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Abstract 

 
We propose a model for valuing equity linked annuity (ELA) products under a generalized gamma 
model with a Markov-switching compensator. We suppose that the market interest rate and all the 
parameters of the underlying reference portfolio switch over time according to the state of an 
economy, which is modelled by a continuous-time Markov chain. The model considered here can 
provide market practitioners with flexibility in modelling the dynamics of the reference portfolio. We 
price the ELA by pricing its embedded options, for which we employ the regime-switching version of 
Esscher transform to determine the pricing kernel. A system of coupled partial-differential-integral 
equations satisfied by the embedded option prices is derived. Simulation results of the model have 
been presented and discussed. 
 
Keywords: Equity, Pricing, Gamma Model, ELA 
 
* School of Economics, Finance and Marketing, RMIT, VIC 3001, Australia 

 
 
 
 
 
1 Introduction 
 

In recent years, the insurers have increasingly been 

faced with market demand for a hybrid of the fixed 

and variable annuities leading. Fixed annuities have 

been attractive investments as investors are guaranteed 

a certain fixed rate for a period of 12 months or 

longer. However, in declining interest rate markets, 

investors may suffer from a lower yield, as it is 

usually tied to the fixed yield instruments. On the 

other hand, variable annuities can offer the potential 

for higher returns, however, portfolio allocation in 

anticipation of market changes could be a burden on 

investors. 

Equity linked annuities (ELAs) are a popular 

class of equity linked insurance products around the 

world. In these policies the insured not only receives 

the guaranteed annual minimum benefit, but also 

receives proceeds from a reference portfolio such as 

S&P 500. ELAs, typically, have a cap which is an 

upper bound of the annual return and so the level of 

return is limited no matter how high is the return of 

the reference portfolio. The latter point, differentiates 

ELAs from other popular types of equity linked 

products, such as participating products, in the sense 

that participating products maintain a buffer account 

where the good-years’ over performance is accrued to 

smooth the under performance of the bad-years (see 

[10] for further details). ELAs, not having this feature, 

are offered at a lower premium in the insurance 

market. Therefore, it could be argued that they could 

be more cost effective if they are linked to well-

diversified portfolios and depending on the level at 

which the cap is set. 

Accurate pricing of equity linked policies, 

through the fair valuation of the embedded options, 

can be traced back to [36]. Majority of the previous 

research on pricing ELAs, only consider the Black-

Scholes economy, which may not capture the stylistic 

features of the portfolio returns. For instance, [34] 

derived a pricing formula for point-to-point ELAs and 

[24] studied ELAs with path dependent optionality. 

Under the same modeling framework, but with 

stochastic interest rate, [27] derived a pricing formula 

for ELAs by using the risk-minimization hedging 

strategy. Moreover, [22] also studied the stochastic 

interest rate case for the valuation of ratchet equity-

indexed annuities. 

In this paper, we propose a model for the 

valuation of ELA products under a generalized gamma 

model with a Markov-switching compensator. 

Therefore, not only will we capture the random jumps 

of the underlying reference portfolio, but also we 

model the structural changes in the economy. We 

make the assumption that the parameters of the market 

values of the reference portfolio, namely, the risk-free 

interest rates, the expected growth rate and the 

volatility of the risky asset, depend on the state of the 

economy, which is modeled by a continuous-time 

Markov-chain process. Our model is a modified 

version of the kernel-biased representation of [19], 

[20]. Incorporation of the the Markov chain process to 

this framework provides further flexibility to describe 

the impact of structural changes in macroeconomic 

conditions and business cycles on the valuation model. 

We utilize the Esscher transform to determine the 

equivalent martingale measure and price the 

participating product under the generalized jump-

diffusion model. 
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The concept of regime-switching can be traced 

back to [29] [15] where they employed regime-

switching regression models to describe nonlinearity 

in economic data. The idea of probability switching 

appeared in the early development of nonlinear time 

series analysis, where [35] proposed one of the oldest 

classes of nonlinear time series models, namely the 

threshold models. Regime-switching models aim to 

capture the appealing idea that the macro-economy is 

subject to regular, yet unpredictable in time, regimes, 

which in turn effect the prices of financial securities. 

