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We introduce a new methodology that incorporates advanced higher 
moments evaluation in a new approach of the Portfolio Selection 
problem, supported by effective Computational Intelligence models. 
The Evolutional Portfolio Intelligent Complex Optimization (EPICO) 
model extracts hidden patterns out of the numerous accounting 
data and financial statements filtering misguiding effects such as 
noise or fraud, offering an optimal portfolio selection method.  
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1. INTRODUCTION 
 

The portfolio selection problem is a two phase 
process. Initially, the feasible set is created after 
the evaluation of portfolios, usually rejected by the 
risk-averse investors. Then the efficient portfolios 
guided by a utility function, are ranked and the 
model receives the optimal portfolios that reflect 
the behavior of investors. Secondly, the risk 
expressed in further higher moments (variance, 
volatility, hyperkurtosis, ultrakurtosis, 
hyperultrakurtosis) is minimized.  

The objective of this research is to examine 
the first step of the problem, providing a general 
solution on the second step. We create an 
integrated system that optimizes portfolios in 
advanced methods of Computational Intelligence 
and Finance. The single period model is examined, 
as we evaluate various artificial intelligence models 
of the FeedForward Networks family: the Voted 
Perceptrons, the Multilayer Perceptrons, the 
Generalized Feed Forwards to the Bayesian Logistic 
Regressions as a benchmark.  

The models, either neural or hybrid neuro-
genetics of different topologies each, were: 1 on 
the Voted Perceptron, 46 on the MLPs, 66 on the 

GFFs, and 1 on the Bayesian Logistic Regression to 
create the efficient portfolio set. The scope is 
quintuple: i) the thorough investigation of the 
investors behavior in higher moments, retrieving in 
depth information on earnings and preferences of 
risk, ii) to develop the isoelastic utility as a 
function that supports higher moments, iii) to 
improve Markowitz’s portfolio theory, after 
incorporating fundamentals evaluation, in the 
domain of Fractal 

Markets Hypothesis and Chaos Theory, to 
clear noise, to exclude fraud, and to introduce the 
shelf-organising chaotic patterns in the random 
walk of returns, iv) to examine the efficiency of 
various networks of the Feed Forward family in 
neural or hybrid neuro-genetic nets concluding the 
optimal classifiers for an integrated investment 
model, v) to introduce the integrated model EPICO 
as a cutting-edge solution to portfolio optimization 
problem. The research framework, inspired by the 
[1] initial work, and its current advancements [2], 
[3], upgrades the Portfolio Theory, in new tools of 
Heuristics further than [4], [5], etc to a cutting edge 
integrated solution to the problem.  

This paper is organized as follows: in 
Section 1 is the introduction, in 2 the literature on 

http://dx.doi.org/10.22495/cocv14i3c2art1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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higher order moments, in 3 the wavelet theory, in 
4 the advances on Utility Functions, in 5 the 
problem’s definitions, in 6 the integrated EPICO 
model, in 7 the Computational Intelligence 
methodology, in 8 the data, in 9 the results, and in 
Section 10 the Concluding Remarks. 

 
2. HIGHER MOMENTS  
 
Since the returns distributions are not n.i.i.d., and 
EMH fails in the markets as various non-financial 
effects alter the stock prices, whilst it also neglects 
the existence of extreme events. The Fractal 
Markets Hypothesis-FMH is a more robust 
approach as it introduces the dominance of short 
time horizons during turbulent periods. The FMH 
accepts that (1) a market consists of many 
investors with different investment horizons, and 
(2) the information set that is important to each 
investment horizon is different. The market 
remains stable during the period that it maintains 
the fractal structure, without a characteristic time 
scale. The market becomes unstable in case its 
investment horizon becomes uniform, because all 
the investors are trading based upon the same 
information set. The Global Financial Crisis (2007 
onwards) has noticed that the growth of financial 
asset prices is a rather cyclical than a linear one. 
During the most turbulent times, major indices 
lost around 50% of their 2007 peak values during 
the 1.5 year long decline. The EMH, can’t describe 
the crisis such because investors are assumed to 
price the assets rationally with respect to all 
available information. The investors are falsely 
assumed to be homogeneous on the effect of 
information, although it is well known that they 
are heterogenous with a wide range of investment 
horizons [6]. The investors with short investment 
horizons focus on technical information and crowd 
behavior of other market participants, whilst 
investors with long investment horizons decide on 
fundamental information and neglect the crowd 
behavior. The high complexity of the financial 
markets requires more advanced methods than the 
introductory linear methods. Thus the fractal 
markets hypothesis (FMH), emphasize on empirical 
observations of the markets that are consisted of 
heterogenous agents who react to the inflowing 
information with respect to their investment 
horizon.  

The central idea on wavelets into the financial 
processes is their ability to analyze the underlying 
process both in the time and frequency domain. 
Similarly to the standard Fourier analysis, the 
series is decomposed into frequencies and a scale-
specific power is obtained. The wavelets improve 
the Fourier analysis informing on the scale-specific 
power evolution in time. The financial wavelet 
power, [6], is scale-specific variance that informs 
about time evolution of variance as well as its 
distribution across frequencies (scales). Increased 
power is noticed at high frequencies (low scales) 
during the critical periods, and a changing 
structure of variance across frequencies, might be 
observed, before the turbulences due to the 
changing structure of investors’ activity. [6], 
showed that the most turbulent times of the 
current Global Financial Crisis can be very well 
characterized by the dominance of short 
investment horizons in parallel to the FMH. 
Misbalance between short and long investment 
horizons created a tension between supply and 
demand, leading to decreased liquidity which has 
been repeatedly shown to lead to occurrence of 
extreme events.  

