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Abstract 

 
The expected result of a non-life insurance company is usually determined for its activity in 
different business lines as a whole. This implies that the claims reserving problem for a 
portfolio of several (perhaps correlated) subportfolios is to be solved. A popular technique for 
studying such a portfolio is the chain-ladder method. However, it is well known that the chain-
ladder method is very sensitive to outlying data. For the bivariate situation, we have already 
developed robust solutions for the chain-ladder method by introducing two techniques for 
detecting and correcting outliers. In this article we focus on higher dimensions. Being subjected 
to multiple constraints (no graphical plots available), the goal of our research is to find solutions 
to detect and smooth the influence of outlying data on the outstanding claims reserve in higher 
dimensional data sets. The methodologies are illustrated and computed for real examples from 
the insurance practice. 
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1. INTRODUCTION 
 

Because of the Solvency II regulations (f.i. for 
insurance companies operating in the European 
Union), the insurance companies have to put a 
Solvency Risk Capital aside. For every non-life 
insurance company, the starting point for the 
evaluation of this Solvency Risk Capital is the 
calculation of the outstanding claims reserve for the 
totality of its business. The outstanding claims 
reserve can be obtained as a result of applying the 
chain-ladder method for the run-off triangle of a 
univariate business line or a multivariate chain-
ladder method for several run-off triangles of a 
company with multiple business lines. 

In previous research, we discovered that the 
calculation of the outstanding claims reserve by 
means of the chain-ladder method is very sensitive 
towards outlying data. The statistical explanation for 
this sensitivity is straightforward because the 
development factors are averages and are not robust 
towards outliers. It was therefore interesting to be 
able to detect and correct the influence of outlying 
data on the outstanding claims reserve for one run-
off triangle representing the univariate business and 
evaluate the difference between the outstanding 
claims reserve with outliers and without outliers. 
This means that we created the tool to compare the 
outstanding claims reserve in the two situations but 
without expressing a preference for one or another 
outcome. This remains an important task for risk 
management and the regulator. 

However, a non-life insurance company will 
seldom limit its activity to one business line and will 
develop different business lines (it is not unusual 
that a non-life insurance company is doing business 
in the automobile sector as well as in the fire 
branch). As a consequence and because of the 

development of new guidelines, the insurance 
company is confronted with the quantification of the 
claims reserve for the whole of possibly correlated 
business lines. This implies that we have to study a 
portfolio of run-off triangles with possible 
correlation and that we have to consider multivariate 
claims reserving methods to calculate the ultimate 
claims reserve for the totality of the business of a 
non-life insurance company. 

Our study of outlying data in the multivariate 
case is performed in two steps. A first extention 
treats the two-dimensional data sets. T. Verdonck 
and M. Van Wouwe (2011) studied the presence and 
the influence of outliers in a bivariate setting. This 
bivariate situation was chosen because the two-
dimensional data set can still be visualized by a 
bagplot or an ellipsoid. In this way, the bivariate 
outlying data are easy to detect and they can be 
smoothed by graphical techniques. This detection 
and smoothing of the outliers is important. Merz 
and Wütrich (2008) defined a multivariate chain-
ladder method model and derived the properties of 
the multivariate chain-ladder estimators and the 
predictors of the chain-ladder factors and the 
ultimate claims. The multivariate claims reserving 
methods and in particular the multivariate claims 
reserving method by Merz and Wütrich (2008) to 
calculate the age-to-age development factors and to 
determine the outstanding claims reserve for the 
different run-off triangles as a whole, are also very 
sensitive to outlying data. The two methodologies to 
correct the outliers by graphical techniques on 
bivariate data sets from practice, showed an 
excellent performance. It can be established that if 
no outliers are present in the data set, the results for 
the outstanding claims reserve are equal as to be 
expected. 

If, however, we want to continue the process of 
detecting and smoothing outliers for multivariate 
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data in higher dimensions, we have to act 
differently. A first reason is, that the tool of 
graphical representation of the data set, is not 
available anymore. A second problem occurs when 
exploiting the idea of depth functions to measure 
the distance of the data points to a center and to 
discover the outlying data. A robust estimator for 
the median is given by the MCD method (Rousseeuw-
Ruts-Van Driessen) and is the Tukey median. The 
method is very time consuming and was therefore 
replaced by the FastMCD. The results for the value 
of the Tukey median by the application of the 
FastMCD method are very disappointing for three-
dimensional (or higher dimensional) data sets. The 
reason for the poor results will be discussed and can 
be explained by graph theoretical foundations. As a 
consequence of these facts, we have to focus on the 
development of other methods to detect and correct 
the outliers in higher dimensions. In section 2,we 
indicate which multivariate chain-ladder method we 
will use to calculate the outstanding claims reserve. 
In section 3, we explain why different approaches 
should be used for bivariate and multidimensional 
(N>2) data sets. In section 4, we introduce two 
possible techniques to smooth the outliers in higher 
dimensions. The numerical results for both 
approaches are presented in section 5. The R-
software will be used for this purpose. 