For example, structural changes of macro-economic 

conditions, such as inflation and recession, may 

induce changes in the stock returns or in the term 

structure of interest rates, and similarly, periods of 

high market turbulence and liquidity crunches may 

increase the default risk of financial institutions. 

[17] popularized regime-switching time series 

models in the economic and econometric literature and 

since then, considerable attention has been paid to 

investigate the use of regime-switching to model 

economic and financial data. Due to the empirical 

success of regime-switching models, they have been 

applied to different areas in banking and finance; 

including asset allocation, option valuation, risk 

management, term structure modeling. Recently, 

scholars have turned their attention to option valuation 

under regime-switching model, including, [28],[16], 

[2], [6] , and [11]. Additionally, regime-switching 

models have become popular in actuarial science in 

recent years. For example, [18], [33], and [32] used 

the regime-switching models to capture the impact of 

the structural changes in the economy on the value of 

different equity linked insurance products. 

 

2 Modeling framework 
 

To start, suppose that ),,( PF  is a probability space 

where P  is probability measure. Assume also that   

the space is filtered by a non-decreasing right 

continuous family tF  of sub- -fields of F . 

Moreover, let T  denote the time index that takes 

value on the interval ][0,T . We describe the states of 

the economy by a continuous-time Markov chain 

TttX }{  on ),,( PF  with a finite state space 

),,,(:= 21 Nsss S . Without loss of generality, we 

can identify the state space of the process TttX }{  to 

be a finite set of unit vectors },,,{ 21 Neee  , where 

N

ie R,0),1,(0,=  . From Elliott et al. [5] we 

present the following semi-martingale decomposition 

for the process TttX }{  is 

 

                  ,=
0

0 ts

t

t MdsXXX  Q  (1) 

 

where Q  and tM  is a 
NR -valued martingale 

with respect to the filtration generated by TttX }{ . 

Let tr  be the instantaneous market interest rate which 

depends on the state of the economy, and defined as 

follows 

 

,,,=),(:=
1=

T teXrXtrr jti

N

i

tt

 

(2) 

 

where ),,,(:= 21 Nrrrr   with 0>jr  for 

each Nj ,1,2,=   and .,.  denotes the inner 

product in the space 
NR ; consequently, the dynamic 

of the value of the risk-free asset, TttB }{  is given 

by:  

 

,),(= dtXtr
B

dB
t

t

t  

 

where 1=0B . Let ),( B(T)T  denote a 

measurable space, where B(T)  is the Borel  -field 

generated by the open subsets of T . Let X  denote 
RT , then )( B(X)X,  is a measurable space. Let 

TttUU }{:=  denote a Poisson process on 

),,( PF , with 0=0U , P -a.s. Write 


sss UUU = . Then,  
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<0

s
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A Poisson random measure 

);,(:=),( wdtdzNdtdzN  on X  is a non-negative, 

integer-valued random measure on X  induced by the 

process U . It can be defined as follows: 

 

.),]((0,:=])(0,,( ),(0







 R
T

AATITAN
s

Us
s
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Let )(.,UN
t

X  denote a Markov-switching 

Poisson random measure on the space X . Write 

),( dzdtN
t

X  for the differential form of measure 

),( UtN
t

X . Let )|( tdz
t

X  denote a Markov-

switching Levy measure on the space X  depending 

on t  and the state tX ;   is a  -finite (nonatomic) 

measure on T . James [19], [20] defined a kernel-

biased representation of completely random measures. 

By this approach they have provided a great deal of 

insight into the different types of finite and infinite 
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jump modeling by choosing different kernel functions. 

We define the Markov-modulated version of the 

generalized gamma (MGG) process, using the 

following Markov-modulated version of the 

representation of completely random measures.  

 

).,(:=)( dzdtzNdt
t

X
t

X  R
  

 

By using an arbitrary positive function on 

iz ,,R  and   for each bounded set B  in T , we 

have  

 

.<)()|(,1)(min
1=

 
dttdzz i

N

i


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(3) 

Let 0  denote a constant shape parameter of 

the MGG process. We suppose that the scale 

parameter of the MGG process, tb , switches over the 

time according to the states of the Markov chain X. 