In terms of behavior, [7], observed that 
investors are more sensitive to their potential 
losses, we will try to model the overall preferences, 
even those that incorporate the sub-conscious 
trends that guide them. The investors distribute 
their utility balancing perceptions and fears, on the 
one hand, and earnings on the other. Their logic 
expects a rational amount of return, but the fear of 
loss subconsciously magnified, produces 
remarkable decisions. The majority of investors 
are risk averse or risk neutral, hence the fear 
parameter is easy to manipulate behaviors. In 
bullish periods the fear of losing excess profits, 
whilst in bearish the fear of maximising losses, can 
influence non rational herding behaviors.  

A more analytical tool that will focus in depth 
the details that define investing behaviors is 
introduced. The further higher moments detect the 
hidden aspects of investors’ decision making. [8], 
[9] noticed that on the implied utility function of 
the HARA family (Hyperbolic Absolute Risk 
Aversion) the 5th of hyperskewness and the 6th of 
hyperkyrtosis moments should be used in the 
form of formula1 or formula 2. 

 
 

1 1 1 1 1 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

t t t t t t t t t t t t

t t t t t t

U R aE R bVar R cSkew R d Kurt R eHypSkew R

f HypKurt R gUltraSkew R hUltraKurt R

     

  

    

  
 

(1) 

 
or 
 

𝑈𝑇  (𝑅𝑡+1) =  𝛼𝜇 + 𝐸(𝑥𝑖 − 𝜇)2(−𝑏 + 𝑐𝐸(𝑥𝑖 − 𝜇) − 𝑑𝐸(𝑥𝑖 − 𝜇)2 + 𝑒𝐸 (𝑥𝑖 − 𝜇)3 − 𝑓𝐸(𝑥𝑖 − 𝜇)4

+ 𝑒𝐸 (𝑥𝑖 − 𝜇)5 − 𝑓𝐸(𝑥𝑖 − 𝜇)6 ) +  𝑊𝑥(𝑢, 𝑠) 
 

(2) 

 
where, 
 

   2

1 1  t t t tKurt R Var R 
 

(3) 

 

     2 4

1 1 1    t t t t t tHypKurt R Kurt R Var R   
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     4 8

1 1 1    t t t t t tUltraKurt R Kurt R Var R   
 

(5) 

 
Thus (2) as a series of higher order moments can 
be extended to the level of analysis that is desired.    

A general form of the utility function is:

 
 

 

𝑈𝑡 (𝑅𝑡+1) =  ∑  (−1)𝜆𝑣  +1 
𝜔

𝜆𝑣=1

𝛼𝜆𝑣

𝑛
 ∑  (𝑥𝑖 − ∑

𝑥𝑖

𝑛
)

𝑛

 
𝑛

𝑡=1
 + 𝑊𝑥  (𝑢, 𝑠) 

 

(6) 

where λν
 
is the depth of accuracy on investors 

utility preferences towards risk, depending on the 
behavior, aλν

 
a constant on investors profile: aλν

 
= 1 

for rational risk averse individuals, aλν ≠ 1 for the 
non-rational, xi the value of return i in time t, 
W

x
(u,s) the continuous wavelet transform, s the 

scale of the wavelet, u its location. 
 

3. WAVELET 
 
The wavelet ψ

u,s
(t) is a real-valued square integrable 

function defined as:  
 

𝜓𝑢,𝑠(𝑡) =
𝜓 (

𝑡 − 𝑢
𝑠

)

√𝑠
 (7) 

 
with scale s and location u at time t. Given the 
admissibility condition holds: 
 

𝐶𝜓 = ∫
|𝜓(𝑓)|2

𝑓

+∞

0

𝑑𝑓 <  +∞ (8) 

 
The time series can be reconstructed from its 

wavelet transform, where Ψ(f) the Fourier 
transform of a wavelet. The wavelet has a zero 

mean: ∫
+∞
−∞

𝜓2 (𝑡)𝑑𝑡 = 0 normalized: ∫
+∞
−∞

𝜓(𝑡)𝑑𝑡 = 1 . 

The continuous wavelet transform W
x
(u,s), projects  

a wavelet ψ(.)  onto the  examined  series x(t) : 
 

𝑊𝑥(𝑢, 𝑠) = ∫
𝑥(𝑡)𝜓∗ (

𝑡 − 𝑢
𝑠

) 𝑑𝑡

√𝑠

+∞

−∞

 (9) 

 
where, ψ*(.) a complex conjugate of ψ(.). The 
continuous wavelet transform decomposes the 
series in frequencies and recreates the original 
series with no information loss, as the energy of 
the examined series is maintained: 
 
  

𝑥(𝑡) =
∫ ∫ 𝑊𝑥(𝑢, 𝑠)𝜓𝑢,𝑠(𝑡) 𝑑𝑢𝑑𝑠

+∞

−∞

+∞

0

𝑠2𝐶𝜓
 (10) 

 

‖𝑥‖2 =
∫ ∫ |𝑊𝑥(𝑢, 𝑠)|2𝑑𝑢𝑑𝑠

+∞

−∞

+∞

0

𝑠2𝐶𝜓
 

(11) 
 

where, |𝑊𝑥(𝑢, 𝑠)|2 is the wavelet power at scale 
s > 0. 
 
The Morlet wavelet is selected, as a preferred form 
of financial applications [10] Aguiar-Conraria, L., 

[11]), [12], [13], [14]. The Morlet wavelet’s central 
frequency preferably at ω

0
=6 is: 

 

𝜓(𝑡) =
𝑒𝑖𝑤0  𝑡 − 𝑡

2
2⁄

𝜋 1
4⁄

 
(12) 

 

providing a nice balance between the time and 
frequency localization. 

 
4. THE UTILITY 
 
The Isoelastic Utility, a HARA function of CRRA, is 
on the risk averse investors: 
 

1 1
, (0,1) (1, ]

1

log( ), 1

W

U

x








 
  

 
   

(13) 
 

 
where, W the wealth, λ a measure of risk aversion. 
[8], [9] indicated the Makowitz model can have a 
broader alternative relaxing its essential 
assumption on the normaly distributed prices.   

