines’ risks in the risk aggregation process leads to overestimation of 
the RBC risk charge, as compared to the estimated results of simple and linear aggregation methods of 
such standard model. Furthermore, the choice of dependency structure and risk measures have a 
paramount effect on the aggregate economic capital. Highlights: Estimated aggregated economic 
capital varies across different risk measures and vine copula models; Selecting the appropriate copula 
model is an important consideration in risk aggregation process; Using the Vine copula method in the 
risk aggregation leads to overestimation of the RBC risk charge; The estimated economic capital is less 
than RBC risk charge calculated under standard model of RN69. 
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1. Introduction 
 

Insurance companies are faced with a multitude of 

risks in their underwriting business and investment 

activities. Regardless of identifying, assessing and 

classifying the risks in insurance firms and finding the 

factors affecting the risks in each business line of an 

insurance firm, modeling the dependency structures of 

risks is crucial to risk management and most notable 

for the risk aggregation process. The purpose of risk 

aggregation is to calculate the aggregated economic 

capital
9
. In addition, the process of risk aggregation 

involves risk measurement and aggregation. 

                                                           
9
 There are several different interpretations of the concept of 

economic capital (EC) in the finance literature. In the 
solvency view or the regulatory-type view EC is defined as 
the sufficient surplus to support the solvency at a given level 
of risk tolerance, over a specified time horizon. For more 
details, see Mueller and Siberon (2004). 

There are different methods of risk aggregation. 

The traditional method is the linear risk aggregation
10

. 

The new progressive method is based on the Copula 

models. In linear risk aggregation, the only data 

required is the estimate of each risks’ economic 

capital and the correlation between pairs of risks
11

. 

The Copula methods of aggregation depend on the 

joint distribution of all individual risks. Copula is 

defined as a function that joins univariate distribution 

to a multivariate distribution function, denoted by C 

in the following equation for random variables 

(𝑋1, ⋯ , 𝑋𝑑) (Joe, 1997; Nelsen, 2006): 

                                                           
10

 The simple summation and variance-covariance 
matrixapproaches are known as the linear risk aggregation. 
11

Note that the simple summation method is a particular case 
of the variance-covariance matrix approach when all 
correlation coefficients set to 100%. This approach does not 
allow for diversification and is known to yield usually very 
conservative economic capital. 
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Pr (𝑋1 ≤ 𝑥1, ⋯ , 𝑋𝑑 ≤ 𝑥𝑑) = C(Pr(𝑋1 ≤ 𝑥1) , ⋯ , Pr(𝑋𝑑 ≤ 𝑥𝑑)) (1) 
 
Based on this definition, it is known that 

estimation of the joint distribution of risks is not 
independent of the specified marginal distributions 
and implemented copula models. Thus, selecting the 
appropriate copula model is an important 
consideration in risk aggregation. Linear risk 
aggregation is simple and convenient to use, but this 
method can lead to overestimating the aggregated 
economic capital

12
. For this reason, the recent use of 

Copula models as an alternative approach in risk 
aggregation is expanding in financial studies. 

Tang and Valdez (2009) compared the copula 
method with linear risk aggregation approaches, 
thereby, documenting how the latter may overestimate 
total risk. Shi and Frees (2011) used some copula 
models instead of the chain-ladder method to 
determine the loss reserves. Savelli and Clemente 
(2011) also applied the Hierarchical structural method 
in risk aggregation and quantified the capital required 
for premium risk for multi-line non-life insurance 
companies. Czado et al. (2012) used mixed Gaussian 
copula approach to model the dependency between 
the number of claims and its corresponding average 
claim size of car insurance policies in Germany. The 
study revealed a significant small positive 
dependency between the average claim size and the 
number of claims. Guegan and Jouad (2012) in their 
research also applied different pair-copula models for 
aggregating market risks

13
. Diers et al. (2012) used 

the Bernstein copula for calibrating the claims data on 
storm, flood, and water damage insurance in 
Germany. Wang (2013) considered both multi-year 
(temporal) dependencies and dependencies among 
lines of business in the multi-year, and multi-line 
reinsurance contract. In his study, copulas were used 
to show that assumption of temporal independence in 
modeling the distribution of the underlying loss 
variables, potentially led to a significant under‐
estimation of the risk embedded in the reinsurance 
product. Brechmann (2013) modeled the Systemic 
and Operational Risk using a hierarchical approach 
called the “hierarchical Kendall copula”. Brechmann 
and Czado (2013) in their study used Vine copulas to 
analyze the Euro Stoxx 50 index, as it is a major 
market indicator for the Eurozone and highlighted the 
use and effectiveness of vine copulas in financial risk 
management. Belkacem (2014) modelled the 
dependence of two lines of business; Auto Damage 
and Auto Liability, using the Archimedean copulas 
and their survival copulas to evaluate the solvency 
capital required (SCR) for a Tunisian insurance 

                                                           
12

In the linear risk aggregation approach it is implicitly 
assumed that the aggregated risk has the same quantiles of 
the individual risks. However, this assumption is satisfied only 
if the aggregated risk and individual risks come from the 
same elliptic density family (See Rosenberg and 
Schuermann [2004]). 
13

Market risk is the risk that the value of an investment will 
decrease due to moves in market factors. The five main 
market sub- risks considered in the Guegan and Jouad,s 
study are Equity, Interest rates, Spread, Foreign Exchange 
and Implied Volatility. 

company. The aggregate, SCR of the internal model 
proposed by Solvency II is lower than the assessed 
SCR using the copula model and suggested retaining 
the internal model. Yoshiba (2015) utilized several 
parametric copulas for enterprise risk management 
and risk aggregations in the banking industry, 
especially for the market and credit portfolios. 

