
Corporate Ownership & Control / Volume 11, Issue 1, Fall 2013 

 
8 

РАЗДЕЛ 1 
НАУЧНЫЕ ИССЛЕДОВАНИЯ 

И КОНЦЕПЦИИ 

SECTION 1 
ACADEMIC  
INVESTIGATIONS  
& CONCEPTS 

 

 

 

 

ASYMMETRIC INFORMATION, TRADING VOLUME, AND 
PORTFOLIO PERFORMANCE 

 
Antony Jackson* 

 
Abstract 

 
In dealership markets, asymmetric information feeds through to higher transaction costs as dealers 
adjust their bid-ask spreads to compensate for anticipated losses. In this paper, we show that the 
presence of asymmetric information can also provide a positive externality to those market 
participants who operate in multiple markets-portfolio managers. Specifically, insiders lower the 
estimation errors of portfolio selection methods, thus improving asset allocation. We develop multiple 
artificial markets, in which portfolio managers trade alongside informed and uniformed speculators, 
and we contrast the performance of ‘volatility timing’—a method that relies on efficient price 
discovery - with that of ‘naive diversification’. Volatility timing is shown to consistently outperform 
naive diversification on a risk-adjusted basis.  
 
Keywords: Asymmetric Information, Portfolio Selection, Stochastic Simulation 
 
JEL Classification: D82, G11, G12 
 
* School of Economics, University of East Anglia, Norwich  NR4 7TJ , United Kingdom 
Tel.: +44 (0)1603 59 3876 
E-mail: antony.jackson@uea.ac.uk 

 
 
 
 
 
1. Introduction 
 

In market microstructure models, transaction costs 

arise endogenously - either through the inventory 

management process of the monopolist (Ho and 

Stoll, 1981), or through the asymmetric information 

advantage of insiders (Glosten and Milgrom, 1985). 

Repeated iteration of the Glosten and Milgrom 

(1985) model generates intra-day price dynamics 

via the price setting behavior of a market maker 

responding to the flow of orders arriving from a 

large pool of informed and uninformed traders.  

The degree to which intra-day prices ‘discover’ true 

fundamental value depends on how sensitive the 

dealer’s priors are to the flow of new orders.  The 

dealer adjusts prices most rapidly when the 

proportion of informed trade and the volume of 

orders are high. 

In this paper, we study the effects of 

asymmetric information in the wider context of 

multiple asset markets. In an individual market, a 

higher probability of informed trade unambiguously 

leads to higher transaction costs. We suggest, 

however, that there are subtle benefits of 

asymmetric information that accrue to those who 

operate across many markets: portfolio managers. 

The reason is that portfolio selection methods rely 

to various degrees on efficient price discovery - the 

ability of the market mechanism to accurately 

reflect underlying fundamentals. We argue that 
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private information counteracts the impediment to 

price discovery inherent in low trading volume, and 

that there appears to be an optimal level of private 

information, given the other characteristics of a 

particular market. 

Our approach is to simulate multiple assets 

with correlated fundamentals. In our dealership 

markets, insiders act as the conduit between 

fundamentals and prices. To assess the costs and 

benefits of asymmetric information to portfolio 

managers, we contrast the performance of a strategy 

that relies on efficient price discovery - the 

volatility timing strategy - with naive 

diversification. This choice partly reflects recent 

developments in the portfolio choice literature, but 

also reflects our preference for methods that offer 

the practical advantage of rapid computation. 

Attention has recently focused on portfolio 

management strategies that avoid the problems 

associated with full mean-variance optimization: 

singularity in the covariance matrix of returns, and 

excessive volatility in asset allocations. Restrictions 

are placed on elements of the covariance matrix, or 

‘shrinkage’ estimators are formed as weighted sums 

of the sample covariance matrix and a simple 

‘target’ matrix; see, for example, Jagannathan and 

Ma (2003) and Tu and Zhou (2011). The naive 

diversification strategy (DeMiguel et al., 2009) 

entirely removes the need for an estimated 

covariance matrix, instead allocating an equal share 

of capital to all portfolio constituents. The volatility 

timing strategy (Kirby and Ostdiek, 2012) is more 

involved - basing its allocation on relative 

volatilities calculated using moving windows of 

asset prices. Both strategies share the characteristics 

of full capital allocation and no-short-sales. 

The approach of this paper is to take 

advantage of the simple Bayesian updating 

mechanism offered by the binomial branching 

structure of the sequential trade model (Glosten and 

Milgrom, 1985), while retaining the original 

statistical properties of the full multivariate 

simulation of underlying fundamental values. This 

is achieved by mapping multivariate normal returns 

into their Bernoulli equivalents, a process that 

requires boosting the elements of the original 

covariance matrix (Einrich and Piedmonte, 1991). 

Our simulation methodology does not place any 

restrictions on the number of portfolio constituents. 

Covariance matrices are randomly generated using 

a wide range of parameter values within a single-

index factor model. We generate multivariate asset 

returns using the Cholesky factorization of these 

matrices, which requires matrix inversion, but we 

address the potential singularity problem by 

reconstructing those matrices with negative 

eigenvalues (Rebonato and Jackel, 1999). 

A further innovation of this paper is to borrow 

the recombining tree structure of the 

Cox et al. (1979) binomial options pricing 

model. We replace the risk-neutral probabilities of 

Cox et al. (1979) with the probabilities implied by a 

single-index model with drift. Multiple markets are 

linked together by the correlations between their 

fundamental values.  The recombining tree 

structure lays the foundation for future research on 

the stochastic arrival of information, as it keeps the 

dealer’s Bayesian updating task manageable. 

Information arrives at the beginning of each trading 

period, with true values revealed at the end of each 

period. 