The initial convex problem of quadratic utility 
maximization, [1],  
 

min ( ) ( )x pf x Var r
 

(14) 

 
is inadequate in real markets [2] incorporated 
higher order moments: 
 

min ( ) ( ) (1 ) ( )x p pf x Var r E r   
 

 
(15) 

 

p i ii
r x r  

(16) 

  

0ix 
 

(17) 

 

1ii
x   (18) 

 
where, r

p
 the portfolio return, x

i
 the weight of asset 

i, r
i
 the return of ith asset, μ the mean and σ

2 the 
variance.  
 

5. PROBLEM DEFINITION 
 
[8], [9] indicated the necessity of further higher 
moments into the model, to optimally describe 
investors’ preferences. The problem is: 
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   
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1   
 

(20) 

*

p i ii
r x r

 
(21) 

 
                        
 

where, υγ the financial health of the company 
(binary: 0 towards bankruptcy, 1 healthy); ετ the 
heuristic model output that is the evaluation result 
(binary: 0 healthy, or 1distressed); r

i

* the return of 
stock i that belongs to the efficient frontier and is 
superior than the others; x

i
 their weights.  

 

The superiority relation of the selected stocks 
within the portfolio is i* sup j

 
if and only if 

R
t
(i*)>R

t
(j), analysed into 

 
𝑉𝑎𝑟𝑡𝑅𝑡(𝑖∗) <  𝑉𝑎𝑟𝑡𝑅𝑡(𝑗) (22) 

 
𝐾𝑢𝑟𝑡𝑅𝑡(𝑖∗) <  𝐾𝑢𝑟𝑡𝑅𝑡(𝑗) (23) 

 
𝐻𝑦𝑝𝐾𝑢𝑟𝑡𝑅𝑡(𝑖∗) <  𝐻𝑦𝑝𝐾𝑢𝑟𝑡𝑅𝑡(𝑗) (24) 

 

   *   t t t tUltraKurt R i UltraKurt R j  (25) 

 

The stocks that fail to fulfill all the previous 
superiority conditions are non-optimal stocks and 
are exempted from the optimal portfolio set, as a 
part of the efficient frontier. Thus given [8], [9]: 

 

𝑈𝑡 (𝑅𝑡 (𝑖)) =  ∑  (−1)𝜆𝑣  +1 
𝜔

𝜆𝑣=1

𝛼𝜆𝑣

𝑛
 ∑  (𝑥𝑖 − ∑

𝑥𝑖

𝑛
)

𝑛

 
𝑛

𝑡=1
 + 𝑊𝑥  (𝑢, 𝑠) (26) 

  
then, 

*( ( )) ( ( ))t t t t jU R i U R x
 

(27) 

 
hence,  
 

*( ) ( ( ))t p t tU r U R i  
(28) 

 
The previous is identical to:  

 

𝑚𝑎𝑥𝑥𝐸(𝑈𝑝(𝑤, 𝜆)) (29) 
 

in  

 
1

1

1 exp( )
( ( , )) max /

i ii
P

r x
E U w N



















 
 

  
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 
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(30) 

 
E(U

P
(w, λ)) = max{∑

i
[1 + exp(r

i
 x

i
)]1-υγ/λ/(1-

υγ/λ)}/Ν 
(31) 

 
 
let,  

𝑉𝑎𝑟𝑡
2(𝑟𝑝) = 𝑧 (32) 

and 

𝑉𝑎𝑟𝑡 (𝑅𝑡+1) = 𝑦 (33) 

 
as  
 

𝑧 = 𝑦2 = 𝜎4 (34) 
 

then, 
 

𝑚𝑖𝑛𝑥𝑓(𝑥) = 𝜆𝜐𝛾𝑉𝑎𝑟𝑡(𝑟𝑝)[𝑏 + 𝑑𝑧 + 𝑓𝑧2] (35) 

 
The non-convex problem, requires strong 

heuristics to be solved. The new contribution is 
that we extract hidden accounting and financial 
patterns to a thorougher stock’s evaluation. Fraud 
and manipulation are a significant risk to 
investors. Thus, under (20) and (35) I filter the 
distressed companies with no significant 
potentials from portfolios. The evaluation υγ, in 
(20) is more important than the investor’s risk 

behavior, as they have a reverse influence in υγ/λ. 
The minx f(x) equality in (35) declares a 
categorical, objective influence of an asset is more 
influential than subjective investors’ behavior. The 
flow chart of processes is described in figure 1. 
 

6. THE EPICO MODEL 
 
The Evolutional Portfolio Intelligent Complex 
Optimization (EPICO) is an integrated model that 
further develops the EPOS – Evolutional Portfolio 
Optimization System, [3]. 

The EPICO model on the first step reads the 
fundamentals, the accounting data, the market 
prices and the preferred optimization period t. 

Then it proceeds by selecting the initial 
method to evaluate the companies whose stocks 
are candidate in the portfolio. On this step the 
individual investor’s risk profile is given and the λ 
is selected for the Isoelastic utility.  

On the next step, the system examines if this 
is the last firm to be examined, and if the 
condition for the optimal portfolio as an efficient 
portfolio is satisfied. Else we proceed to the next 
of the initial evaluation that uses a Computational 
Intelligence model, to create two subsets: Subset A 
of the healthy companies, and Subset B of the 
distressed firms.  

In the specific model we select the best 
network among the models, the ετ value is 
calculated (0, for the healthy and 1 for the 
distressed firms).  

If the health index ετ
 
is the same to the index 

of the previous year then the model moves on the 
next step.

 

Else the firm
 

is fluctuating and must be 
removed from the portfolio. 

If ετ
 
= 1 then the firm is distressed and it is 

removed, else if ετ
 
= 0 the firm is healthy being 

candidate for the optimal efficient portfolio.  
On the next step the U

t
(R

t
(
i
)) the utility 

function of (105) is calculated per firm.  
Next, firms are ranked according to their 

utility score. 
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Then, the Efficient Frontier is calculated. 
Next, the firms with the higher utility score 

are selected into the efficient portfolio.    
The sub-optimal firms as well as the non-

optimal firms are revaluated with potential new 
data on the step 4 of Neural Nets evaluation, 
following all the steps.  