 

2. MULTIVARIATE CHAIN-LADDER RESERVING 
METHOD 

 

2.1. Notation and Method 
 

We will consider multivariate data and hence assume 
that the portfolios consist of N run-off triangles of 

observations of the same size. We assume that )(n
ijX  

and )(n
ijC  (for 1≤i, j≤I) are respectively the 

incremental and the cumulative claims amount of 

accident year i  and development year j  belonging 

to subportfolio n (with n=1,…,N). Furthermore let R
i
 

and R respectively denote the outstanding claims 

reserve of accident year i  and the overall reserve. 

The values of 
ijX  for i + j ≤ n + 1 represent the past 

claims data and will be used to make predictions 
about the claims that need to be paid in future 
calender years, namely 

ijX  where i + j > n + 1. For 

representation of the data it is common to use a run-
off triangle as in Table 1. 

Assume that the subportfolios consist of N run-
off triangles of observations of the same size. 

 
Table 1. Claims Development Triangle Number n 
 

 
Note: n, 1 ≤ n ≤ N, refer to subportfolios (triangle); 

i,  0 ≤ i ≤ I, refer to accident years (rows); j,  0 ≤ j ≤ J = I, 
refer to development years (columns). 

Cumulative claims of run-off triangle n for 
accident year i and development year j are denoted 

by )(n
ijC .  

For n ∈ {1,...,N}, i ∈ {1,...,I}, and j ∈ {1,...,J}, the 

individual development factors for accident year i  

and development year j  are defined by  
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are the N×N diagonal matrices of the N-

dimensional vectors N

Naa R),,(= 1 a  and 

  Nb

N

b aa R,,1   for an exponent }, b ∈ R, respectively 

so that  
 

1,,,1,, )(=)(=   jijijijiji CFDFCDC  

 

Jj ,1,=   and Ii ,0,=  . 

 
We use the multivariate chain-ladder time 

series model of Merz and Wütrich (2008) with N = 3. 
The parameter estimations are obtained by an 
iterative algorithm as proposed by Merz and Wütrich 
(2008). 

 

3. DETECTION OF THE ATYPICAL OBSERVATIONS 
 

Detecting outlying data in one dimension is easy. In 
passing from univariate data sets to multivariate 
data, the basic idea to start the process of detecting 
outliers is to introduce some measure of distance to 
evaluate how far away an observation lies from the 
center of the data set. A very common choice for 
this measure is the Mahalanobis distance.  

The definition of the Mahalanobis distance is: 
let C be a positive definite p×p-matrix and let t be a 
p-vector, then the Mahalanobis distance md(x; C; t) of 
vector x  towards C and t is defined by 

)()(=);;( 1 txCtxtCxmd t   . For our application, t  

and C are respectively the arithmetic mean and the 
classical covariance matrix. 

V. Hodge and J. Austin (2004) discuss several 
outlier detection methodologies for multivariate 
data. Because there are no unambiguous total 
ordenings for multivariate data sets, the reduced 
sub-ordening based on the generalised distance 
metric using the Mahalanobis distance measure is 
recommended. Laurikkala et al. (2000) noted that the 
Mahalanobis measure is the most accurate for 
multivariate data. Their findings are supported by a 
panel of experts.  There are a number of drawbacks 
for the application of the Mahalanobis distance 
measure. It turns out that the Mahalanobis distance 
is computationally expensive to calculate for high 
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dimensional data sets. Like many other statistical 
methods, the Mahalanobis distance measure suffers 
from the problem of increasing dimensionality, 
because it requires a pass through the entire data 
set to identify the attribute correlations. As the 
dimensionality of the data increases, the data are 
spread through a larger space and therefore become 
less dense. This is known as ‘the Curse of 
Dimensionality’ and makes it harder to discern the 
convex hull separating the outliers from the good 
data points. 