 As earlier mentioned, the empirical studies 
utilizing the copula method in risk aggregation are 
numerous. This research focused on the portfolio of 
underwriting risks and estimated the corresponding 
economical capital requirement for the entire 
insurance industry of Iran, using various types of Vine 
copula models.  

In the classification of IAA
14

, underwriting risk 
is one of the main categories of risks that insurance 
companies face in their insurance business activities

15
. 

Further, this category of risks could have a significant 
effect on the activities of business investment insured 
(Zou et al., 2012) and on the insurance cycles 
(Jakovčević and Žaja, 2014). Therefore, managing 
this category of insurers’ risks is fundamentally 
important for insurance companies. 

Using the vine copula provides us with the 
model complex dependency patterns by benefiting 
from the rich variety of bivariate copulas as building 
blocks of vine copula. However, there are some 
serious weaknesses of copula particularly, concerning 
the recognition of extreme events, such as natural 
disasters and terrorist attacks. Nevertheless, the 
modeling dependencies with copulas would incur 
significant cost for smaller companies (Nguyen and 
Molinari, 2011). 

As mentioned earlier, modeling is the dependent 
structure of underwriting the risk of insurance 
industry in which Vine copula models has several 
advantages. Specially, R-vine copula models the 
complex dependency of larger numbers of dimensions 
of risk. Hence, it allows estimation of the total 
economical capital for the entire insurance industry 
more accurately than other parametric copulas such as 
the elliptical and Archimedean copula models, which 
are even more accurate than the linear risk 
aggregation method. 

The Central Insurance of Iran as the sole 
regulatory authority proposed the Regulation No. 69 
(RN69) on insurers to assess the solvency capital 
required to determine the solvency margin ratio 
(SMR) since February 15

th
, 2012. The structure of this 

regulation is based on the linear risk aggregation 
method (Safari, 2014). Thus, the results of this 
research would be useful to future regulatory 
decisions. 

There are some rational explanations for using 
the entire insurance industry as the data sample for 
this research. Some of the insurance companies are 
active in a few lines of business, while others 

                                                           
14

International Actuarial Association 
15

Investment risks are another one main categories of risks in 
the IAA classification. And Zou et al [2012]) examined the 
association between underwriting risks and investment risks. 
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established previous years ago began some of their 
insurance business activities early. The aim of this 
research is to model the dependency structure of all 
lines of insurance business activities and estimate the 
economic capital for the whole underwriting risks.  

To achieve this end, the historical data of loss 
ratios corresponding to each business line was used to 
model the dependency structure between different 
business lines of the insurance industry with different 
classes of vine copula. The Economic capital for the 
entire Iranian insurance industry was calculated using 
1000 simulated data of loss ratio based on the 
specified vine copula models and the risk measures 
value at risk (VaR) and expected shortfall (ES). 
Furthermore, total risk-based capital (RBC) of the 
industry is based on the RN69 model assessed to 
explore the advantages of using the vine copula model 
instead of the RN69 method which represented the 
diversification effect. To estimate the parameters of 
vine copula model and simulate the aggregated loss 
ratios, statistical computing software R 3.1.2 (which 
is freely accessible from an online website) was used.  

 
2. Analytical methods 
 
The concept of copula was introduced by Sklar 
(1959), (in his seminal paper for the first time. Copula 
captures the dependence among n-variables, 
irrespective of their marginal distributions and utilizes 
the copula for risk aggregation. Modeling the 
multivariate distribution function of a set of risks 
{X1 , ⋯ , Xn} is necessary for the purpose of risk 
aggregation. Based on the first theorem of Sklarwe, 
one can construct the multivariate cumulative 
distribution function (cdf) F(X) from the univariate 
cumulative distribution function F1, ⋯ , Fn and an n-
variate arbitrarily chosen copula C. That is: 
 

F (X) = C(F1(x1) , ⋯ , Fn(𝑥n)) 
 

(2) 

Consequently, the joint distribution of risks 
X1, ⋯ , Xn are not independent to the implemented 
copula(C) and specified margins F1(x1) , ⋯ , Fn(𝑥n). 
This means that selecting the appropriate copula 
model is of crucial importance in the process of risk 
aggregation and estimating the total economic capital. 
For this purpose, Brechmann (2013) in his study 
suggested that four (4) key characteristics; 
heterogeneous pairwise dependence, tail dependence, 
interpretable parameters and computational 
tractability should take into account, the selection of 
the ideal copula model practically. For the purpose of 
risks aggregation, various copulas have been used in 
the empirical research. The most famous parametric 
copula models are Elliptical copulas such as Gaussian 
copulas, t-Student copulas, and Archimedean copulas 
model such as Gumbel, Frank, Clayton and Joe 
copula models, Hierarchical Archimedean Copula 
(HAC) models and Vine copula models. Table 1 
shows some famous parametric bi-variate copulas and 
their rank correlation. 