We draw an important distinction between the 

trading population that generates prices 

(uninformed and informed speculators), and 

portfolio managers who act upon multiple asset 

prices. A feature of the Glosten and Milgrom 

(1985) model is that as the dealer processes orders, 

the uncertainty of the true underlying value 

diminishes, in turn leading to narrower bid-ask 

spreads. If we were to posit portfolio managers as 

arriving randomly during the session - like the rest 

of the population - we would also randomly vary 

the impact of transaction costs. We prefer instead to 

place all portfolio manager trades at the opening 

bid- ask spreads of each period, which enables 

transaction costs to be a pure function of the 

probability of informed trade. This abstraction also 

enables us to sidestep the tricky issue of strategic 

behavior when market participants trade more than 

a single unit. Portfolio managers in our model are 

able to accurately signal to the dealer that they are 

uninformed. In concurrent research, we consider the 

liquidity cost that must be borne by portfolio 

managers who are unable to naturally differentiate 

themselves from the rest of the population. In this 

version, portfolio managers operate in multiple 

‘Kyle’ auction markets (Kyle, 1985). 

The final bid-ask spread of each session is 

used to calculate the session ‘close’. Portfolio 

managers mark their holdings to market using 

closing prices. The day-to-day changes in account 

value imply a series of strategy returns, with mean 

returns and risk-adjusted returns (Sharpe ratio) 

following. In addition, volatility timing managers 

use closing prices in the volatility calculations that 

determine their asset allocations. This is why 

trading volume and the probability of informed 

trade have a joint influence on the performance of 

the volatility timing strategy. A large flow of orders 

makes it easier for the dealer’s posterior 

probabilities to converge to the true probabilities, 

but unless there is a sufficient level of informed 

trade, even high volume may be insufficient for 

efficient price discovery.  In the extreme, with an 

entirely uninformed population, a competitive, risk-

neutral dealer quotes a single bid/ask price, and 

sees no reason to adjust the price in response to 

trading volume.  Instead, the price jumps each time 
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the changes in fundamental value become common 

knowledge. 

The model of fundamentals presented in 

Section 2 generates multivariate normal returns 

using a single index factor model. Individual assets 

are characterized by the sensitivity of their returns 

to movements in the market index, and through the 

portfolio’s correlation matrix. These data determine 

the sizes and probabilities of ‘up’ and ‘down’ 

movements in our Cox et al. (1979) discretization 

scheme. Intra-day trade takes place in individual 

competitive markets that are indirectly connected 

by the insiders who make decisions based on 

private access to fundamental information. The 

latest change in fundamental value is made 

common knowledge at the end of each day, with 

dealers adjusting their opening spreads accordingly. 

Although beyond the scope of the current paper, the 

recombining structure of the Cox et al. (1979) 

scheme allows the revelation of information to 

occur stochastically, whilst keeping the dealer’s 

updating task manageable. A natural way to do this 

is to use a geometric distribution to randomly select 

the release of ‘news announcements’. 

Section 2 also describes the Einrich and 

Piedmonte (1991) procedure for transforming 

multivariate normal random variables into their 

Bernoulli equivalents. We describe the Rebonato 

and Jackel (1999) method for dealing with singular 

correlation matrices, and list the parameter 

assumptions used in constructing our various 

portfolios. 

Section 3 describes the model we use to create 

intra-day price dynamics and closing prices. We 

derive probability updating equations in terms of 

the probabilities of informed trade and the 

probability of value rising. The sizes of price 

movements, and their probabilities of occurrence, 

feed from Section 2. 

Once the time series of opening and closing 

prices has been generated, we test the performance 

of the naive diversification and volatility timing 

strategies. In Section 4, upon observing the vector 

of opening bid-ask quotes, each manager re-values 

his current positions, and calculates his desired 

holdings. The naive diversification manager 

allocates capital equally between assets, whereas 

the volatility timing manager allocates capital using 

rolling estimates of volatility. 

In Section 5, we present the results, and we 

use nonparametric methods to identify the key 

drivers of portfolio performance. The key driver of 

mean returns is the probability of informed trade, 

while the key driver of the Sharpe ratio statistic is 

the strategy type. 

The determinants of the highest mean return 

are intuitively straightforward: substantial volume 

in illiquid states, combined with low probabilities 

of informed trade. The determinants of a strategy’s 

Sharpe ratio offer a more interesting story. The 

Sharpe ratios of the volatility timing strategy 

dominate those of the naive diversification strategy 

across all market conditions. Since mean returns are 

not driven by strategy type, it must be that the 

volatility timing strategy offers improved risk-

adjusted returns via lower risks. There are 

substantial improvements in the volatility timing 

strategy’s risk-adjusted performance as the number 

of assets in the portfolio is increased, but the most 

intriguing driver is the probability of informed 

trade—the Sharpe ratios corresponding to a 1% 

probability of informed trade are lower than those 

corresponding to higher probabilities. Evidently, 

the volatility timing strategy benefits from the 

improved price discovery offered by ‘reasonable’ 

levels of asymmetric information, but these gains 

are eventually overwhelmed by higher transaction 

costs. 

The paper concludes with suggestions for 

future research. In particular, our recombining tree 

structure allows for staggered news arrivals, 

without the need for great complexity in the 

dealer’s Bayesian updating problem. The use of a 

geometric distribution for the timing of news 

arrivals would seem a sensible start, with insiders 

maintaining their informational advantage at all 

times. 

 

2. Fundamentals 
 

The log-returns of the portfolio constituents’ 

fundamental values are multivariate normally 

distributed. The returns generating process is 

assumed to be a single-index model, where the 

return on the risk-free asset is normalized to zero. 