Next, after the efficient portfolio is created, 
its Utility Function is calculated U

Pj
(f).  

Then, the optimal overall portfolio U*
Pj
(f) 

whose utility is the maximum available, is 
detected, if possible, by all the available efficient 
portfolios utilities U

Pj
(f) recorded in U*

Pj
(f)> U

Pj
(f). 

The process stops when the time limit is 
reached and the PI has the optimal portfolio.  

The key idea is to filter fraud and speculative 
noise that interfere on the price and disorient 
investors. Thus examining recent accounting 
entries and through their financial indexes we can 
define the real financial health of the firm. After 
the real healthy firms are selected then their 
returns are considered on the model and we 
proceed on the main core of the Markowitz initial 
approach, the detection of efficient frontier and 
the creation of the efficient portfolio. The model’s 
flow chart is in Figure 1. 
 

 
Figure 1. The EPICO model 
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7. THE COMPUTATIONAL INTELLIGENCE  
 
The emphasis on the classifier gill be given on the 
Feed forward networks family. A thorough 
investigation of  i) the Voted Perceptron, ii) the 
Multi-Layer Perceptron, and iii) the Generalised 
Feed Forward and the MLPs as a measure of 
comparison will take place. All the models will be 
examined in neural net and hybrid neuro-genetic 
form, on various topologies. In the following sub-
sections a detailed presentations of these models 
takes place. 
 

7.1. The Voted Perceptron 
 
The Voted Perceptron-VP is a refinement of the 
Perceptron algorithm preferably in cases of noisy 
or inseparable data, [15], [16], [17], [18], [3]. The 
training phase similar, whilst a change relies on  
the test examples. The algorithm can be 
considered to build a series hypotheses Gt(x) for 
t = 1….n where Gt is the scoring function from the 
algorithm trained on just the first t training 
examples. The output of a model trained on the 
first examples for a sentence s is: 
 

Gt(x) = ∑ α
i,j 

(h(x
i 1

) h(x) – h(x
i j
) h(x)) 

(i≤t, j) (36) 

 
Thus the training algorithm can be 

considered to construct a sequence of n models, 
V

1
, …V

n
. On a test sentence s, each of these n 

functions will return its own parse tree, Vt(s) for t 
= 1…n. The Voted Perceptron picks the most likely 
tree as that which occurs most often in the set 
{V

1
(s) …V

n
(s)}. The Gt is easily derived from Gt-1, 

though the identity;   
 

Gt(x) = Gt-1 (x) + Σ h
t
 h

tj
 (37) 

 
hence, the Voted Perceptron can be implemented 
with the same number of kernel calculations, 
under roughly the same computational complexity, 
as the original Perceptron, [19]. 
 

7.2. The Multi-Layer Perceptron 
 
The Multi-Layer Perceptron–MLP, [4], [19], [18], [8], 
[3], is a widely used neural network, whose inputs 
are processed in a numerous layers [20], [18], [3] 
that contain artificial neurons. The number of 
neurons in the input is identical to the variables, as 

the outputs are equal to the number of classes, 
and nonlinear intermediate neurons form the 
hidden layers, [21]. The neurons except those on 
the input, produce a linear combination of the 
outputs of previous layers plus a bias. The 
synaptic weights, between different neurons, 
normalized with the output classes to 0-1 so that 
the MLP concludes to the optimal performance of 
the maximum ex-post receiver in classifications, 
[22]. Next neurons in the hidden layer process a 
non-linear sigmoid function of their input. 
 

φ(x) = 1/(1+exp(-x)) (38) 
 

The output neurons produce a result equal to 
the linear combination. The output is discrete in 
{0,1}, whilst the output c of each neuron is: 

 
c = φ (Σ w

i
 α

i
 +b) 

i (39) 
 

where, a
i
 - the inputs of the neuron and w

i
 - the 

weights of the neuron. MLPs (figure 1), can 
approximate arbitrary functions, when they are 
trained with the backpropagation algorithm, [23]. 
The errors in the network are minimized through 
the backpropagation rule, allowing adaptation of 
the hidden neurons. Multi-Layer Perceptron with 
nonlinear neurons have a smooth nonlinearity as 
the logistic function and the hyperbolic tangent, 
whilst their massive interconnectivity permits the 
computation non linear functions. The Multi-Layer 
Perceptron is trained with error correction 
learning, where the desired response for the 
system must be known [24], [25]. A bias affects 
biological neurons in extreme weather conditions 
or in physiological disorders, thus a bias input is 
given to each one of the artificial neurons, The 
MLPs in a hybrid form optimised by Genetic 
Algorithms were elaborated into NeuroSolutions 
software. Genetic Algorithms select the most 
significant inputs among the 16 financial inputs in 
the hybrid MLP. The network, through multiple 
training, finds the inputs combination with the 
lowest error. Genetic Algorithms were used on 
each layer in the MLPs with different topologies. 
Batch learning were chosen to update the weights 
of hybrid neuro-genetic MLP, in an accumulative 
manner. Genetic Algorithms optimised the sub-
problems regarding the: a) number of Processing 
Elements, b) Step Size, and c) Momentum Rate. The 
output layer optimized the value of Step size and 
Momentum through Genetic Algorithms. 

 
Figure 2. Multi-Layer Perceptron biased with n hidden nonlinear layers 
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Figure 3. The Hybrid Multi-Layer Perceptrons, of Genetic Algorithms optimization in all layers and Cross 
Validation 

 

7.3 THE HYBRID GENERALISED FEED FORWARD 
NETWORKS 
 
The Generalised Feed Forward networks, (Fig.2) are 
a generic form of the MLPs being able to let their  

synapses jump over one or more layers. In the GFF 
we used an initial MLP is created where each layer 
feeds forward its output signal to all subsequent 
layers. The real performance of the GFFs showed 
that they resolve the problems much more 
efficiently then the MLPs, in a fraction of the time, 
on the same number of neurons.  