It is also proven that this Mahalanobis distance 
suffers from the masking effect, which causes 
outliers to have a small Mahalanobis distance and 
not being flagged as abnormalities. To solve this 
problem, Rousseeuw (1984) introduced robust 
estimates for the center and the covariance matrix. 
The Minimum Covariance Determinant method is a 
robust estimator of the location and the scatter of 
the multivariate data in Rp that looks for those h 
observations in the data set, whose classical 
covariance matrix has the lowest determinant. The 
MCD estimate of location and scatter is respectively 
the average and the covariance matrix of these h 
data. In practice, h=0.75n is a very common choice 
but the robustness and efficiency of this MCD 
method is highly depending on the choice of the h 
points. 

Another method is the Minimum Volume 
Ellipsoid (MVE) where the idea is to find a subset of 
size h, for that the enclosing ellipsoid has the 
minimal volume. The MVE is a robust classifier that 
fits the boundaries around specific percentages (f.i. 

50%) of the data irrespective of the sparseness of the 
outlying region and the outlying data do not skew 
the boundary ellipsoid. However, this result relies on 
a good spread of the data. Barnett and Lewis (1994) 
show that MVE is only applicable for lower 
dimensional data because also this method suffers 
from ‘the Curse of Dimensionality’.  

In looking at multivariate data sets, we have to 
make a distinction between bivariate data and higher 
dimensional data. The obvious reason is that for a 
bivariate data set, we can still analyse the data by a 
graphical tool. This tool, the bagplot (Rousseeuw et 
al. (1999)), is a natural extention of the boxplot and 
relies on a ranking system for the data set based on 
the concept of halfspace depth. The halfspace depth 
of a point Z can be seen as the minimal number of 
observations in a closed halfspace of which the 
boundary plane passes through Z. The application of 
this specific choice of a depth function for a 
bivariate point x results in a halfspace depth of a 
bivariate point x as the smallest number of data 
points lying in a closed halfplane bounded by a line 
through x. It also allows a graphical representation 
of outliers by means of a bagplot. The bagplot is the 
total image of the data set and consists of the Tukey 
median (the bivariate and robust extention of the 
univariate median, having the highest depth), the 
bag (containing 50% of the observations) and the 
fence (the contour magnifying the bag by a factor 3). 
The observations outside the fence are outliers. 
Figure 1 shows a bagplot for bivariate data with and 
without outliers. Another possible tool is the 
ellipsoid as shown in Figure 2. 

 
Figure 1. Bagplot with and without outliers 

 

  
 
This graphical representation enables us to 

identify the outliers in an easy way and becomes the 
key to smooth the bivariate outliers. Unfortunately, 
this possibility to represent the data graphically 
disappears when higher dimensional data have to be 
examined. The Mahalanobis distance however leaves 
an option to measure how far away a data point is 
from a ‘center’. The MCD method calculates a center 
and the Mahalanobis distances of all observations. 
To solve the problem of sensitivity of this measure 
towards outlying data, the FAST-MCD R-package 

developed by Rousseeuw calculates a robust version 
for the location and for the scatter. In using this 
method for an insurance company with 3 business 
lines, the results for the ‘center’ were very 
disappointing (the result is far away from the 
coordinatewise averages of the 3 business lines) for 
a majority of examples. Therefore, we were forced to 
examine these findings more closely. The reason for 
a visible deviation of the MCD estimate of the 
location towards the coordinatewise average ‘center’ 
is discussed in T. Bernholt and P. Fischer (2004). In 
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this article T. Bernholt and P. Fischer explain why 
the MCD-algorithm fails to give acceptable results 
for the center when the dimension of the data set 
increases. The MCD-algorithm can be viewed as an 
application of the so-called ‘clique number’ problem 
in graph theory. In graph theory, the ‘clique number’ 
is a well known example of the family of NP-
complete problems. This means that the algorithm 
to solve the clique number problem can run in 
polynomial time or in exponentional time and that 
the time to solve an NP-complete problem increases 
rapidly when the size of the problem grows. With 
this knowledge, it is clear that the MCD-algorithm 
will face similar problems. As a consequence the 
results with the MCD-algorithm will not be reliable 
for increasing dimensions. It also means that we 
have to search for new approximative methods to 
detect and to smooth the outliers in the run-off 
triangles when the dimension of the data is 
exceeding the number 2. 