An individual asset’s expected returns are a simple 

function of its beta coefficient and the expected 

return to the market index: 

 

 , 

 

where  denotes the expected return to asset , 

and  denotes the expected return to the market 

index.  The beta coefficient  is defined by 

 

, 

 

and measures the ratio of the covariance of the 

returns to an asset and those of the market index to 

the variance of the returns to the market index. 

The expected return to the market index is 

assumed to be constant,  p.a., with a 

constant annual volatility of   p.a.  

Individual volatilities  , betas  , and pairwise 

correlations   are drawn independently from 

various uniform distributions.  Table 1 lists the 

various specifications.  Each asset’s annual 

volatility is assumed to lie in the range 5% to 40%, 

and its beta coefficient in the range 0.50 to 1.50. 

The pairwise correlation coefficient between assets 
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lies in the range 0.00 to 1.00. These parameter 

distributions are chosen to allow for a wide range of 

volatilities, as well as a variety of relationships with 

the market index. 

 

Table 1. Simulation Parameter Distributions 

 

Parameter Description Value 

 Number of portfolios 1000 

 Number of portfolio constituents {2, 5, 10} 

 Market Index volatility (p.a.) 20% 

 Market Index expected return (p.a.) 10% 

 Asset   volatility (p.a.) Uniform (5%, 40%) 

 Asset   beta Uniform (0.50, 1.50) 

 Correlation ( ) Uniform (0.00, 1.00) 

 

Each portfolio consists of 2, 5, or 10 stocks. 

For each of these different portfolio sizes, we 

simulate 1000 portfolios using randomly-generated 

correlation matrices. We assume that each  (

) is drawn independently from a continuous 

uniform distribution with range 

[0, 1]. The elements along the main diagonal 

are set to 1, and those below the main diagonal are 

set (by symmetry) according to .  The 

resulting correlation matrix C is used to generate 

multivariate normal random variables. In order to 

be compatible with the simple intra-day sequential 

trade model, these multivariate random variables 

are then transformed to Bernoulli random variables. 

 The sizes of fundamental value movements 

are described by the following equations: 

 

 

 
(1) 

 

where  denotes annual volatility, and 

 denotes a single day in which prices 

can move up  or down , where the size of the 

down move is simply the reciprocal of the up move. 

The probabilities of the moves are calculated 

using a modified version of the Cox et al. (1979) 

discretization scheme, in which the risk-neutral 

drift rate is replaced by the stock’s expected return: 

 

 (1) 

 

This enables the design of a procedure that 

starts by generating correlated multivariate random 

variables, and then maps those variables into a 

simpler Bernoulli distribution. The binomial 

process for fundamental value fits comfortably with 

the sequential trade model of Section 3, which—

when iterated over many time periods—recaptures 

the statistical properties of the original distribution. 

 

 

 

 

 

Multivariate Bernoulli Transformation 
 

The square matrix C can be expressed in terms of 

its diagonal eigenvalue matrix Λ, and the 

corresponding unit-length eigenvector matrix S: 

 

CS = SΛ (3) 

 

Provided the matrix C has only non-negative 

eigenvalues, Equation 3 can be post-multiplied 

throughout by the inverse matrix S
-1

 to yield 

 

C = SΛS
-1

 (4) 

 

Furthermore, since the eigenvector matrix has 

been defined in terms of unit-length vectors, 

Equation 4 may be written as 

 

C = SΛS
T
 (5) 

 

with S
T 

replacing S
-1

.  Now define B = S .  

Then Equation 5 may be rewritten as  

 

C = S  S
T
 = BB

T
, (6) 

 

the spectral decomposition of the correlation 

matrix. A matrix of correlated standard normal 

random variables X is constructed using the 

transformation 

 

X = BZ (7) 

 

where Z is a matrix of independent standard 

normal random variables. 

Our objective is to use a simple mapping from 

the matrix X of correlated normal random variables 

into a matrix P of correlated Bernoulli random 

variables, which in turn are used in the binomial 

branching structure of the Glosten and Milgrom 

(1985) sequential trade model. We denote the 

multivariate Bernoulli distribution’s marginal 

probabilities by  , .  These probabilities 

correspond to each asset’s probability of an up 

move, as defined by Equation 2. If a stock’s 

characteristics are such that it has a high expected 

rate of return, then its probability of an up move 
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will be higher - the magnitude of the move is given 

by Equation 1. 

The resulting correlation matrix of returns has 

pairwise correlation coefficients that are 

significantly lower than the original correlation 

matrix C. The problem is overcome by first 

increasing the off-diagonal elements of C using the 

procedure proposed in Einrich and Piedmonte 

(1991). First, the quantiles of the standard normal 

distribution are evaluated at the Bernoulli marginal 

probabilities: 

 

. 

 

Then, the pairwise correlation coefficients of 

C above the main diagonal are replaced by 

numerically solving for in the following 

equation: 

 

 , 
(8) 

 

where  is the c.d.f. of the bivariate 

standard normal distribution. The correlation 

coefficients below the main diagonal are set 

as  , ensuring that the new ‘boosted’ 

correlation matrix  is square-symmetric.  

 Using Equations 3 through 6, spectral 

decomposition is performed on C. However, it is 

well known (especially for larger portfolios) that 

the correlation matrix is likely to have at least one 

negative eigenvalue, making it impossible to invert 

the correlation matrix in the first step of the 

decomposition. One method of addressing this 

problem is to follow Rebonato and Jackel (1999) in 

setting any negative eigenvalues to zero, and then 

reconstructing a new correlation matrix as an 

approximation to the original. The eigenvector 

matrix S is post multiplied by the square-root of the 

corrected eigenvalue matrix  to yield the adjusted 

factor matrix 

 

 , 

 

where T is a diagonal scaling matrix with 

elements  , i.e., the row-wise 

eigenvectors multiplied by the adjusted 

eigenvalues. The adjusted correlation matrix  

is defined by 

 

. 