 
Figure 4. The Generalised Feed Forward Network

 
Figure 5. The Hybrid Generalised Feed Forward networks, of GA optimization in all layers and CV 
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7.4 THE BAYESIAN LOGISTIC REGRESSION 
 
The Bayesian Logistic Regression for both Gaussian 
and Laplace Priors, [26], [18], [3], was implemented 
by the Weka platform. The Logistic regression is 
discriminative probabilistic linear classification in 
 

p(C
1
| x) = σ(wTφ) (40) 

 
though the exact Bayesian inference for the 
Logistic Regression is inflexible, an evaluation of 
posterior distribution p(w|t) takes place, whilst a 
step of  normalisation to prior is required as: 
 

p(w)=N(w|m
0
,S

0
) (41) 

 
under the likelihood multiplication generated by 
the sigmoids, results to:  

𝑝(𝑡|𝑤) = ∏ 𝑦𝑛
𝑡𝑛{1 − 𝑦𝑛}1−𝑡𝑛

𝑁

𝑛=1

 (42) 

 

The Bayesian Logistic Regression can apply 
Laplace approximation to get the Gaussian q(w). 
The evaluation of the predictive distribution comes 
as a convolution: 

  

p(C1 |φ, t) =σ(w
T
φ,t)q(w)dw   (43) 

 
of the sigmoid and Gaussian, and the approximate 
Sigmoid by Probit function. The Laplace 
Approximation requires the mode w

0
 of the 

posterior distribution p(w|t) and it is being done by 
a numerical optimization algorithm. It also fits a 
Gaussian centered at the mode:  
 

q(w) = N(w|w
0
,A-1) (44) 

 
whilst there is a need for second derivatives of log 
posterior that is equivalent to find a: 
 

A = −∇∇lnf(w) |
w=w0

 (45) 
 
Hessian matrix: 
  

S
N
 = −∇∇ln p(w|t) (46) 

 

8. DATA OF NEURAL COMPUTATION 
 
Data came by 1411 companies from the loan 
department of a Greek commercial bank, with the 
following 16 financial indices: 

1) EBIT/Total Assets; 
2) Net Income/Net Worth; 
3) Sales/Total Assets; 
4) Gross Profit/Total Assets; 
5) Net Income/Working Capital; 
6) Net Worth/Total Liabilities; 
7) Total Liabilities/Total assets; 
8) Long Term Liabilities /(Long Term Liabilities + 

Net Worth); 
9) Quick Assets/Current Liabilities; 
10) (Quick Assets-Inventories)/Current Liabilities; 
11)  Floating Assets/Current Liabilities; 
12)  Current Liabilities/Net Worth; 
13) Cash Flow/Total Assets; 
14) Total Liabilities/Working Capital; 
15) Working Capital/Total Assets; 
16) Inventories/Quick Assets. 

And the17th index with initial classification, 
done by bank executives, based on [27]. Test set 

was 50% of overall data, and training set 50%. The 
1411 companies are unique on the dataset, each 
index value is the 3 years average, [27], and the 
dependent value ετ is binary, in 0 for the healthy, 
and 1 for the distressed companies. The frequency 
of observation is discrete, having 3 different values 
in most of the firms, offering the average 
elaborated by the models. The resources used was 
an AMD Athlon II of 4 cores at 2.61 GHz in Win XP 
SP2, X32 bits, 4GB RAM for all the models.  
 

9. RESULTS 
 
The classification evaluation process of the EPICO 
model is advanced by the appropriate classifier:  
 

9.1. Results of Multi-Layer Perceptrons  
 
The MLP in WEKA software [18], [17], [8], [3], used 
the backpropagation to train, providing a graphical 
representation of the network, having the ability to 
be altered only while the network is not running. 
The number of epochs to train was 500. The 
training set had 706 companies (50%) and the test 
set 705 (50%). The test set results provide 
information on the most efficient MLP topology, 
because the synaptic weights were adjusted by the 
previous learning process of the training set. Thus 
Multi-Layer Perceptron with 6 hidden layers had 
the optimal classification convergence, since it 
offered the highest number of correct 
classifications, 650 (92.14%), that is to say 593 
healthy companies were categorized as healthy out 
of 706, and 57 as in distress. The incorrect 
classifications of MLP with 6 layers were the lowest 
at 55 cases (7.8%). The interobserver agreement 
expressed by the Kappa statistic was the highest at 
0.6344 for the MLP of 6 layers, and the cost 
function in the form of MSE was at the second 
lowest place (the lowest was for the MLP with A: 9 
layers) indicating an excellent fitness of the 
network output to the desired output. MLP with 
number of hidden layers A=(attribs + classes) / 2 = 
(16+2)/2 = 9, had a very good performance as well, 
slightly inferior than the optimal MLP of 6 layers, 
followed by the MLP of 2 layers. 
 

9.2. Results of hybrid neuro-genetic Multi-Layer 
Perceptrons.  
 
The results from hybrid neuro-genetic MLP lacked 
convergence accuracy as they only classified 
correctly the healthy at a rate 100%, [28], [29]. 
There were 16 MLP neural networks examined in 
two different programmes where 6 and 10 
topologies were examined respectively. The MLP 
hybrids were 30, and of 3 different architectures in 
10 alternative topologies. The Hybrid MLP 
optimised by GA on the input layer only, deciding 
the importance of the financial indices to the 
model and their use, provided the best 
performance the in hybrid MLPs and in every 
model examined in this research overall, on the net 
of 1 layer, where the healthy firms were classified 
correctly at 99.66%, and the distressed at 94.17%, 
in the lowest MSE at 0.034, and the best fitness at 
0.958, the lowest error at 3.16%, in a very low 
Akaike Criterion revealing an impartial model, but 
exposed to overtraining,  in a fast time of 51 
minutes and 2 seconds. 
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Table 1. Results of MLP, [18], [17], [8] 