Elliptical copulas are unable to model financial 
asymmetries. They are generally applied to symmetric 

distributions (Patton, 2009) and can be easily 
extended to a higher dimension. Although, 
Archimedean copulas are not satisfactory in the 
description of multi-variate dependence in dimensions 
higher than two (Joe, 1996). This class of copulas is 
symmetric with respect to the permutation of their 
random uniform variable and therefore suffers from a 
very limited dependence structure

16
. Although, the 

hierarchical Archimedean copulas (HAC) prevail over 
restriction of exchangeability in the Archimedean 
copulas class, there are some drawbacks to the HAC. 
It is presupposed that in the HAC, the within-group 
dependence should be homogeneous and between-
group dependence should be lower than the within-
group dependence (Savu and Trede, 2010)

17
. 

In this research, Vine copula was used as an 
efficient technique for describing and analyzing the 
multivariate dependence as it is widely used in risk 
aggregation since the last decade. 

 
2.1 Vine copula 
 
Multivariate Vine copulas

18
 or ‘‘pair of copula 

constructions’’
19

 are constructed by sequentially 
applying bi-variate copulas to build up a higher 
dimension copula. Therefore with a vine copula, it is 
possible to model complex dependency patterns by 
benefiting from the rich variety of bi-variate copulas 
as building blocks (Joe, 1996). 

Considering the random set of variables 
𝑋 = {X1, ⋯ , Xn} with joint probability distribution 
function (pdf) 𝑓(x1, ⋯ , xn) and marginal function 
pdf’s 𝑓𝑖(xi) for i = 1, 2, … , n. Then, the joint 
distribution function of these random variables can be 
decomposed into terms of conditional distributions 
and the marginal function pdf’s to be:  

 
 

𝑓(x1, ⋯ , xn) = [∏ 𝑓(𝑥𝑡|x1, ⋯ , xt−1)

𝑛

𝑡=2

] ∙ 𝑓1(x1) 
(3) 

 
By Sklar's theorem in Equation (3) the 

component f(xt|x1, ⋯ , xt−1) can be expressed as
20

: 
 

                                                           
16

Because in the Archimedean copulas assumed that the 
multi-variate dependency structure depends on a single 
parameter of its generator function. 
17

In addition, to fully describe the complexity of the observed 
dependence, it could be necessary to use hierarchical 
copulas with more complexities due to identification of the 
kind and the sort of the structure. 
18 Vine copulas initially proposed by Joe 1996 
19The pair copula constructions (PCCs) was introduced by Aas et al. 

(2009). 
20For bivariate X1 and X2 that is: 𝑓(𝑥1, 𝑥1) = 𝑐1,2 (𝐹1(𝑥1), 𝐹2(𝑥2)) ∙
𝑓1(𝑥1) ∙  𝑓2(𝑥2) 
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f(xt|x1, ⋯ , xt−1) = c1,t|2,⋯,t−1 × f(xt|x2, ⋯ , xt−1)

   = [∏ cs,t|s+1,⋯,t−1

𝑡−2

𝑠=1

] × c(t−1),t × 𝑓𝑡(xt)  (4) 

Where cs,t|s+1,⋯,t−1 denotes the conditional 

density function of bivariate copula with uniformly 
distributed marginal 𝑢𝑠 and 𝑢𝑡 correspond to variables 
𝑋𝑠 and 𝑋𝑡 respectively. Using four (4) and 𝑠 = 𝑖 , 𝑡 =
𝑖 + 𝑗 it follows that:  

 

𝑓(x1, ⋯ , xn) = [∏ ∏ 𝑐𝑖,(𝑖+𝑗)|(𝑖+1),…,(𝑖+𝑗−1)

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

]

∙ [ ∏ 𝑓𝑘
(𝑥𝑘)

𝑛𝑘=1

] 

 

(5) 

Decomposition of Equation (5) is called pair 
copula decomposition (PCC). Bedford and Cooke 
(2001, 2002) called such pair copula constructions as 

the regular vine copulas since the dependency 
structure can be visualized as resembling a grapevine. 
In addition, Kurowicka and Cooke (2007) classified 
vine copulas into three sub-classes; R-vine, D-vine 

and C-vine copulas. There are (n
2
) × (n − 2)! × 2(n−2

2 ) 

number of possible ways to decompose the n-
dimensional density functions Equation (6) to the 
components pair copula constructions and marginal 
distributions. The number of C- vines and D-vines are 
equal to n! 2⁄  and the reminders decomposition refers 
to R-vines (Morales-Nápoles et al., 2010; Aas et al., 
2009).  

 

 
Table 1. Some famous parametric bi-variate copulas and their rank correlation 

 
Name Parameter range Kendall's τ Tail dependence 

(lower, upper) 

Gaussian ρ ∈ (−1, 1) 2

𝜋
arcsin(𝜌)  (0, 0 )  

t-student ρ ∈ (−1, 1), 𝑣 > 2  2

𝜋
arcsin(𝜌)  2𝑡𝑣+1 (−√𝑣 + 1√

1−ρ

1+ρ
)  

Clayton θ > 0 θ

θ + 2
 (2

−1
θ , 0) 

Gumbel θ ≥ 1 1 −
1

θ
  (0, 2 − 2

1
θ) 

Frank θ ∈ ℝ{0} 1 −
4

θ
+ 4

D1(θ)

θ
  (0, 0)  

Joe θ > 1 1 +
4

θ2 ∫ tlog(t)(1 − t)2(1−θ)/θ. dt
1

0
  (0, 2 − 2

1
θ) 

BB1 θ > 0, 𝛿 ≥ 1 1 −
2

δ(θ+2)
  (2

−1
θδ , 2 − 2

1
δ) 

BB6 θ ≥ 1, δ ≥ 1 1 +
4

θδ
∫ {−log(1 − (1 − t)θ) × (1 − t)(1 − (1 − t)−θ)}. dt

1

0
  (0, 2 − 2

1
θδ) 