 

Finally, the boosted matrix of correlated 

standard normal random variables  is 

mapped into a matrix of correlated Bernoulli 

random variables P using the rule 

 

 

 

 

To summarize: we randomly create a target 

correlation matrix  that describes the original 

multivariate distribution of fundamental returns. 

The pairwise correlation coefficients of  are 

boosted in order to construct a new matrix to be 

used in the generation of multivariate Bernoulli 

random variables. If the eigenvalues of  are all 

non-negative, then spectral decomposition is 

performed on ; otherwise, a new correlation 

matrix is constructed from the ‘corrected’ 

diagonal matrix of eigenvalues. The adjusted matrix 

of correlated standard normal random variables is 

then mapped into a matrix of correlated Bernoulli 

random variables, which when used in conjunction 

with Equations 1 and 2 recovers the properties of 

the original correlation matrix . 

 

3. Intra-day Trading 
 

The intra-day model is based on Glosten and 

Milgrom (1985)
1
, and is used to generate time 

series of opening and closing prices, with a view to 

testing various portfolio strategies. Opening prices 

are used to revalue current positions, and to 

determine the prices at which fresh purchases and 

sales are transacted; the opening bid-offer spread 

determines transaction costs. Closing prices are 

prices at which it is not possible to trade, but are 

commonly the ones used to calculate the returns to 

a strategy. They also play a central role in the 

volatility timing strategy, as the strategy uses 

volatility estimates calculated from rolling windows 

of closing prices. Closing prices are determined by 

the set of dealer quotes after the final trade of the 

day. The price discovery mechanism is expected to 

function better in high-volume conditions, with 

aggregate order imbalances reflecting asymmetric 

information. 

There are four market participants: informed 

traders, uninformed traders, portfolio managers, and 

risk-neutral dealers. Price competition between 

dealers ensures that each dealer exactly offsets the 

expected losses from trading with informed traders 

with the expected gains from trading with 

uninformed traders. Provided the details of 

individual trades are made available to all dealers, 

the problem reduces analytically to that of one 

dealer. 

Trading volume λ determines the number of 

trades that take place each day. The sequential trade 

model deals with daily trading volume as a 

sequence of single-unit transactions between 

individual traders and the dealer. Traders are 

randomly selected, one at a time, from a large pool 

                                                           
1
 Other references include Easley and O’Hara (1992), who 

extend the model to include the possibility of infrequent 
information asymmetry, and Back and Baruch (2004). 
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of informed and uninformed traders, with q 

denoting the probability of drawing an informed 

trader. The dealer quotes an ask price at which 

traders may buy a single unit of the asset, and a bid 

price at which they may sell. When presented with 

these quotes, traders have the option to buy, sell, or 

pass on the trading opportunity. The dealer knows 

that informed traders will choose to buy only if Ask 

<  (ask is below fundamental value), and will 

choose to sell only if Bid >  (bid is above 

fundamental value). Uninformed traders choose to 

trade for reasons unrelated to private information. 

They are, for example, motivated by hedging 

requirements, or by the need to meet liabilities. We 

assume that, for all quotes, uninformed traders 

randomly buy or sell with probability 1/2. 

In the basic version of the model, the dealer 

learns the true value of the asset at the end of each 

trading period. In the meantime, his ability to keep 

track of value depends on liquidity (the number of 

trades each period), and the proportion q of 

informed traders. 

Figure 1 illustrates the unconditional 

probabilities of various events, each organized by 

the trading decisions of informed and uninformed 

traders - and two possible changes in value. 

We assume that the dealer is fully conversant 

with the structure of the model, and that his 

specialist knowledge ensures that he uses correct 

values for volatility and expected returns. 

As a consequence, he correctly calculates the 

unconditional probabilities p and 1−p of up and 

down moves. Informed traders never pass, because 

the presence of uniformed traders ((1− q) > 0) 

ensures that if the next trader buys, expected value 

must lie below the ‘up’ value .  This is because 

the buy trade could come from an uninformed 

trader in the ‘down’ value state of the world. 

Similarly, if the next trader sells, expected value 

must lie above the ‘down’ value . 

The asset price is initially set to fundamental 

value , and the returns generating process 

determines whether value moves up to  or down 

to . A trader is chosen at random from the pool 

of informed and uninformed traders, with q 

denoting the probability of selecting an informed 

trader, and 1 − q the probability of selecting an 

uninformed trader. Informed traders immediately 

receive a signal of the new value. The dealer’s risk-

neutrality, and the zero-profit condition, leads the 

dealer to set his quotes according to 

 

 (9) 

 

And 

 

. (10) 

 

The ask is set such that the dealer expects to 

make zero profit if the next trade is a buy. Because 

of the presence of uninformed traders, buy trades 

can occur for both values of V.   Equation 9 

therefore expands to 

 

  (11) 

 

where  and  serve 

as the dealer’s updating equations in a dynamic 

setting.  Using Bayes’ Rule, we obtain 

 

 (12) 

 

And 

 

 (13) 

 

Using the probabilities in the rightmost 

column of Figure 1, 

 

 

 

(14) 

 

And 

 

 

 

(15) 

 

The bid price is derived in a similar manner. 