Let 0),...,,(:= 21  N

Nbbbb R  for each 

Ni 1,2,...,= , such that 
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Then,  
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The generalized gamma process nests a number 

of very important processes in finance and actuarial 

studies. When 0= , the MGG process reduces to a 

Markov modulated weighted gamma (MWG) process. 

When 0.5=  the MGG process becomes the 

Markov modulated inverse Gaussian (MIG) process. 

Let TttW }{  denote a standard Brownian motion, and 

),(
~

dzdtN
t

X  denote the compensated Poisson 

random measure and it is defined as: 
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~
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t

X
t

X
t
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Furthermore, suppose that t  and t  denote 

the drift and volatility of market valuation model, 

where ),...,,(:= 21 N  and 

),...,,(:= 21 N ; Ri  and 0>i  for 

each Ni 1,2,...,= , then 
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(6) 

 

Then, consider a generalized jump-diffusion 

process }|)({:= TttAA , such that 

 

)],,(
~

[= dzdtNzdWdtAdA
t

Xttttt   
R
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where 0=0A . We assume under P  the price 

process TttS }{  is defined as )(exp:= tt AS . Thus  

 

 )()|(1})(exp{)
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3 Pricing by the Esscher transform 
 

The market described in Section 4 is incomplete, 

consequently, there is more than one pricing kernel. 

Different approaches have been proposed for pricing 

and hedging derivative securities in incomplete 

financial markets. For instance, Follmer and 

Sondermann [12] and [30] selected an equivalent 

martingale measure by minimizing the quadratic 

utility of the terminal hedging errors. Davis [4] 

adopted an economic approach based on the marginal 

rate of substitution to pick a pricing measure via a 

utility maximization problem. Avellaneda [1], Frittelli 

[13], and Fard and Siu [11] employed the minimum 

entropy martingale measure method to choose the 

equivalent martingale measure. 

Here, we employ a time-honoured tool in 

actuarial science, namely, the Esscher transform, to 

select an equivalent martingale measure. The Esscher 

transform was first introduced to the actuarial science 

literature by Escher [9], where it was used to 

approximate the distribution of aggregate claims. It 
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was also adopted to premium calculation. Gerber and 

Shiu [14] pioneered the Esscher transformation 

approach for option valuation. They provided an 

economic equilibrium justification for a price of an 

option determined by the Esscher transform based on 

the maximization of an expected power utility of an 

economic agent. Elliott and Kopp [7] demonstrated 

that the Esscher transform is consistent with the 

minimal entropy martingale measure (MEMM) 

approach for option valuation. In what follows, we 

adopt a version of the Esscher transform for general 

semi-martingales in Kallsen and Shiryaev [21] and 

Elliott and Siu [8]. 

Let TFF t

X

t

X }{:= , TFF t

A

t

A }{:=  and 

TFF t

S

t

S }{:=  denote the P -augmentation of the 

natural filtration generated by A  and S , 

respectively. Since, 
AF  and 

SF  are equivalent, we 

can use either one of them as an observed information 

structure. Hence, define tG  for the  -algebra 

AX FF   for each Tt . Further, let )(AL  be the 

space of processes }|)({:= Ttt  such that  
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udAuA
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This is the stochastic integral of   with respect 

to A . Let T tt}{  denote a G -adapted stochastic 

process defined as below:  
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Where ]|[:=)(
).( A

t
t

AP

t eE FM
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 , is a Laplace 

cumulant process. Apply Ito’s differentiation rule for 

jump diffusion 
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Therefore  
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Lemma 3.1 t  is P  martingale w.r.t tG .  

 

Proof. James [19], [20] showed that  
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Then, by taking the conditional expectations of 

(10), the results follow.              