 
Figure 2. Ellipsoid with and without outliers 

 

 
 

4. TWO DIFFERENT APPROACHES TO DETECT AND 
SMOOTH THE OUTLIERS WITH N>2 

 
If we look back at bivariate data sets, a particular 
way to shrink the outliers (and to lower their 
influence on the outstanding claims reserve) can be 
applied. If we look back at the 2-dimensional 
representation of the data set, we easily discover a 
method to bring back the outliers to the fence of the 
bagplot or to the tolerance ellipse curve obtained 
with MCD method. These techniques of shrinking 
the outliers to the fence of the bagplot or to the 
border of the tolerance ellipse are discussed in 
Verdonck and Van Wouwe (2011).  

In the previous section, we learned to make a 
distinction between bivariate data sets and 
multivariate data sets. We will discuss two possible 
approaches to detect and to correct the outliers in a 
multivariate data set. 

As it was already mentioned before, the 
Mahalanobis distance is a possible tool to discover 
outliers in higher dimensions (Aggarwal (2001)). The 
Mahalanobis distance accounts for the variance of 
each variable and the covariance between variables. 
Geometrically, it does this by transforming the data 

into standardized uncorrelated data and computing 
the ordinary Euclidean distance for the transformed 
data. In this way, the Mahalanobis distance is like a 
univariate z-score: it provides a way to measure 
distances that takes into account the scale of the 
data. The outliers are detected by their large 
distance. Because the MCD-algorithm is not 
satisfying, we prefer to use the original Mahalanobis 
distance to discover the outliers (an open question 
remains about when the Mahalanobis distance is 
regarded to be large). 

We develop an algorithm to detect and to 
smooth the outlying observations for multivariate 
data sets with more than two components. As 
always the process starts with calculating the 
residuals of the data. We will look at two 
possibilities to detect and to smooth the outlying 
data. A first solution method starts to detect the 
outlying data by the Mahalanobis distance for all 
data points. The outlying values are then replaced by 
the coordinatewise median (each component of an 
outlying data point is replaced by the corresponding 
univariate median). This process is repeated until 
successive results are close together. The following 
figures show this process. 

A second solution is given by replacing the 
outliers by the L

1
-median (Fritz (2010)). 

For a data set },...,{= 1 nxxX  with each p

ix R , 

the L
1
-median ̂  is defined as  

 

   i

n

i

xX
=1

argmin=)(ˆ  

 

Where   denotes the Euclidean norm. In 

words, the L
1
-median is the point for which the sum 

of the Euclidean distances to n given data points is 
minimal. 

The L
1
-median has several further attractive 

statistical properties, like: 
(a) Its breakdown point is 0.5. Only in the case 

that at least 50% of the data points are 
contaminated, the L

1
-median can take values beyond 

all bounds. 
(b) It is location and orthogonally equivariant.  
For both solutions, the adjusted residuals are 

brought back to the original data and on the 
‘smoothed’ data set a multivariate chain-ladder 
method is applied. 

Remark: alternative techniques are possible and 
bring back the data onto lower dimensional 
subspaces. This idea was already exploited by 
Aggarwal and Yu (2001). Aggarwal and Yu use lower 
dimensional projections and assume that 
combinations of attributes in the projection 
correlate to the attributes that are deviant. This 
could be done in several ways. For a start, in treating 
higher dimensional data sets, we could restrict 
ourselves to 3-dimensional data and explore the 
following possibility. A first possible algorithm 
could be to treat the run-off triangles in the 
following way: the run-off triangles are summed up 
two by two and the bivariate method (T. Verdonck 
and M. Van Wouwe (2011)) is applied on this sum 
and once more the same method is used on this 
result and the third run-off triangle. This procedure 
is very time consuming and is not retained for that 
reason. 
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Figure 3. Density.default (x=b, bw=0,5) 
 

 
 

Figure 4. Density.default (x=bb, bw=0,5) 
 

 
 

Figure 5. Density.default (x=bbb, bw=0,5) 
 

 
 

5. NUMERICAL RESULTS 
  

The numerical results will be illustrated by a real 
example. To do this we start from three run-off 

triangles representing three business lines of the 
same non-life insurance company. The three 
triangles are:  