Using the probabilities in the rightmost column of 

Figure 1, 

 

 

 

and 

 

 

 

Trading volume determines the quantity of 

random draws from the trading population in each 

session. The dealer updates his bid-ask spread using 

the updating Equations 9 and 

10. After the final trade of the day, the mid-

price of the bid and ask prices is used as the closing 

price of the day. With a small probability ζ = 0.1, 

trading volume may change from a low-volume 

regime to a high-volume regime, and vice versa. 

The fundamental value becomes common 

knowledge in the time between the close of the 

current session and the open of the next. The 

dealer’s opening spread reflects this update in 

public information. 
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Figure 1. Probability of different types in the sequential trade model 
 

 
4. Portfolio Strategies 
 

We consider two portfolio strategies: naive 

diversification and volatility timing. Both strategies 

are fully-invested, and exclude the possibility of 

short sales. The naive diversification strategy 

allocates a weight of 

 

 

 

to each portfolio constituent, whereas the 

volatility timing strategy allocates capital on the 

basis of a modified version of the minimum 

variance portfolio. 

The problem set-up for the volatility timing 

strategy is 

 

 

 

subject to 

 

, 

 

where  is the vector of portfolio weights, 

and is the variance-covariance matrix of returns. 

It can be shown that the solution to the problem is 

 

, 

 

where  is the sum of the elements of the th 

column of , the inverse of . However, the 

volatility timing strategy removes the need to 

compute the inverse by setting the off-diagonal 

elements  of to zero. The elements of the inverse 

matrix are now simply the reciprocal of the 

elements of the original matrix, and the solution to 

the problem is 

 

 

 

(16) 

 

where  is the variance of the returns to asset 

.  As with the naive diversification portfolio, the 

weights of the volatility timing portfolio are non-

negative. Both strategies are fully-invested, and 

both strategies attempt to reduce the high turnover 

and estimation errors associated with full mean-

variance optimization. 

We adopt the simplifying assumption that the 

trades made by portfolio managers do not influence 

the intra-day dynamics of price.
2
  Instead, we 

assume that orders are good for any size at the 

opening bid-ask spread, and that portfolio managers 

place all their orders at the open. This has the 

additional analytical advantage of separating the 

influence of private information on transaction 

costs from its influence (in combination with 

trading volume) on ‘price discovery’. The closing 

price is used to value positions at the end of each 

day, which in turn allows calculation of the daily 

returns to each strategy. Closing prices also provide 

the information that the volatility timing strategy 

uses for calculating rolling estimates of daily 

volatilities—the estimates that in turn determine the 

desired weights in each asset for the next session. 

The following algorithms describe the daily 

activities of the naive diversification and volatility 

timing strategies. 

 

 

 

 

                                                           
2
 An interesting enhancement would be to include portfolio 

managers as part of the trading population, with their 
orders contributing to daily trading volume—and hence 
price dynamics. However, the order-splitting strategy of 
managers needs to be carefully addressed in such a 
setting. 
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Algorithm 1: Naive Diversification 
 

Step 1: Revalue account using opening mid-prices 

 

Positions are revalued at the dealer’s opening 

mid-price :   

 

, 

 

where  is the value of short-term cash 

balances. We allow small temporary negative cash 

positions, but do not allow strategies to manage 

leverage strategically. 

 

Step 2: Calculate Desired Positions 

 

The account size is multiplied by 1/n, and divided 

by the dealer’s opening mid-price to yield a new 

desired holding : 

 

 

 

Step 3: Calculate Orders 

 

New orders are calculated as the difference between 

desired positions and current positions : 

 

 

 

where  denotes today’s order in asset   

 

Step 4: Calculate Expenditure and Income 

 

For buy orders, expenditure is calculated using the 

dealer’s ask price, and for sell orders, income is 

calculated using the bid price: 

 

 

 

The change in the cash position is the sum of 

expenditure and income over all assets: 

 

 

 

Step 5: Revalue Account at Closing Mid-Prices 

 

At the conclusion of intra-day trading, the final 

dealer quotes are used to calculate closing prices—

the final mid-prices for each asset. The account is 

re-valued, and the daily return to the naive 

diversification strategy is calculated using 

 

 
 

 

Algorithm 2: Volatility Timing 
 

Step 1: Revalue account using opening mid-prices 

 

Positions are revalued at the dealer’s opening 

mid-price :   

 

, 

 

where  is the value of any cash holdings. 

 

Step 2: Calculate Desired Positions 

 

The account size is multiplied by the weights 

calculated in Equation 16, and divided by the 

dealer’s opening mid-price to yield a new desired 

holding : 

 

 

 

Step 3: Calculate Orders 

 

New orders are calculated as the difference between 

desired positions and current positions  in each 

asset: 

 

 

 

where  denotes today’s order in asset   

 

Step 4: Calculate Expenditure and Income 

 

For buy orders, expenditure is calculated using the 

dealer’s ask price, and for sell orders, income is 

calculated using the bid price: 

 

 

 

The change in the cash position is the sum of 

expenditure and income over all assets: 

 

 

 

Step 5: Revalue Account at Closing Mid-Prices 

 

At the conclusion of intra-day trading, the final 

dealer quotes are used to calculate closing prices—

the final mid-prices for each asset. The account is 

re-valued, and the daily return to the volatility 

timing strategy is calculated using 
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It now remains to examine large-sample 

returns and risk-adjusted returns to the two 

strategies for various market conditions. Each 

simulation generates 10 years of intra-day trade and 

closing prices. Each market condition is tested for 

1000 simulations of fundamental values. 

 

5. Results 
 

Each cell of Table 2 contains the mean annual 

return and Sharpe ratio for 1000 multivariate 

simulations of fundamental values using the single-

index model of Section 2. The upper panel contains 

the results for 2-stock portfolios. The middle panel 

contains the results for 5-stock portfolios, and the 

lower panel the results for 10-stock portfolios. 