 

 
Table 2. Results of Hybrid MLPs, [17], [8] (Part 1) 

 
Neural Network  Active Confusion Matrix Performance 

MLP Neural Network Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 
 1 100 0 98.16 1.83 0.417 0.986 0.121 19.399534 -471.148 -377.72 22’’ 

 2 100 0 98.16 1.83 0.417 0.986 0.123 19.348611 -431.387 -312.365 23’’ 

 3 100 0 100 0 0.422 0.999 0.153 19.603922 -381.471 -236.853 26’’ 
 4 100 0 100 0 0.425 1.007 0.136 21.926317 -336.485 -166.270 29’’ 

 5 100 0 100 0 0.643 1.521 0.084 39.624512 -5.3443 190.466 26’’ 

 6 100 0 100 0 0.755 1.785 0.004 44.192734 147.891 369.297 30’’ 

 7 0 100 0 100 1.281 3.030 0.0002 59.147186 561.348 808.351 32’’ 

 8 0 100 0 100 1.167 2.761 0.128 56.429844 535.628 808.22 31’’ 

 9 100 0 100 0 0.797 1.886 0.049 45.72015 306.568 604.763 30’’ 

 10 100 0 100 0 0.486 1.149 0.0003 30.310116 -3.21259 320.578 37’’ 

Hybrid MLP, inputs GA Layers  
 1 99.66 0.33 5.82 94.17 0.034 0.083 0.958 3.167633 -2224.53 -2135.24 51’  2’’ 

 2 99.16 0.83 52.42 47.57 0.191 0.470 0.746 12.983215 -923.615 -774.377 59’ 35’’ 

 3 100 0 100 0 0.432 1.062 0.183 26.092693 -329.259 -164.715 1h 25’ 25’’ 

 4 100 0 100 0 0.405 0.996 0.153 19.834393 -334.673 -144.61 1h 29’ 04’’ 

 5 100 0 100 0 0.557 1.371 0.095 35.649826 -54.8485 170.922 1h 40’ 36’’ 

 6 100 0 100 0 0.434 1.068 0.224 26.069294 -189.470 61.8107 1h 48’ 26’’ 

 7 100 0 100 0 0.513 1.263 0.097 32.985878 -48.4362 210.151 1h 44’ 54’’ 
 8 0 100 0 100 1.353 3.329 0.155 60.953899 637.915 909.605 2h 41’ 22’’ 

 9 100 0 100 0 0.537 1.32 0.037 34.459007 78.78643 406.6 2h 0’ 45’’ 

 10 0 100 0 100 0.866 2.13 0.344 48.194672 453.9556. 807.28 1h 47’ 17’’ 

Hybrid MLP, GA all layers Layers  

 1 99.16 0.83 58.71 41.28 0.209 0.495 0.750 14.547907 -1065.435 -1041.1 2h  13’ 16’’ 

 2 96.31 3.68 18.34 81.65 0.162 0.384 0.798 11.69929 -1060.96 -918.91 2h  50’ 06’’ 

 3 100 0 92.66 7.33 0.396 0.938 0.253 18.93849 -535.591 1295.79 7h  29’ 18'' 
 4 100 0 100 0 0.422 0.999 0.211 19.58418 378.505 1009.45 7h  43’ 56’’ 

 5 100 0 99.08 0.91 0.419 0.992 0.088 19.43412 79.4628 522.276 9h  44’ 43’’ 

 6 100 0 100 0 0.422 0.998 0.196 19.56872 2745.85 4892.8 2 h  39’ 59’’' 

 7 100 0 100 0 0.422 1 -0.056 19.58313 370.563 996.389 13h  05’ 54’’ 

 8 100 0 100 0 0.422 0.999 0.174 19.58316 2818.56 5010.87 26h  49’ 31’’ 

 9 100 0 100 0 0.422 0.998 0.196 19.56876 2745.85 4892.09 21h  39’ 59’’ 

 10 100 0 100 0 0.422 0.999 0.128 19.583370 2076.55 3794.05 29h  57’ 06’’ 

 

 
 

MLP Test Set 0→0 0→1 1→0 1→1 Misclas. Cor. cl. K-stat ΜΑΕ MSE RMSE RAE RRSE Time 
MLP A layers 592 4 52 57 56  7.94% 649  92.05% 0.6295 0.0808 0.0614 0.2479 30.86% 68.57% 10.45 sec 
MLP 1 594 2 64 45 66  9.36% 639  90.63% 0.5335 0.1089 0.0840 0.2899 41.56% 80.18% 2.27 sec 
MLP 2 593 3 59 56 56  7.94% 649  92.05% 0.6261 0.0897 0.0659 0.2569 34.24% 71.05% 3.28 sec 
MLP 3 594 2 63 46 65  9.21% 640  90.78% 0.5428 0.0986 0.0817 0.2859 37.64% 79.07% 4.39 sec 
MLP 4 593 3 57 52 60  8.51% 645  91.48% 0.5918 0.0905 0.0731 0.2704 34.53% 74.78% 5.06 sec 
MLP 5 593 3 58 51 61  8.65% 644  91.34% 0.5831 0.0888 0.0718 0.268 33.89% 74.13% 6.02 sec 
MLP 6 593 3 52 57 55  7.80% 650  92.19% 0.6344 0.0819 0.0627 0.2505 31.27% 69.28% 7.08 sec 
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Table 2. Results of Hybrid MLPs, [17], [8] (Part 2) 
 

Neural Network  Active Confusion Matrix Performance 

MLP Neural Network Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

Hybrid MLP, GA all, Cross 
Validation 

 