BB7 θ ≥ 1, δ > 0 
1 +

4

θδ
∫ {−(1 − (1 − t)θ)

δ+1
×

(1−(1−t)θ)
−δ

−1

(1−t)θ−1 }. dt
1

0
  (2

−1
δ , 2 − 2

1
θ) 

BB8 θ ≥ 1, δ ∈ (0,1]  1 +
4

θδ
∫ {−log (

(1−δt)θ−1

(1−δ)θ−1
) × (1 − tδ)(1 − (1 − tδ)−θ)}. dt

1

0
  

(0, 0)  

Source: Allen et al. (2014) 
 
An n-dimensional vine tree structure is a 

sequence of n-1 trees. Tree j has n+1-j nodes and n-j 
edges and Edges in tree j become nodes in tree j+1. 
The density of a regular vine distribution is defined by 
the product of pair copula densities over the 
n(n − 1) 2⁄  edges identified by the regular vine tree 
structure and the product of the marginal densities. 
Canonical vine distributions are regular vine 
distribution for which each tree has a unique node 
connected to n − j edges. D-vine distributions are 
regular vine distributions for which no node in any 
tree is connected to more than two edges. It should, 
however, be noted that C- and D-vine copulas are 
most appropriate if their structure is explicitly 
motivated by the data. In particular, C-vine copulas 
may be used if there is a set of pivotal variables such 
as stock indices and D-vine copulas are particularly 

attractive to model variables with temporal order 
(Jaworski et al., 2013).  

The full specification of a vine model requires 
the choice of a vine tree structure, the copula families 
for each pair copula term and their corresponding 
parameters

21
. Morales-Nápoles et al. (2010) and 

Dissmann et al. (2013) specified the R-Vine copula in 
matrix notation. One matrix contains the R-vine tree 
structure, one the copula families utilized and two 
matrices corresponding to parameter values. 

To estimate parameters of the R-vine 
distribution (f(x1, ⋯ , xn) in Equation 6) for a given R-
vine tree structure and bivariate copula families for 
each pair copula term, an i.i.d. sample from the R-
vine distribution is required. Given this multivariate 

                                                           
21

 To specify the D-vine tree structures, the order of the 
variables in the first tree has to be chosen and for the C-vine 
the root nodes for each tree need to be determined. 
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sample, there is the need to estimate marginal and 
copula parameters. The marginal parameters are either 
estimated using parametric (IFM

22
) or non-parametric 

(MPL
23

) approach. To estimate the parameters of pair 
copulas with known tree structure, there are several 
methods available. The first is the sequential 
estimation method suggested by Aas et al. (2009) and 
further studied in detail by HobakHaff (2012).  
Maximum likelihood was also discussed in the 
research of Aas et al. (2009) and Bayesian estimation 
for D-vine copula in the study of Min and Czado 
(2010). For general R-vine copula  Gruber and 
Czado(2013) gave a Bayesian estimation approach 
which estimated the tree structure, pair copulae and 
their parameters starting with Tree 1 to Tree d-1 
(Czado et al., 2013). In this paper, parameters of vine 
copulas through maximum likelihood estimation 
method were estimated using Package ‘VineCopula’ 
in R. 

 
3. Results and discussion 
 
3.1  Data 
 
Loss ratio (LR) is defined as the ratio of the gross 
incurred claims to earned premium. This index 
obviously represents the magnitude of the 
underwriting loss from each business line (Adams and 
Buckle, 2003; Tang and Valdez, 2009). Here, the loss 
ratio as a proxy of underwriting risk was used. 
However, use of loss ratio as a measure of 
underwriting risk has been widely criticized. Zou et 
al. (2012) emphasized that loss ratio did not capture 
the underwriting expenses and therefore, expense 
ratio was added to loss ratio for measuring 
underwriting risk. Jakovčević and Žaja (2014) argued 
that change in reserves for claims and the costs of loss 
liquidation are not taken into account in the loss ratio 
index. 

The historical data of earned premium and 
incurred claims in each business line of the insurance 
industry of Iran are accessible from the website of the 
Central Insurance of Iran (http://www.centinsur.ir/). 
An annual sample of these data was used to calculate 
the historical aggregate loss ratio of the insurance 
industry from 1975-2013, according to Equation (6) 
(Tang and Valdez, 2009).  : 
 

𝐿𝑅𝑡 =
∑ 𝐼𝐶𝑖,𝑡

𝑛
𝑖=1

∑ 𝐸𝑃𝑖,𝑡
𝑛
𝑖=1

= ∑ 𝐿𝑅𝑖,𝑡

𝑛

𝑖=1
∗

𝐸𝑃𝑖,𝑡

∑ 𝐸𝑃𝑖,𝑡
𝑛
𝑖=1

= ∑ 𝐿𝑅𝑖,𝑡

𝑛

𝑖=1
∗ 𝑤𝑖,𝑡 

(6) 

 
 Where 𝐿𝑅𝑖,𝑡 is loss ratio of line i during period 

t, and there are n lines of business in total; and 𝐼𝐶𝑖,𝑡 

and 𝐸𝑃𝑖,𝑡 denote the incurred claims and earned 

premium from line i during period t respectively; and 

𝑤𝑖,𝑡 =
𝐸𝑃𝑖,𝑡

∑ 𝐸𝑃𝑖,𝑡
𝑛
𝑖=1

 represents the weight of line i in 

period t by earned premium. 

