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Abstract 
 

The purpose of this study is to compare the forecasting efficiency of two univariate time series 
models, the seasonal autoregressive integrated moving average (SARIMA) and the Holt-Winter’s 
triple exponential smoothing. A monthly electricity and water consumption data used was 
sourced from the South African Reserve Bank. This data was available for the period Q3 2008 to 
Q1 2016. Upon subjecting the data to the diagnostic tests of normality, heteroscedasticity and 
stationarity, parameters of the selected model were estimated using the maximum likelihood 
method. Although the two models were found to be good estimators and globally significant, 
Holt Winter’s triple exponential smoothing (HWTES) was selected as the best forecasting model 
based on the small forecast errors generated. The forecasts revealed that utility resources 
demand in South Africa are expected to be high for the period 2016 to 2017 and the trend 
extends to periods ahead. Using these findings, better strategies on the production and 
distribution of electricity and water can be formulated. Lives of people in South Africa could also 
be improved. 
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1. INTRODUCTION 
 
Forecasting time series data is an imperative piece of 
operations research because these data often 
provide the groundwork for decision models. Time 
series analysis tools are typically used to construct a 
model used to produce forecasts of future events. 
Consequently, modeling time series is a statistical 
problem. Forecasts are used in computational 
processes to estimate the parameters of a model 
being used to allocate limited resources. Forecasting 
may be used as decision risk minimization when the 
result of an action is of consequence, but cannot be 
known in advance with precision. This could be done 
by supplying additional information about the 
possible outcome. Time series forecasting further 
assumes that a series is a combination of a pattern 
and some random error. The analyst’s goal is to 
separate the pattern from the error by 
understanding the trend pattern, its long-term 
increase or decrease, seasonality, the change caused 
by seasonal factors such as fluctuations in use and 
demand. Time series models assume that 
observations vary according to some probability 
distribution about an underlying function of time. 
Not only time series methods can be used to do 
forecasting. Non-scientific methods such as expert 
judgment are often used to predict long-term 
changes in the structure of a system. A very good 
example related to qualitative analysis such as the 
Delphi technique may be used to forecast major 
technological innovations and their effects. Another 
example related to quantitative analysis such as 
Causal regression models may be used to predict 
dependent variables as function of other correlated 
observable independent variables. 

This study scratches the surface of the field, by 
restricting attention to using historical time series 

data to develop a time-dependent forecasting model. 
The proposed methods are appropriate for 
automatic, short-term forecasting of frequently used 
information where the underlying causes of time 
variation are not changing markedly. Time series 
methods proposed in this study are assumed to be 
competent in handling the series which contain both 
the trend and seasonal components. Wei (2006) 
cautioned that many business and economic time 
series contain a seasonal phenomenon that repeats 
itself after a regular period of time. He refers to the 
smallest period of time for this repetitive 
phenomenon as seasonal period. Seasonal 
phenomenon may stem from factors such as 
weather which may have many effects in many 
business and economic activities. The current study 
compares less sophisticated but powerful methods 
to come up with a model that may be used in doing 
short term forecasts of electricity and water 
consumption, herein referred to as utility resources 
in South Africa. The predictive power of the seasonal 
autoregressive moving average (SARIMA) and HWTES 
methods will be evaluated on utility resource usage 
data. 

SARIMA models are developed from the Box-
Jenkins autoregressive moving average (ARMA) and 
characterize a very powerful and flexible class of 
models for time series analysis and forecasting. Over 
the years, ARMA models have been effectively 
applied to many problems in research and practice. 
However, literature provides evidence on certain 
situations where this class of model falls short on 
providing accurate answers. A typical example such 
as forecasting future values of a series primarily 
relies on the information about the past. This 
implicitly assumes that circumstances at which the 
data is collected will remain the same in the future 
as well. Nonetheless, the data used in this study is 
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collected on monthly time intervals and it is 
assumed that these data exhibit periodic patterns. 
Thus the study applies SARIMA and (HWTES) 
methods to cater for these seasonal and trend 
variations. These methods further place more 
emphasis on recent than distant past. Pankratz 
(1983) warned against the application of these 
methods when doing long term forecasting since 
they have a tendency of producing less reliable 
estimates. The application of Holt-Winters with 
general seasonality modelling in this paper is to 
offer broader spectrum of possibilities for 
seasonality treatment. These methods are 
additionally appropriate when time series exhibit 
irregular components and offers both the additive 
and multiplicative seasonality.   