Within each panel, the results are split horizontally 

into those results for the naive diversification 

strategy, and those for the volatility timing strategy. 

Vertically, the results are arranged by increasing 

levels of asymmetric information or probabilities of 

informed trade. Within each of these sections, an 

individual cell corresponds (vertically) to the level 

of trading volume in an illiquid state (10, 50, or 

250), and (horizontally) to a level of trading volume 

in a liquid state (50, 250, 1000). For example, the 

upper-left cell of the top panel reports a mean 

return of 10.21%, and a Sharpe ratio of 0.59 for the 

naive diversification strategy.  This corresponds to 

1000 underlying simulations of markets in which 

the probability of informed trade is 0.01, trading 

volume in the illiquid state is 10, and trading 

volume in the liquid state is 50. An alternative to 

the two-state model is a single-state model with 

constant volume, but we prefer to allow for the 

possibility of the price discovery mechanism being 

disrupted at the points where regime shifts occur. 

The probability of switching is ζ = 0.1, which is 

intended to reflect our intuition that markets 

‘remember’ the current regime. 

For the 2-stock portfolio, an interesting pattern 

develops as the level of asymmetric information 

increases from 0.01 through 0.20. For the (10, 50) 

volume combination, the mean return for the naive 

diversification strategy is at its highest when q = 

0.01. This is to be expected, as the dealer quotes 

narrow spreads when the probability of adverse 

selection is low. As the probability of informed 

trade rises from 0.01 to 0.05, and from 0.05 to 0.10, 

the naive diversification strategy’s mean return falls 

to 9.85%, and then to 9.31%.  The interesting 

change, however, occurs when the probability of 

informed trade rises from 

0.10 to 0.20: the mean return rises to 9.53%, 

despite the dealer’s wider spreads. A similar pattern 

occurs for the corresponding Sharpe ratio: 0.59, 

0.58, 0.56, and then an increase to 0.60. As this 

pattern disappears for portfolios with more assets, 

we suggest that the pattern is linked to the naive 

diversification strategy’s in-built tendency to over-

allocate capital to high beta stocks. 

The pattern for mean returns is broadly similar 

for the volatility timing strategy, with apparently 

little difference between the volatility timing and 

naive diversification strategies’ mean returns under 

similar market conditions. The most striking 

difference, however, is in the levels of the Sharpe 

ratio—the volatility timing strategy consistently 

produces results approximately 0.20 in excess of 

those of the naive diversification strategy.  In the 

illiquid volume combination (10, 50), the highest 

Sharpe ratio of the volatility timing strategy (0.81) 

occurs when the level of asymmetric information is 

at its highest. In the most liquid combination (250, 

1000), the highest Sharpe ratio occurs when q = 

0.05, and falls thereafter. The volatility timing 

strategy outperforms the naive diversification 

strategy, not because of its similar mean returns, but 

because of its lower risk. Efficient price discovery 

is essential to its success, with the presence of 

asymmetric information offsetting the impediment 

to price discovery inherent in low trading volume. 

That the volatility timing strategy consistently 

outperforms the naive diversification strategy 

confirms our view that those strategies that rely on 

accurate prices, and in turn returns, benefit most 

from a reasonable level of asymmetric information. 

In the next section we more formally identify the 

drivers of portfolio performance. 

 

Table 2. Mean Returns and Sharpe Ratios 

 
2-Stock Portfolio 

  Naive Diversification  Volatility Timing 

  50 250 1000  50 250 1000 

 10 10.21 0.59 9.77 0.58 9.52 0.55  10.17 0.80 9.83 0.79 9.50 0.74 

q=0.01 50   10.01 0.60 9.96 0.59    10.01 0.80 9.90 0.78 

 250     10.03 0.59      10.01 0.80 

 10 9.85 0.58 9.70 0.55 9.18 0.58  9.94 0.77 9.69 0.78 9.31 0.79 

q=0.05 50   9.44 0.58 10.10 0.63    9.53 0.79 10.19 0.85 

 250     9.80 0.61      9.88 0.82 

 10 9.31 0.56 9.06 0.55 9.31 0.59  9.47 0.76 9.13 0.75 9.58 0.82 

q=0.10 50   9.34 0.58 9.48 0.60    9.54 0.80 9.42 0.80 

 250     10.03 0.60      9.96 0.81 

 10 9.53 0.60 9.13 0.56 9.35 0.59  9.59 0.81 9.29 0.76 9.47 0.81 

q=0.20 50   9.50 0.57 9.38 0.57    9.61 0.77 9.56 0.77 

 250     9.74 0.59      9.76 0.80 
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5-Stock Portfolio 