                                                           
22

inference functions for margin(IFM) 
23

maximum pseudo likelihood (MPL) 

Table 2 presents the status of the insurance 
industry of Iran in the year 2013. There are sixteen 
(16) different lines of business in total and the 
corresponding underwriting risks are denoted by X1, 
X2… X16. As can be seen in Table 2, loss ratio varies 
across business lines from 0.0514 for line “Aircraft 
insurance” to 1.5286 for line “Credit insurance”. 
Premium income of line “Third-party insurance and 
excess” and line “Premium treatment” and line 
“Credit insurance” were less than the corresponding 
claim payments. Furthermore, the line “Third-party” 
and line “Premium treatment” have the highest 
percentage of premium income earned by the industry 
(about 40 and 23%, respectively). However, the sum 
of the premium income is greater than the sum of the 
claim payment in the industry and thus, the 
aggregated loss ratio for the entire industry is less 
than one that is about 89.6%.  
 
3.2. Modelling the dependency structure 
 
Here, it is essential to estimate the marginal 
distributions of each business line’s loss ratio before 
modelling the dependency structures. The maximum 
pseudo likelihood (MPL) approach introduced by 
Genest et al. (1995) was hereby used non-
parametrically to estimate the marginal distributions 
of each risk {X1, X2, …, X16}. The kernel density of 
underwriting risks corresponds to each business line 
of the insurance industry plotted in Figure 6 as shown 
in the appendix. From Figure 6, it is evident that the 
distributional behaviour of each business line differs 
from one another, owing to the variety of the risks 
that covered each business line of the insurance 
industry. In addition, the scatter plots of the pair's risk 
data (Figure 6) in the appendix gave a clear 
demonstration of simple dependency between pair’s 
business lines intuitively.  

The results of modeling the dependency 
structure of lines in the insurance industry of Iran 
through the vine copula approach are shown in Tables 
3, 4 and 5. These tables as well as the Figures 1, 2 and 
3 enable comparison of the dependency structure of 
business lines under different class of Vine copula 
models. Table 3 gives the estimated results of 
modeling dependency between different lines of 
business with regular vine (R-Vines) copulas, 
canonical vine (C-Vines) and drawable vines (D-
Vines) copulas, respectively (Tables 4 and 5). It is 
noticeable that these tables provide only the first 
fifteen trees of specified dependency structure. The 
estimated results correspond with other trees of 
dependency structures which are not reported here. 
Tables 3 to 5 consist of selected pair copula families, 
corresponding parameters and pairwise dependence 
measure such as Kendall's τ 

24
 with respect to AIC 

criteria. 

 

                                                           
24

There are other pairwise dependence measure such as the 
empirical tail dependence coefficient (λ) 

http://www.centinsur.ir/
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Table 2.  Business lines of the insurance industry and their loss ratio in 2013 
 
Line of Business  Risk 

name 
Premiums 

Income 
Market Share Claim Payment Loss Ratio 

Third-party insurance and excess X1 51,745,766.2 0.4028 53,523,386.1 1.0344 

Premium treatment X2 30,500,850.9 0.2374 35,801,123.0 1.1738 

The body of the car insurance  X3 10,287,407.1 0.0801 6,612,351.3 0.6428 

Liability insurance X4 8,323,430.5 0.0648 6,834,766.5 0.8211 

Driver accident insurance X5 6,085,592.3 0.0474 2,781,556.9 0.4571 

Fire insurance X6 5,880,291.9 0.0458 2,457,451.1 0.4179 

Life insurance X7 4,639,439.2 0.0361 3,322,801.3 0.7162 

Oil and energy insurance X8 2,047,876.5 0.0159 675,153.8 0.3297 

Engineering insurance X9 1,984,672.4 0.0154 980,214.7 0.4939 

Accident insurance X10 1,898,603.9 0.0148 656,572.3 0.3458 

Ship insurance X11 1,726,179.4 0.0134 683,090.9 0.3957 

Cargo insurance X12 1,598,648.8 0.0124 369,907.8 0.2314 

Aircraft insurance X13 1,349,454.1 0.0105 69,414.7 0.0514 

Credit insurance X14 202,878.2 0.0016 310,116.6 1.5286 

Money insurance X15 103,186.8 0.0008 20,014.7 0.1940 

Other types of insurance X16 88,066.8 0.0007 25,425.6 0.2887 

Total insurance industry 128,462,344.7 1 83,027,498.2 0.8962 

Note: numbers in columns 3 and 5 of the table are given in units of million Rials of Iran. 
 