Journal of Governance and Regulation / Volume 5, Issue 1, 2016 

 
75 

Table 2. Observed incremental claims business line 1 
 

524914 285647 244175 129698 138796 110650 93308 69315 8797 4512 

696729 380888 286367 227269 188542 57207 55881 58608 39453 0 

772188 581335 547795 565772 357396 295440 284133 294873 0 0 

767974 418593 304174 147959 144680 118461 65479 0 0 0 

402505 287498 240137 216582 207624 168963 0 0 0 0 

390650 325253 278633 222955 134545 0 0 0 0 0 

556262 359657 288889 249878 0 0 0 0 0 0 

414878 238414 192568 0 0 0 0 0 0 0 

654057 392432 0 0 0 0 0 0 0 0 

536550 0 0 0 0 0 0 0 0 0 

 
Table 3. Observed incremental claims business line 2 

  
407586 307487 328409 239292 230888 258932 253436 247088 242088 11600 

258404 238027 189391 179202 62368 55280 32347 31001 27754 0 

369757 228335 141125 102985 83655 67003 30822 18822 0 0 

114626 78458 63058 54985 50901 21185 18956 0 0 0 

176922 194786 149293 38915 15925 9538 0 0 0 0 

200351 122767 100273 36339 27686 0 0 0 0 0 

172429 80351 30787 23967 0 0 0 0 0 0 

315270 277844 157231 0 0 0 0 0 0 0 

180920 211137 0 0 0 0 0 0 0 0 

235813 0 0 0 0 0 0 0 0 0 

 
Table 4. Observed incremental claims business line 3 

 
4717438 3016789 2484066 1904194 1447276 1252992 824851 709612 508993 467512 

5867515 4048002 2544032 1965870 1587106 1350246 899017 999375 1050118 0 

5390147 3300851 2483372 1857682 1354058 1144486 593458 521315 0 0 

6157650 4184517 3302699 2618703 2164798 1662522 1413788 0 0 0 

5066275 3707332 2463467 1962620 1867330 1559849 0 0 0 0 

6968353 4067230 2714697 2174128 1518695 0 0 0 0 0 

6076115 4080323 2847006 2388172 0 0 0 0 0 0 

5384700 3976736 3224352 0 0 0 0 0 0 0 

6816917 4929496 0 0 0 0 0 0 0 0 

8434600 0 0 0 0 0 0 0 0 0 

 
To start we introduce outliers in the three 

triangles in different ways. 
Firstly, outliers are introduced at the same 

place in the three triangles (this situation could be 
related to an event that influenced the claim 
amounts in the different triangles at the same place 
at the same time, f.i. currency movements, macro-
economic movements). The corresponding claim 
amounts (at the same position in the three triangles) 
are therefore replaced by outliers. This procedure is 
applied to any of the positions in the triangles 
except for the extreme corners. This procedure was 
initially introduced for the univariate chain-ladder 
method (Verdonck et al. (2009)) and is now used in a 
similar manner for the multivariate chain-ladder 
method. 

Secondly, another possible situation could be 
the appearance of outlying data in two of the three 
triangles at the same place and at the same time. 
This possibility reflects the possible correlation 
between two of the three triangles. This corresponds 
to an event of which the influence is restricted to 
two of the three triangles and leaves the third 
triangle unchanged. 

Thirdly, the claim amounts in one particular 
triangle are replaced by an outlier (this could 
correspond for instance to a realistic situation of 
mistyping a claim amount). 

The following tables show the results for the 
outstanding claim amounts regarding the different 
possibilities: 

 

5.1. Case 1 
 

Outliers at the same place and at the same time in 
the three triangles 

 the outstanding claim reserves for the 
situation where outliers are introduced 
simulteanously in the three triangles  

 the outstanding claim reserves where the 
outliers are replaced by the coordinatewise median  

 the outstanding claim reserves where the 
outliers are smoothed by means of the L

1
-median 

method  
 

Table 5. Results for the deviation of the outstanding 
claims reserves towards the original outstanding 

claims reserves when an outlier is introduced at the 
same place and the same time in the 3 triangles 

 
 with outliers coordinatewise L

1
 

Average 61236103.7 133211793.1 130350797.9 

Median 598832179 12957652 14231932 

MSE 4,66693E+17 1,83837E+17 1,78446E+17 

Root MSE 683149268.3 428762235 422428627.6 

 

5.2. Case 2 
 
Outliers in two of three triangles 

 the outstanding claim reserves where outliers 
are introduced simulteanously in two of the three 
triangles  

 the outstanding claim reserves where the 
outliers are replaced by the coordinatewise median  

 the outstanding claim reserves where the 
outliers are smoothed by means of the L