Further,  
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Then for each )(AL , we define a new 

probability measure PP :
 on )(TG  by the Radon-

Nikodym derivative:  

 

.:=| )( TT
dP

dP
G



 

(12) 

 

This new measure 
P  is defined by the Esscher 

transform T  associated with )(AL . According 

to the fundamental theorem of asset pricing, the 

absence of arbitrage essentially means there exist an 

equivalent martingale measure under which 

discounted asset prices are local-martingales; which is 

widely known as the local-martingale condition. 

Now we stipulate a necessary and sufficient 

condition for the local martingale condition.  

 

Proposition 3.2. For each Tt , let the 

discounted price of the risky asset at time t  be 

)(=)(
~

tSetS rt
 Then the discounted price process 
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}|)(
~

{:=
~

TttSS  is an 
P -local-martingale if 

and only if:  
 

 ,,:= T tX tt   

 

is such that 
N
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the following equation:  
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Then by setting time 0=s , and applying the 

martingale condition we achieve:  
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Hence, for each Tt , (13) must hold.               
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Proof. Assume that 
PP :  with density process 

t . Note that   is a deterministic process, satisfying  
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Then under 
P  (14) holds.              

 

Proposition 3.4 The price process of the reference 

portfolio S  under 
P  is  
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Proof. Recall )(exp:= tt AS . The proof can easily 

follow by applying Ito lemma and the martingale 

condition (13) to (14).              

 

4 Point-to-Point ELA 
 

In this section, we concentrate on pricing of ELAs 

using the framework presented in the previous section. 

It is well known that the plain vanilla point to point 

ELA can be assessed by separating it into the 

European vanilla call option. (For more details see 

Sheldon Lin and Tan [31], Choi and Kim [3]). The 

payoff value for the plain vanilla point to point ELA 

driven by the following equation: 
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where   is the participation rate, tR  measures 

the appreciation of the index up to time t ,   is 

ceiling rate, g  is floor rate and   is the percentage 

of unite for which the floor is applied. With particular 

focus on the plain vanilla point to point ELA , tR  is 

defined by  
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where tS  is the price of an equity index at time 

t . We can also find an alternative expression for  tL  

using (17),  tL  is separated into two parts 
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where gK  and K  are defined as 

 

  


 11= 0 t

g g
S

K  

 

  


  11= 0 tS
K  

 

The two maximum functions in (18) resemble 

the pay-off of two European vanilla call options. 

Therefore, we can price )(tL  via pricing the 

embedded options. More precisely, the value of a T -

year maturity point to point ELA , denote by the 

following argument: 
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where  
(.)0 ,;,0, KTSC   denotes the price of 

a European call option with strike price (.)K  at expiry 

T . In the next section, we provide the pricing of C , 

using the partial integro-differential equation PIDE 

approach. 

 

5 PIDE method for European options 
 

With a slight abuse of notation, let 

 (.)0 ,;,0,:=)( KTSCSC T  . This allows us to 

simplify the notation. Following the risk-neutral 

argument, a European option is valued by discounting 

the conditional expectation of the terminal payoff 

under the risk-neutral martingale measure. Then, 

given SSt =  and XX t = ,  

].=,=|)()(exp[:=)(
~

0
XXSSSCdurESC ttTu

T

T 
  (20) 

 

Recall that the stock price dynamic under 
P  is 

given by  
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21 NCCCC  then, Then, by Itô’s 

differentiation rule for semi-martingales, 
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Then by setting the bounded variation terms to 

zero, we obtain the following PIDE, the solution of 

which is the European option price C . 
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Let ),,,(:= ii esTtCC , for each 

Ni 1,2,...,=  and ),...,,(:= 21 NCCCC . Then, the 

European option price C  satisfies the following 

regime-switching PIDE: 
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with the terminal condition 

)(=),,,( TSCXSTtC .  

Then, C
~

 satisfies the following n -coupled 

PIDE:  
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with the terminal condition 

)(=),,,( Ti SCeSTtC . 

 
6 Simulation experiments 
 
In this section, we conduct simulation experiments to 
compare the price equity linked annuities implied by 
various parametric specifications of our generalized 
gamma model. We highlight some features of the 
qualitative behavior of the fair values of the options 
that can be obtained from different parametric 
specifications of our model. 