Table 3. Estimation results of dependency structure of risks with R-Vine copulas 
 

Risks names Bivariate copulas Parameter(s) Kendall's  τ  AIC criteria 

X1, X14 Clayton 1.71 0.46 -19.752 

X14, X4 Joe 108.8 0.98 -215.349 

X13, X5 Gaussian -0.46 -0.31 -4.470 

X5, X4 Joe-Clayton 2.22, 2.12 0.61 -35.435 

X3, X4 Clayton 1.23 0.38 -13.158 

X2, X4 Clayton 2.74 0.58 -37.321 

X4, X8 Frank 10.03 0.67 -43.278 

X16, X12 Clayton 1 0.33 -10.927 

X9, X12 Frank 3.67 0.36 -8.698 

X12, X10 Frank -4.6 -0.43 -15.267 

X6, X10 Rotated Clayton 90 degrees -0.91 -0.31 -8.738 

X10, X8 Frank -3.38 -0.34 -6.285 

X8, X11 Clayton 0.9 0.31 -4.719 

X7, X15 Independence --- --- --- 

X15, X11 Gaussian 0.42 0.28 -3.863 

 
Table 4. Estimation results of dependency structure of risks with C-Vine copulas 

 
Risks names Bivariate copulas Parameter(s) Kendall's  τ  AIC criteria 

X6, X8 Frank 2.49 0.26 -2.470 

X15, X8 Clayton 0.87 0.3 -4.334 

X3, X8 Frank 3.65 0.36 -7.635 

X13, X8 Independence --- --- 0.000 

X4, X8 Frank 10.03 0.67 -43.278 

X12, X8 Independence --- --- 0.000 

X1, X8 Clayton 0.84 0.3 -3.998 

X7, X8 Independence --- --- 0.000 

X10, X8 Frank -3.38 -0.34 -6.285 

X11, X8 Clayton 0.9 0.31 -4.719 

X9, X8 Frank 2.25 0.24 -1.934 

X2, X8 Clayton 2.22 0.53 -23.379 

X5, X8 Clayton 1.67 0.46 -14.717 

X14, X8 Survival Gumbel 2.69 0.63 -33.119 

X16, X8 Independence --- --- 0.000 
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Table 5. Estimation results of dependency structure of risks with D-Vine copulas 
 

Risks names Bivariate copulas Parameter(s) Kendall's  τ  AIC criteria 

X16, X15 Survival Joe 1.23 0.12 0.672 

X15, X14 Clayton 0.67 0.25 -2.952 

X14, X13 Rotated Gumbel 90 degrees -1.23 -0.19 -1.694 

X13, X12 Gaussian -0.17 -0.11 1.158 

X12, X11 Survival Clayton 0.23 0.11 1.162 

X11, X10 Rotated Clayton 270 degrees -1 -0.33 -9.978 

X10, X9 Frank -2.88 -0.3 -5.803 

X9, X8 Frank 2.25 0.24 -1.934 

X8, X7 Clayton 0.52 0.21 -0.485 

X7, X6 t-student 0.29, 2.03 0.19 -2.379 

X6, X5 Joe 1.39 0.18 -1.984 

X5, X4 Joe-Clayton 2.22, 2.12 0.61 -35.435 

X4, X3 Clayton 1.23 0.38 -13.158 

X3, X2 Clayton 0.64 0.24 -2.587 

X2, X1 Survival Joe 1.65 0.27 -3.470 

 
Figures 1, 2 and 3 illustrate the dependency 

structure of business lines (risks) graphically. These 
figures represent the firs tree of the specified R-Vine, 
C-Vine and D-Vine for available data sample with 

pair-copula families and empirical Kendall's τ values 
corresponding to pair-copula parameters as edge 
labels. 

 

 
Figure 1. Dependency structure of risks modelled with R-Vine 

 

 
 

Figure 2. Dependency structure of risks modelled with C-Vine. 
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Figure 3.Dependency structure of risks modelled with D-Vine 

 

 
 

It is apparent from Figure 2 and Table 4 that 

business line “Oil and energy insurance” is the root 

node of C-Vine copula dependency structure; 

however, its share in the total premium incomes is 

about 1.5%.  

 

3.3 Vine Copula selection 
 

The log likelihoods obtained by maximum likelihood 

estimation, Schwarz’s Bayesian information criterion 

(BIC) and Akaike information criterion (AIC) with 

respect to R-Vine, C-Vine and the D-vine copula 

models are shown in Table 6. Based on the results of 

this table, it appears that the R-Vine copula model 

best matches the loss ratio data set. 

 

Table 6. Compare the log- likelihood, AIC and BIC criteria to select the best model 

 
Copula model AIC BIC Log likelihood 

R-Vine -488.5774 -441.9977 272.2887 

C-Vine -288.7615 -235.5275 176.3808 

D-Vine -268.5802 -62.29856 258.2901 

 

Besides the classical AIC and BIC criteria, 

Vuong (2007) and Clarke (1989) tests allowed 

pairwise comparison of three competing models; R-

Vine, C-Vine and D-vine. Below, Table 7 summarizes 

the Vuong and Clarke tests to determine the best 

model. The large p values corresponding to the Vuong 

test indicate that pair models cannot be distinguished 

statistically. According to the Clarke Test’s results, 

model R-Vine is preferred to both C-Vine and D-Vine 

models, whereas, C-Vine and D-Vine models are 

statistically equivalent. 

 

Table 7. Vuong and the Clarke tests to select the models 

 
Pairwise model Vuong Test statistics Clarke Test statistics 

R-Vine, C-Vine 0.0909 (0.927) 5 (0.000) 

R-Vine, D-Vine 0.0132 (0.989) 5 (0.000) 

C-Vine, D-Vine 1.4435 (0.148) 23 (0.336) 

Note: numbers in parentheses refer to p-value of test statistics. The null hypothesis shows that both models 

are statistically indistinguishable. 