 1 99.15 1.84 25.68 74.31 0.149 0.352 0.804 8.08449 -1300.83 -1273.9 2h  32’ 30’’ 

 c.v. 98.32 1.67 31.19 68.80 0.167 0.395 0.780 7.922915 -1217.69 -1190.8  

 2 100 0 98.16 1.83 0.497 1.176 0.126 8.203679 -274.749 -135.25 2h  56’ 17’’ 

 c.v. 100 0 99.08 0.91 0.499 1.179 0.090 7.983900 -271.110 -131.68  

 3 99.49 0.50 62.13 37.86 0.217 0.535 0.723 15.057777 878.727 2119.82 11h 31’ 29’’ 

 c.v. 99.83 0.16 65.13 34.86 0.230 0.544 0.734 14.784730 911.851 2156.4  

 4 100 0 99.08 0.91 0.418 0.990 0.099 19.432472 1459.53 2786.69 16h 22’ 59’’ 
 c.v. 100 0 100 0 0.422 0.998 0.064 19.47684 1467.29 2793.72  

 5 100 0 100 0 0.422 1 -0.018 19.575001 1002.56 2832.81 26h 09’ 45’’ 

 c.v. 100 0 100 0 0.423 1 -0.063 19.712772 1004.27 2033.94  

 6 100 0 100 0 0.422 0.999 0.033 19.583233 1754.55 3266.01 27h 43’ 20’’ 

 c.v. 100 0 100 0 0.423 0.999 0.020 19.589403 1756.23 3266.85  

 7 100 0 100 0 0.422 0.999 0.061 19.583591 1946.557 3580.87 43h  52’ 18’’ 

 c.v. 100 0 100 0 0.423 0.999 0.102 19.589190 1948.20 3581.61  
 8 100 0 100 0 0.423 1 -0.023 19.589117 160.2418 650.13 22h 08’ 52’’ 

 c.v. 100 0 100 0 0.422 1 -0.008 19.583158 158.563 648.72  

 9 100 0 98.16 1.83 0.414 0.980 0.141 19.357584 780.613 1677.75 30h  25’ 37’’ 

 c.v. 100 0 99.08 0.91 0.419 0.989 0.101 19.434509 789.1412 1685.78  

 10 100 0 100 0 0.423 1 -0.274 19.583002 2380.58 4292.61 15h 02’ 44’’ 

 c.v. 100 0 100 0 0.423 1 -0.314 19.588856 2382.25 4293.22  

 
Table 3. The Voted Perceptron results [17], [8], [3] 

 

 
Table 4. Overall ranking of the optimal GFF models 

 
Models  Active Confusion Matrix Performance 

 
Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

GFF input-
output GA 

1 98.90 1.085 11.465 88.52 0.072 0.170 0.908 5.776 -1907.09 -1796.44 3h 19' 25'' 

GFF  GA all 3 97.14 2.845 17.885 82.10 0.128 0.304 0.834 8.343 -786.38 284.34 4h 20' 25'' 

 1 97.56 2.425 18.805 81.18 0.133 0.315 0.827 8.243 -723.47 -271.82 3h 19' 25'' 

GFF  GA all, 7 96.64 3.35 19.26 80.73 0.136 0.323 0.825 9.119 1541.07 3429.31 25h 46' 34'' 

CV  98.32 1.67 29.355 70.63 0.149 0.353 0.812 7.023 1608.29 3495.49  
GFF NN 1 97.73 2.26 21.095 78.89 0.138 0.328 0.821 9.675 -1225.82 -1111.95 14’’ 

GFF NN, CV 8 98.23 1.755 26.14 73.85 0.143 0.338 0.814 9.284 709.44 2041.35 42.5’' 

CV  98.23 1.755 26.14 73.85 0.143 0.338 0.814 9.284 709.44 2041.35  

GFF GA inputs 10 97.98 2.005 26.6 73.16 0.144 0.341 0.812 9.469 1219.39 2873.69 7h 44' 32'' 

GFF GA all 8 98.57 1.42 26.6 73.39 0.14 0.329 0.821 8.329 1262.65 2959.69 29h 50' 17'' 

GFF  GA all, CV 1 97.98 2.005 24.305 75.68 0.145 0.343 0.810 8.646 -1219.07 -1126.3 2h 27' 41'' 

CV  98.4 1.59 24.765 75.22 0.139 0.330 0.821 8.686 -1242.55 -1149.79  

GFF NN 10 98.65 1.34 31.185 68.80 0.147 0.348 0.811 8.454 1557.50 3419.165 57’' 

0→0  0→1 1→0 1→1 Misclassifications Correct classif. K-stat  ΜΑΕ RMSE RAE RRSE Time 

601 5 59 40 64  9.07% 641   90.92% 0.5128 0.0908 0.3013 34.60% 86.42% 0.17 sec 
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Table 5. Optimal outcomes MLP NN, Hybrid MLP, and the Voted Perceptron, [17], [3] 
 

 
Table 6. Overall Optimal results of the FeedForward Models: VP, MLPs, GFFs 

 

 
 
 
 
 

Models Active Confusion Matrix Performance 

 Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

Hybrid MLP, inputs GA 1 99.66 0.33 5.82 94.17 0.034 0.083 0.958 3.167633 -2224.53 -2135.24 51’  2’’ 

Hybrid MLP, GA all, CV 1 99.15 1.84 25.68 74.31 0.149 0.352 0.804 8.08449 -1300.83 -1273.9 2 h  32’ 30’’ 
c.v.  98.32 1.67 31.19 68.80 0.167 0.395 0.780 7.922915 -1217.69 -1190.8  

Hybrid MLP, GA all lay. 2 96.31 3.68 18.34 81.65 0.162 0.384 0.798 11.69929 -1060.96 -918.91 2 h  50’ 06’’ 

  0→0 0→1 1→0 1→1 ΜΑΕ RMSE K-stat RMSE RAE RRSE Time 

Voted Perceptron  85.24 0.7 8.36 5.67 0.0908 0.3013 0.5128 0.3013 34.60% 86.42% 0.17’’ 
 Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

MLP Neural Network 1 100 0 98.16 1.85 0.417 0.986 0.121 19.399534 -471.148 -377.72 22’’ 

 Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

Hybrid MLP, inputs GA 1 99.66 0.33 5.82 94.17 0.034 0.083 0.958 3.167 -2224.53 -2135.24 51’  2’’ 

GFF input-output GA 1 98.90 1.08 11.46 88.52 0.072 0.170 0.908 5.776 -1907.09 -1796.44 3h 19' 25'' 

GFF  GA all 3 97.14 2.84 17.88 82.10 0.128 0.304 0.834 8.343 -786.38 284.34 4h 20' 25'' 

GFF  GA all 1 97.56 2.42 18.80 81.18 0.133 0.315 0.827 8.243 -723.47 -271.82 3h 19' 25'' 

Hybrid MLP, GA all, CV 1 99.15 1.84 25.68 74.31 0.149 0.352 0.804 8.084 -1300.83 -1273.9 2h 32’ 30’’ 
CV  98.32 1.67 31.19 68.80 0.167 0.395 0.780 7.922 -1217.69 -1190.8  

Hybrid MLP, GA all lay. 2 96.31 3.68 18.34 81.65 0.162 0.384 0.798 11.699 -1060.96 -918.91 2h 50’ 06’’ 

  0→0 0→1 1→0 1→1 ΜΑΕ RMSE K-stat RMSE RAE RRSE Time 

Voted Perceptron  85.24 0.7 8.36 5.67 0.090 0.3013 0.512 0.3013 34.60% 86.42% 0.17’’ 
 Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL Time 

MLP Neural Network 1 100 0 98.16 1.85 0.417 0.986 0.121 19.399 -471.14 -377.72 22’’ 
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The Hybrid MLP of 1 layer in GA optimization 
of all layers and Cross Validation had an optimal 
performance, where 99.15% of the healthy firms 
were correctly classified, and 74.31% of the 
distressed in the initial classification whilst the CV 
classifications was altered in 98.32% and 68.80% 
respectively, though the MSE was at 0.149, the 
fitness to the model at 0.804, in 8.08% error, 
converging in 2 hours 32 minutes and 30 seconds. 
These models are more reliable as the Cross 
Validation reassures non exposure to over-
optimisation. 

Finally the Hybrid MLP that is optimised in all 
layers by GA offered the optimal performance on 
the 2 layers network, in 96.31% healthy companies 
correctly classified and 81365% distressed, as the 
error reached 0.162 in MSE, and 0.384 in NMSE, 
whilst the fitness of the model was high at 0.798, 
in a significant percentage error at 11.69% 
consuming a considerable amount of time at 2 
hours 50 min., 6 s.  

 
9.3. Results of the Voted Perceptron 
 
The Voted Perceptron [17], [8], [3], had a moderate 
performance since the classification offered a 
90.92% to the correctly classified companies by the 
executives, and 9.07% misclassifications, whilst the 
interobserver agreement level at 0.51 was 
adequate, and the errors level was significant as 
MAE was 0.09. The processing time was very fast 
at 0.17 seconds (see Table 3). 

As [17], [3] concluded, The most efficient 
method among all the different types examined in 
this research is the Hybrid MLP neural network 
with genetic optimisation into the inputs layer with 
1 hidden layer that had the optimal overall 
performance of all heuristic models examined. Its 
classification results were superior, in the highest 
fitness of the data to the model, providing a very 
low error, and an adequate computing time of 51 
minutes approximately. In to the second place was 
ranked the Hybrid MLP Networks of 1 layer with 
Genetic Algorithms optimising all their parameters 
and Cross validation, whilst an almost identical to 
that model was the Hybrid MLP Networks of 2 
layers and GAs that optimise all of their layers. 
The fourth place was taken by the Voted 
Perceptron network of an adequate performance in 
terms of fitness to the data and error. The last 
rank was given to the MLP Neural Network of 1 
layer with quite inferior results to all the model 
types.  
 

9.4. Results of the Generalised Feed Forward 
models 
 
The GFF hybrid of I layer in GA optimization on 
the inputs and outputs layers only had the optimal 
performance in high convergence on the correct 
classification of the healthy and the distressed 
companies, 98.9% and 88.52% respectfully, very 
high fitness of the model to the data as r was 
0.908, the lowest error as MSE was 0.072, NMSE 
0.170 and percentage error 5.77, whilst the AIC 
was very low at -1907.09 indicating impartiality 
and a time of 3h 19m 25s. 

The next rank was taken by the hybrid GFF of 
3 layers in GA optimization in all layers, in an 

almost fine classification, a high fitness of the 
model to the data at r 0.834, low error, and 
impartiality in 4h 20m 25s. 

A slightly inferior performance had the 
hybrid GFF of 1 layer and GA optimization in all 
layers, in terms of classification, fitness, and error, 
whilst the impartiality was higher, in a time of 3h 
19m 25s (see Table 4, 5, 6). 
 

10. CONCLUDING REMARKS 
 
The EPICO model is an integrated system on the 
portfolio selection problem. Its module-based 
structure provides a flexible platform for 
demanding environments. The fundamentals filter 
the fraud more effectively. The complex isoelastic 
utility function, is suited for customer-tailored 
solutions in higher efficiency. The optimal 
classifier of the FeedForward family was the 
Hybrid MLP of 1 layer GA optimization into inputs 
only, in a fine classification, an ideal fitness to the 
model at 0.958, the least error, impartial 
processing, in a fast time.  

The Hybrid GFF of 1 layer and GAs on the 
inputs and outputs got the second rank of the FF 
family, in a lower classification performance, fine 
fitness, higher error, impartiality, in a higher 
computing time. 

Thirdly the Hybrid GFF of 3 layers and GA 
optimization in all the layers had a quite good 
classification, good fitness, slightly higher error, 
impartial model, and a higher processing time. 

The research is not limited by the data 
parameters as far as the model is connected on 
line to the internet, or more specialized data bases. 
Future directions could include the infiltration of 
publicly shared opinions (sentiments) of investors 
so that the model has a stronger point on the 
behavioral aspect.  
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