We adopt the Poisson weighted algorithm by 
[25] to simulate completely random measures. The 
Poisson weighted algorithm is applicable for a wide 
class of completely random measures, which are very 
difficult to simulate directly. The main idea of the 
Poisson weighted algorithm is that instead of 
generating jump sizes of a completely random 
measure directly from a nonstandard density function, 
one can first generate jump sizes from a proposed 
density function, i.e. the gamma density, and then 
adjust the simulated jump sizes by the corresponding 
Poisson weights. The Poisson weights are simulated 
from a Poisson distribution with intensity parameter 
given by the odd ratio of the compensator of the 
completely random measure and the compensator 
corresponding to the proposed density. 

Assume that the time interval to maturity ][0,T  

is divided into n  subintervals with equal length of 

n

T
t :=  and 11,...,= nj . Moreover, Let 

consider that M denote the number of jumps of the 
completely random measure over the time horizon 

][0,T . It is necessary to mentioned that we let 

nM << . Here, we set 1,000=n  and M=200. 

We generate 10,000 simulation path for 

1,...,1000=}{ jjX  over the 10 years. The process 

generated by the Poisson weighting algorithm 
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converges in distribution to the completely random 

measure )(t  on the space ][0,TD  under the 

Skorohod topology for sufficiently large N  ( for the 

proof see [26]) . Next, we consider two state Markov 

chain process X , the first or base regime 1)=(N  

describes the ’stable economic state’ price behavior 

and the second regime 2)=(N  represents the 

’volatile economic state’. Furthermore, the transition 
probability matrix is supposed as follows:  

 

                                 








0.70.3

0.30.7
 

 
Next, we utilize the popular forward Euler 

discritization scheme to approximate the paths of the 
continuous time process, when preforming the 
simulation. [23] showed that under some conditions, it 
can be shown that the Euler approximation converges 
weakly to the target continuous-time process when the 
number of discretization intervals tends to infinity. 

For the parameters of the vulnerable option, we 
assume the specimen values in Table1.  

 
Table 1. Model parameter values 

   

Parameter name Value 
Initial price of the reference portfolio 100=0S  

Term to Maturity   10=T  year 

Volatility of underlying asset in Regime 1   0.25=1   

Volatility of underlying asset in Regime 2   0.35=2   

Drift of underlying asset in Regime 1   0.10=1   

Drift of underlying asset in Regime 2   0.05=2   

Interest rate in Regime 1   0.06=1r   

Interest rate in Regime 2   0.11=2r   

Participation rate 0.75=  

Percentage of unit for which the minimum guarantee is applied 0.8=  

 
We suppose that the shape parameter   for the 

MGG processes from 0.0 to 0.9, with an increment of 

0.1. When 0.0= , the MGG process becomes the 

MWG process. When 0.5= , the MGG process 

becomes the MIG process. Other values of   

generate different parametric forms of the MGG 
processes. We assume that the parameter values of the 
no-regime-switching versions of these processes 
match with those in the corresponding regime-
switching processes when the economy is in "State 1." 
In all figures, "with Markov switching" refers to the 
models with both the GG component and the model 
parameters being modulated by the two-state Markov 
chain; "without Markov switching" refers to the 
models with the jump component and constant model 
parameters. 

Additionally, we consider the scale-distorted 
version of the MGG and GG processes. We focus on 
investigating the impact of different values of the 

scale distortion parameter b  on the fair values of the 

policy. In particular, we suppose that b  takes values 

0.5, 1.0 (i.e., no scale distortion), 2.0, 2.5 and 3.0. 
Throughout this subsection, we suppose that the shape 

parameter 0.5=  for the scale-distorted version of 

the MGG and GG processes. 
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Appendix A 

 

Figure A.1. The fair values of ELA policies for different shape parameters 

 

 
 

Figure A.2. The fair values of ELA policies for different scale parameters 
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Figure A.3. The term structure for different ELA prices 

 

                  (a) ELA pries for varying αs, where b = 1                       (b) ELA pries for varying bs, where α = 0.5 

 

 