 

3.4  Aggregated loss ratio 
 

To obtain the aggregated loss ratio, sample size of 

1000 data of loss ratio was simulated for each 

business line from the specified R-Vine, C-Vine and 

D-vine copula model using the R programming 

language and software (see algorithms of simulating 

in Aas et al. [2009]). Based on Equation 1, the 

simulated loss ratios were aggregated. That is, data of 

simulated loss ratio for each business line multiplied 

by corresponding weight of earned premium. Figure 4 

shows the overlap of the density functions of a sample 

of 1000 data of aggregated loss ratio obtained by R-

Vine, C-Vine and D-vine copula model.  
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Figure 4. Aggregated Loss Ratio Distribution with R-Vine, C-Vine and D-Vine Copulas 
 

 
 

Table 8 provides a comparison of distribution for 
the aggregated loss ratio simulated with each copula 
model. As perceived from this table and observed 

from Figure 4, there are differences in the resulting 
distributions for the different vine copula class. 

 
 

Table 8. Summary Statistics of Aggregate Loss Distributions 
 

D-Vine C-Vine R-Vine Statistic 

0.46 0.47 0.47 Mean 

0.2 0.2 0.19 SD 

0.22 0.22 0.21 Mode 

-0.16 -0.23 -0.33 Skewness 

-0.81 -0.81 -0.75 Kurtosis 

0.03 0.04 0.02 Minimum 

0.31 0.29 0.29 1st Quantile 

0.47 0.49 0.49 Median 

0.58 0.60 0.62 3rd Quantile 

0.88 0.86 0.85 Maximum 

 
3.5 Aggregated capital requirements 
 
In order to quantify the aggregate capital 
requirements, we calculated the VaR

25
 and ES

26
 of the 

aggregated loss ratio at a confidence level of 95% in 
the first instance

27
. The resulting VaR 95% and ES 

95% was multiplied by the net premium income of the 
insurance industry so as to obtain the capital charge in 
the next step. The confidence level (95%)was chosen 
arbitrarily; however, computing the economic capital 
requirement through VaR 99.5% and ES 99% gives 

                                                           
25

The value at risk (VaR) of the portfolio at the given 

confidence level 𝛼 ∈ (0,1) is given by the smallest number l 
such that the probability that the loss L exceeds l is no larger 
than (1-α). Formally, 

𝑉𝑎𝑅𝛼 = inf(𝑙 ∈ 𝑅: 𝑃(𝐿 > 𝑙) ≤ 1 − 𝛼) = inf(𝑙 ∈ 𝑅: 𝐹𝐿(𝑙)
26

The expected shortfall (ES) at confidence level 𝛼 is the 
expected loss conditional on losses being greater than 𝑉𝑎𝑅𝛼. 
In other words, ES is the expected loss in the upper tail of the 
loss distribution.  𝐸𝑆𝛼 = E(𝐿|𝐿 >𝑉𝑎𝑅𝛼). 
27

Note that VaR is not a coherent risk measure in general 
because of dissatisfaction of the subadditivity condition of 
coherency, but the ES is a coherentent risk measure and 
reflects severity of the losses(Artzner et al, 1997). 

the required capital by Solvency II and by the Swiss 
Solvency Test (SST). 

Tables 9 and 10 show the aggregated capital 
requirement for each vine copula model and their 
corresponding diversification benefits quantified by 
the risk measures VaR and ES in the year 2013. For 
comparison of the result of risk aggregation with Vine 
copula models and risk aggregation based on the 
internal model, the total risk-based capital (RBC) of 
the insurance industry was assessed and the 
assessment results of the total RBC are shown in 
Table 7. In addition, the Diversification effect is 
defined as the reduction rate of the aggregated VaR or 
ES from the total risk-based capital (RBC) of the 
insurance industry based on the internal model. 

As seen from Table 9, the R-Vine copula model 
gave the lower level of aggregated capital requirement 
compared to the C-Vine and D-Vine copula models. 
This can be explained by the fact that using R-Vine 
copula leads to a model dependency structure of 
business lines (risks) appropriately. Furthermore, the 
R-Vine copula model gave higher level of calculated 
aggregate capital requirement that corresponds to the 
severity of the losses using the coherent risk measure 
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ES; that is about 53,153,152 million Rials of Iran 
(Table 10). . 

The amount of calculated Aggregated Capital 
Requirements based on Vine copula models under 
both risk measure is less than the calculated RBC for 
the entire insurance industry based on the internal 
model. Furthermore, the diversification effect which 
indicates the crude measure of the magnitude of the 
diversification benefits, under different risk measures  
and vine copula models varies considerably between 

the range of 45.2 to 91.7%, respectively. Thus, 
variation in the amount of calculated Aggregated 
Capital Requirements and corresponding 
Diversification effect with each Class of Vine Copula 
and with each risk measure led to the following 
conclusion. The choice of dependency structure and 
risk measures have a paramount effect on the 
calculated Aggregated Capital Requirements as well 
as on the diversification benefits for an insurer. 

 
 

Table 9. Aggregated Capital Requirements based on Vine Copula models using risk measure VaR 
 

Class of Vine 
Copula 

VaR 95% 
Aggregated Capital 

Requirements 
Diversification Benefits Diversification effect % 

R-Vine 0.06282 8,070,594.8 88,872,796.0 91.7 

C-Vine 0.20230 25,987,595.1 70,955,795.6 73.2 

D-Vine 0.07498 9,632,114.0 87,311,276.8 90.1 

Note: VaR 95% corresponds to the 950
th

 value of the sample of 1000 simulated aggregated loss ratio data 
which distribution of this sample ranked in increasing size. 

 
Table 10. Aggregated Capital Requirements based on Vine Copula models using risk measure ES 

 
Class of Vine 

Copula 
ES 95% Aggregated Capital Requirements 

Diversification 
Benefits 

Diversification effect % 

R-Vine 0.41376 53,153,151.7 43,790,239.1 45.2 

C-Vine 0.19784 25,414,772.6 71,528,618.2 73.8 

D-Vine 0.31088 39,936,480.8 57,006,910.0 58.8 

Note: ES 95% is the average sample of data in the 5% tail of the aggregated loss ratio distribution. 
 