  Naïve Diversification  Volatility Timing 

  50 250 1000  50 250 1000 

 10 10.03 0.63 9.90 0.64 9.93 0.64  9.92 1.01 9.99 1.05 9.99 1.06 

q=0.01 50   10.21 0.64 9.70 0.63    10.16 1.03 9.97 1.05 

 250     9.82 0.65      9.86 1.06 
 

 10 9.69 0.63 9.54 0.67 9.21 0.69  9.75 1.04 9.88 1.12 9.62 1.17 

q=0.05 50   9.46 0.68 9.15 0.69    9.68 1.12 9.55 1.17 

 250     9.15 0.68      9.62 1.16 
 

 10 9.17 0.65 9.20 0.69 9.29 0.70  9.45 1.09 9.49 1.18 9.53 1.15 

q=0.10 50   8.84 0.66 9.20 0.68    9.36 1.10 9.53 1.14 

 250     9.22 0.60      9.48 1.01 
 

 10 8.71 0.66 9.08 0.66 8.87 0.65  9.15 1.12 9.48 1.11 9.30 1.10 

q=0.20 50   9.07 0.61 9.30 0.64    9.54 1.04 9.67 1.07 

 250     9.33 0.59      9.54 0.99 

10-Stock Portfolio 

  Naïve Diversification  Volatility Timing 

  50 250 1000  50 250 1000 

 10 9.87 0.69 9.75 0.68 9.89 0.70  9.90 1.21 9.90 1.22 9.98 1.23 

q=0.01 50   9.77 0.69 9.62 0.69    9.82 1.20 9.77 1.21 

 250     9.57 0.70      9.75 1.23 
 

 10 9.59 0.70 9.55 0.76 9.31 0.80  9.85 1.26 9.81 1.35 9.74 1.46 

q=0.05 50   9.59 0.79 9.38 0.82    9.86 1.40 9.79 1.48 

 250     9.36 0.81      9.72 1.44 
 

 10 9.25 0.74 9.15 0.80 9.20 0.80  9.62 1.34 9.59 1.45 9.66 1.46 

q=0.10 50   9.23 0.79 8.97 0.76    9.67 1.43 9.55 1.42 

 250     9.38 0.69      9.72 1.23 
 

 10 8.69 0.76 8.71 0.73 8.57 0.73  9.44 1.42 9.37 1.38 9.38 1.39 

q=0.20 50   9.13 0.69 8.97 0.68    9.60 1.27 9.56 1.25 

 250     9.00 0.62      9.51 1.14 

 

5.1 Data Visualization and 
Interpretation 
 

Table 2 presents our results in finely-classified 

samples. While it is clear from the table that the 

Sharpe ratios of the volatility timing strategy 

dominate those of the naïve diversification strategy, 

it is not easy to determine whether strategy type, or 

some other characteristic of market conditions, is 

the key driver of portfolio performance. For 

instance, the probability of informed trade may be 

important, as may be the simple diversification 

effect from increasing the number of portfolio 

constituents. Classification trees, a technique from 

the nonparametric statistics literature, offer an 

excellent way of ranking the determinants of 

portfolio performance, as well as providing a neat 

visual representation of the data. They are ideally 

suited to a ranking task, with the data being 

repeatedly partitioned according to those elements 

of the sample space that most reduce prediction 

error. The key reference is Breiman et al. (1984).
3
 

The response variable Y is predicted using a 

multivariate set of predictors X.  In this paper, we 

consider two response variables—the mean return 

                                                           
3
 Software-based tutorials include Martinez and Martinez 

(2008) and Torgo (2011). 

and the Sharpe ratio of a strategy.  The set of 

predictors includes the strategy type, the number of 

stocks in the portfolio, the probability of informed 

trade, and the volume of trade in the illiquid state.   

Consider first the two trees for the mean 

prediction task. Figures 2 and 3 are in fact drawn 

from one tree, but have been separated to improve 

legibility. Each sample of observations is 

represented by an ellipsis or rectangle. The ellipses 

represent samples that will be divided further into 

smaller groups; the rectangles, known as the 

‘leaves’ or ‘terminal nodes’ of the tree, represent 

the finest partitions of the data. Theoretically, the 

samples can be partitioned into ever-decreasing 

samples, until each terminal node contains only one 

observation, but in practice a tree ceases to be 

grown (or is ‘pruned’) according to a statistical or 

normative criterion. With a view to clarity and 

parsimony, we terminate the trees using a 

maximum depth criterion: the number of levels 

below the initial sample is set to 5, meaning that 

each of the sub-figures, Figure 2 and Figure 3, has 4 

levels. When compared with alternative statistical 

pruning procedures, we find that this level of detail 

errs on the side of parsimony—further nodes, by 

definition, improve the in-sample predictive 

accuracy of the tree, but do so with increased risk 

of over-fitting. 
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There are 144,000 observations in the full 

sample, which correspond to the 144 cells of Table 

2. The pooled mean return is 9.55% for these 

observations. The procedure examines all possible 

partitions across the predictor variables, and 

chooses the best binary split— defined as the 

partition that most reduces the total mean-squared-

error of the tree. 

Formally, the mean of the full sample is 

defined by 

 

 

 

and the mean-squared-error by 

 

R  

 

After the first split, there are two nodes, each 

with its own  and R.  Denote these within-node 

squared errors by and . After the first split, the 

mean-squared-error of the tree is the sum of 

and . 

The first partition of the mean returns 

classification tree splits the full sample into two 

groups. The first contains observations in which the 

probability of informed trade q ∈ {0.01, 0.05}, and 

the second contains observations in which q ∈ 

{0.10, 0.20}. These are the nodes at the top of the 

trees of Figures 2 and 3. Interpreting these two new 

samples as ‘low’ and ‘high’ asymmetric 

information samples, the low asymmetric 

information tree of Figure 2 has a sample mean of 

9.76%, with 72,000 observations. The high 

asymmetric information tree also contains 72,000 

observation, but with a mean return of 9.35%. The 

0.41% fall in mean returns represents a flow of 

wealth from uninformed to informed traders. 

We next consider the low asymmetric 

information and high asymmetric information trees. 

For each tree, we describe a particular path down 

the tree. The highest mean return of Figure 2 is 

9.97%, represented by the second terminal node 

from the left. The first partition of the tree divides 

observations into probabilities of informed trade of 

q = 0.01 and q = 0.05.   In markets with the lowest 

probability of informed trade (q = 0.01), mean 

returns are 9.89%, 0.27% higher than the mean 

returns generated by markets with q = 0.05. 