1
-median 

method  
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Table 6. Results for the deviation of the outstanding 
claims reserves towards the original outstanding 

claims reserves when an outlier is introduced in two 
of the three triangles 

 
 with outliers coordinatewise L

1
 

Average 569551778.7 125313937.1 123206934.8 

Median 556087324 13619933 14231932 

MSE 4,02434E+17 1,61716E+17 1,51494E+17 

Root MSE 634376582.9 402139690.7 389222201.8 

 

5.3. Case 3 
 

Outliers in one particular triangle     

 the outstanding claim reserves where outliers 
are introduced in one particular triangle  

 the outstanding claim reserves where the 
outliers are replaced by the coordinatewise median  

 the outstanding claim reserves where the 
outliers are smoothed by means of the L

1
-median 

method  

Table 7. Results for the deviation of the outstanding 
claims reserves towards the original outstanding 

claims reserves when an outlier is introduced in one 
triangle 

 
 with outliers coordinatewise L

1
 

Average 546954253.9 119579732.1 117625663.2 

Median 530419505 10761599 15656173 

MSE 3,71207E+17 1,51833E+17 1,39951E+17 

Root MSE 609267019.6 389657243.7 374100220.8 

 
The following table 8 for case 1 illustrates 

where the L
1
-median method gives better results 

than the coordinatewise median method, figures in 
bold are these where the L

1
-median method gives a 

better result (this is a result for the outstanding 
claims reserve that is closer to the outstanding 
claims reserve for the original data) while the figures 
in italics indicate the situations where the 
coordinatewise median method should be elected. 

 
Table 8. Results quality 

  
(1;1) (1;2) (1;3) (1;4) (1;5) (1;6) (1;7) (1;8) (1;9) (1;10) 

(2;1) (2;2) (2;3) (2;4) (2;5) (2;6) (2;7) (2;8) (2;9) 
 (3;1) (3;2) (3;3) (3;4) (3;5) (3;6) (3;7) (3;8) 

  (4;1) (4;2) (4;3) (4;4) (4;5) (4;6) (4;7) 
   (5;1) (5;2) (5;3) (5;4) (5;5) (5;6) 

    (6;1) (6;2) (6;3) (6;4) (6;5) 
     (7;1) (7;2) (7;3) (7;4) 

      (8;1) (8;2) (8;3) 
       (9;1) (9;2) 

        (10;1) 
          

The MSE is a reliable measure in order to decide 
which of the two methods gives the best corrective 
results. This is the method for which distance 
between the outstanding claim reserve with the 
adjusted data and the original outstanding claim 
reserve is the smallest and this for all possible 
situations regarded as higher up indicated. 

The results can be summarised as follows:  
− Case 1. The smoothing with the L

1
-median 

method gives better results than the coordinatewise 
method. This can be explained by the fact that the 
L

1
-median method focuses on the multivariate data 

and treats the outlying data simultaneously unlike 
the coordinatewise median method that 
concentrates on the univariate data.  

− Case 2. When the outliers are introduced in 
two possible correlated triangles, neither method is 
the better of the other method.  

− Case 3. When outliers only appear in one 
particular triangle, the coordinatewise median 
method gives the better corrective results. This can 
easily be explained by the fact that the 
coordinatewise median method focuses on the 
individual triangle and has no major influence on 
the behavior of the other triangles where no outliers 
are present. 

 

6. CONCLUSION 
  

In this article, we concentrate on the detection and 
correction of outlying data for an non-life insurance 
company that has activities in more than two 
branches of the non-life insurance sector. As a 
consequence the non-life insurance company will 
have to manage more than two run-off triangles.  We 
explain why the algorithm that was previously 

developed for the univariate and the bivariate data 
(two business lines) does not work for the 
multivariate data set with more than two run-off 
triangles. 

As a consequence of this fact, we have to 
search for alternative methods to detect and to 
smooth the outliers in the run-off triangles. The two 
possible corrective methods that are taken into 
consideration and that are discussed in this article 
are the coordinatewise median method and the L

1
-

median method. 
The numerical results do not reveal a 

substantial advantage of one of the two methods for 
the totality of the possible presence of outliers in 
more than two run-off triangles. The results are very 
depending on the different possibilities of the 
presence of outliers in the run-off triangles. The L

1
-

median method gives better results than the 
coordinatewise median method when outliers are 
introduced in the three run-off triangles at the same 
place. However, when outliers are detected in two of 
the three run-off triangles, the results for two 
methods are very similar. In introducing an outlier in 
a single run-off triangle, we prefer the 
coordinatewise median method to the L

1
-median 

method. 
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