3.6. Risk based capital in the internal 
model 
 
On the basis of Regulation No. 69, Central Insurance 
of Iran (RN69), assessment of total risk-based capital 
(RBC) of industry is 96,943,391 million of Iran Rials 
for year 2013  (Table 11). In the RN69, the risks of 
business lines such as “Liability”, “Oil and energy” 
and “Credit” were not included in the risk 

aggregation. But the risks in the business lines of 
“Fire”, “Engineering”, “Third-party” and “Life 
insurance” were included twice with different 
coefficients to cover the catastrophic risks such as 
earthquake. These are some limits of using the RN69 
instructions besides linear risks aggregation problems 
to assess the RBC of insurance companies in Iran.  

 
Table 11. Aggregation of underwriting risks based on internal model of RN69 

 

Line of Business 
Premium 

Income 

Coefficient of 

Premium Risk 

Claims 

Payment 

Coefficient of 

Claims risk 
𝑅𝐵𝐶(𝑋𝑖) 

Fire insurance 5,880,292  0.172 2,457,451  0.245 1,011,410.2  

Cargo insurance 1,598,649  0.123 369,908  0.175 196,633.8  

Accident insurance 1,898,604  0.678 656,572 0.969 1,287,253.4  

C
ar

 

in
su

ra
n
ce

 

Driver accident insurance 6,085,592  0.25 2,781,557  0.358 1,521,398.1  

The body of the car insurance 10,287,407  0.309 6,612,351  0.442 3,178,808.8  

Third-party insurance and excess 51,745,766 1.127 53,523,386 1.61 86,172,651.6 

Life insurance 4,639,439 1.164 3,322,801 1.663 5,525,818.6 

Premium treatment 30,500,851 0.815 35,801,123 1.165 41,708,308.3 

Ship insurance 1,726,179 2.181 683,091 3.116 3,764,797.2 

Aircraft insurance 1,349,454 1.017 69,415 1.453 1,372,394.8 

Engineering insurance 1,984,672 1.088 980,215 1.554 2,159,323.5 

Money insurance 103,187 2.923 20,015 4.176 301,615.2 

Other types of insurance 88,067 0.684 25,426 0.977 60,237.7 

C
at

as
tr

o
p
h
ic

 

ri
sk

s■
 

Fire insurance 5,880,292 0.58 2,457,451 0.841 3,410,569.3 

Engineering insurance 1,984,672 0.051 980,215 0.074 101,218.3 

Third-party insurance and excess 51,745,766 0.16 53,523,386 0.232 12,417,425.6 

Life insurance 4,639,439 0.13 3,322,801 0.188 624,686.6 

Total risk-based capital (RBC) for year 2013 √∑ [𝑹𝑩𝑪(𝑿𝒊)]𝟐
𝒊=𝟏  96,943,391 
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Note: numbers in second, third and sixth column of the table, from left to right, represents the unit of 

million in terms of Iran Rials (IRR). The premium income and claims payment multiplied by the corresponding 

coefficient risk in each line gives a great measure, that is, the RBC’s of line, while the square root of total 

squared risks gives the total RBC of industry. 

 

4. Conclusion 
 

Risk is the nature of insurance business activities. To 

ensure solvency, insurers are required both for 

regulatory purposes and as a going business concern 

to hold capital to back their insurance liabilities. In 

aggregating losses from different business lines for 

the purpose of capital determination, insurers have 

traditionally either ignored the dependence structure 

between business lines or used simple linear 

correlations to model such dependence. 

In this study, the underwriting risks of insurance 

industry of Iran was aggregated with taking account 

of likely dependecy among different insurance 

business lines. For this purpose, vine copula approach 

and the historical loss ratio data to model the 

dependency structure of underwriting risks was used.  

Subsequently, the capital requirement at 95% 

confidence level for the entire insurance industry 

based on the specified R-vine, C-vine and D-vine 

class of vine copula models using the value-at-risk 

(VaR) and expected shortfall (ES) risk measures was 

calculated. In addition, the total risk-base capital 

(RBC) of insurance industry assessed in accordance 

with the internal RN69 model for year 2013 to 

explore the advantage of using vine copula model 

instead of the internal linear risk aggregation method 

was represented as diversification effects. 

The results in the risks aggregation process 

showed that estimated aggregated economic capital 

under different risk measures and different vine 

copula class vaies considerably. Futhermore, less than 

the amount of RBC was assessed under the internal 

RN69 model. Thus, based on the results of this 

research, it was concluded that taking account of the 

varity of dependency for pairs of risks in the process 

of risks aggregation by utilizing the R-vine copulas 

models led to overestimation of the economical 

capital of insurance firms in comparision with the 

estimated results of simple and linear aggregation 

method, such as the standard model RN69. Further, 

the choice of dependency structure and risk measures 

have a paramount effect on the aggregate economic 

capital and diversification benefits. 

This study provides some empirical evidence 

supporting the importance of modeling the 

dependency structures in risk management, as it 

remains crucial to firms faced with multitude of risks 

in their business activities.  
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 Appendix 
 

A1. Compare the kernel densities of Loss Ratio in each line 

 

 
 

A2. Scatter Plot of Loss Ratios 

 

 
   