Continuing down the q = 0.01 branch of the tree, 

the next most important driver of performance is 

the number of portfolio constituents, with those 

portfolios containing 2 or 5 stocks generating 

higher returns than those with 10 stocks. An 

explanation for this phenomenon could be that the 

naive diversification strategy allocates equal levels 

of capital to high-volatility and low-volatility 

assets, thus boosting mean returns when the number 

of portfolio constituents is small. More clearly, in 

the next partition, mean returns are higher when 

trading volume is high in the illiquid state. Note 

that this path down the tree does not distinguish the 

returns to the naive diversification strategy from 

those to the volatility timing strategy. The story is 

different, however, in the high asymmetric 

information tree. 

Figure 3 demonstrates that, conditional on the 

probability of informed trade being 10% or 20%, 

the next partition that most reduces the tree’s mean-

squared-error is strategy type. The returns to the 

naive diversification strategy are 9.18%, whereas 

they are 9.52% for the volatility timing strategy. 

This would suggest that the naive diversification 

strategy generates a higher turnover of trade than 

does the volatility timing strategy—a feature that 

most impacts on performance when bid-ask spreads 

are wide. Continuing down the volatility timing 

strategy path, the next partition is according to the 

volume in the illiquid state, with volumes of 50 or 

250 generating higher returns than a volume of 10. 

The final partition, branching to the farthest-right 

terminal node (9.66% across 6,000 observations), 

further distinguishes illiquid state trading volume of 

50 from trading volume of 250. In sum, in markets 

characterized by high levels of asymmetric 

information, a volatility timing strategy applied 

under conditions of high overall liquidity generates 

on average mean returns of 9.66% p.a. 

We conclude this section by examining the 

classification tree in which the response variable is 

the Sharpe ratio of the volatility timing strategy 

(Figure 5). We describe the path that leads to the 

highest Sharpe ratios. The root node of Figure 5 

contains 72,000 observations, with a mean Sharpe 

ratio of 1.07. The next partition is with respect to 

the number of portfolio constituents, with the 

Sharpe ratios of 5 or 10 stock portfolios, 

substantially exceeding those of 2-stock portfolios 

(1.21 versus 0.79). Of those portfolios with 5 or 10 

stocks, the next partition distinguishes the 5-stock 

portfolios from the 10-stock portfolios. On average, 

10-stock volatility timing portfolios generate 

Sharpe ratios of 1.33, 0.24 higher than 5-stock 

portfolios. It is interesting to note, however, that the 

terminal nodes across the tree are partitioned 

according to the probability of informed trade. For 

2-stock portfolios there appears to be little 

difference between the average Sharpe ratios in 

each sample, with terminal nodes containing 

average Sharpe ratios of 0.78, 0.79, 0.81, and 0.78. 

However, for better-diversified portfolios, the 

optimal partition splits the observations by 

probabilities of informed trade of 1%, and 

probabilities of informed trade of greater than 1%. 

Even though higher levels of private information 

lead to wider spreads and higher transaction costs, 

they lead to higher Sharpe ratios for both the 5-

stock and 10-stock portfolios. This ‘price 

discovery’ effect is most pronounced in the 10-

stock portfolios, with an improvement in the Sharpe 
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ratio from 1.21 to 1.37 when the probability of 

informed trade exceeds 1%. 

 

6. Conclusions 
 

We develop a framework in which multi-asset 

fundamentals are mapped into binomial processes 

compatible with the Glosten and Milgrom (1985) 

sequential trade model. Intra-day price dynamics 

are generated by dealers’ Bayesian updating 

equations, with closing prices determined by the 

average of the final bid and ask prices of each 

session. The degree to which closing prices track 

fundamental value is determined by the joint 

interaction between private information and trading 

volume. Higher levels of private information reduce 

mean returns, as dealers widen spreads to 

compensate for the losses incurred from informed 

trade. But private information also helps to improve 

the price discovery process, thus improving the 

risk-adjusted returns of strategies that rely on 

accurate volatility estimates. 

We use nonparametric classification trees to 

identify and rank the determinants of portfolio 

performance. Mean returns are primarily driven by 

the probability of informed trade, whereas the 

strategy type - naive diversification or volatility 

timing - is the key driver of risk-adjusted returns. 

This suggests that the higher Sharpe ratios of the 

volatility timing strategy arise because of its 

objective of minimizing risk; this does not appear to 

sacrifice mean returns. The diversification effect 

from increasing the number of portfolio 

constituents is the next most important driver of 

risk-adjusted returns, with the highest Sharpe ratios 

of both strategies occurring in the 10-stock 

portfolios. We note the interesting dominance of the 

volatility timing Sharpe ratios in markets when the 

probability of informed trade is greater than 1%. 

Indeed, looking down the columns of Table 2, it is 

evident that the lower mean returns associated with 

wider spreads are often accompanied by higher 

Sharpe ratios, there being an apparent ‘optimal’ 

level of asymmetric information, beyond which 

Sharpe ratios decline. These declines occur as 

higher levels of transaction costs begin to dominate 

improvements in the price discovery mechanism. 

With regard to extensions and future research, 

we have deliberately designed the framework with 

flexibility in mind. We have used a single-index 

model, but envisage more elaborate factor models 

in the data generation stage. The recombining tree 

structure of our sequential trade model allows for 

stochastic news arrivals, whilst keeping the dealer’s 

updating task manageable. We would maintain the 

informational advantage of the insiders during the 

‘no news’ days, thus making a distinct contribution 

to the literature. 
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Figure 2. Mean Returns: q ∊ {0.01, 0.05} 
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Figure 3. Mean Returns: q ∊ {0.10, 0.20} 
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Figure 4. Sharpe Ratios: Naïve Diversification 
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Figure 5. Sharpe Ratios: Volatility Timing 

 
 