Another reason for using these less 
sophisticated and low computational intensive 
methods apart from the ability to handle both 
seasonal and trend features is due to lack of 
guarantee that more sophisticated methods perform 
better than the less sophisticated ones. In essence, 
the performance of methods is dependent on a 
particular data set. Some methods outperform 
others; however such display of supremacy may not 
be generalized. Such differences may not be evident 
when similar methods are applied on other data 
sets. It is of utmost importance to model monthly 
peak electricity and water demand as this will 
provide short-term forecasts. These forecasts may 
assist system operators in effective transmission of 
electrical energy and water in the country. Forecasts 
of load demands are also very vital for decision 
making processes in the electricity and water 
sectors. This may help eliminate or reduce the 
problem of water shortages in the country which we 
experience especially during dry seasons. Load 
shedding has also since the past two years been a 
pressing issue and remained to have effects in the 
operation of businesses in the country. This also 
discourages investors and prevents injection of 
funds in the country. Consequently this could have 
long term effects on the country’s economic 
wellbeing. If the demand of these sectors is 
unknown, planning may be uncertain and decision 
making may also be almost wrong. Through the 
findings of this study, decision makers would be 
able to devise strategies for optimal month to month 
operation of power and water plants. They may even 
be encouraged to come up with strategies to do 
capacity expansion. As highlighted by Ismail et al. 
(2009), the demand of electricity forms the basis for 
power system planning, power security and supply 
reliability. 

In South Africa, electricity and water are 
regarded as basic needs. The government has made 
it a point that these sectors are top of their priority 
list and their availability to residents of the country 
will help in eradicating poverty. Electricity is lately 
essential for economic development more 
specifically for the industrial sector. Lepojević and 
Anđelković-Pešić (2011) highlighted that authorities 
use energy demand forecasts as one of the most 
important policy tools, but they are faced with a 
dilemma of forecasting this demand. To ensure good 
planning and controlling, accurate forecasts must be 
available. If accurate forecasts are known, proper 
amount of utility reaources will be supplied and this 
will guard against underestimation or 

overestimation of these supplies. More money could 
be saved and be allocated to other important and 
basic sectors. Better budget planning, maintenance, 
scheduling and fuel used for producing these 
sectors could be better managed. Unnecessary 
interruption of services could be dealt away with 
and more businesses could also be restored and as a 
result. High unemployment rates and pointless 
strikes could be reduced. This study would serve as 
point of reference for other researchers who wish to 
embark studies on electricity and water or scholars 
who wish to evaluate forecasting models.  

The remainder of the paper is planned as 
follows; Section 2 gives a brief review of studies on 
the subject and Section 3 provides data description 
and also presents the SARIMA and HWTES, model 
selection and forecasting criteria. Empirical results 
are covered and discussed in Section 4 whereas 
concluding remarks and recommendations are given 
in Section 5. 

 

2. LITERATURE REVIEW 
 

In modelling and forecasting of univariate and 
multivariate time series data, several methods are 
available. Among those available are simple and 
sophisticated methods. Simple methods include the 
Decomposition, exponential smoothing and the Box 
and Jenkins Seasonal Autoregressive Integrated 
Moving Average (SARIMA). Tong’s Threshold 
Autoregressive (TAR), Terȁsvirta’s Smooth 
Transitional Autoregressive (STAR), Artificial Neural 
Networks and others are regarded as sophisticated 
models. This study limits its application to only two 
linear univariate methods to model and forecast 
utility resources demand in South Africa. 

A number of studies used SARIMA and HWTES 
methods in variety of data sets. Studies by Bolarinwa 
(2005, 2010) did a comparative analysis of 
Decomposition, SARIMA and Holt-Winters 
forecasting methods on meteorological and 
temperature data in Nigeria. The authors concluded 
based on the findings that a Decomposition method 
is best in producing a short term, i.e. 1-step ahead 
forecasts. SARIMA model was reported to be the best 
in producing longer forecasts, 7-step forecasts. A 
follow-up study by Bolarinwa and Ayoolwa (2014) 
compared the efficiency of the mentioned time 
series models in modelling Nigeria’s monthly 
minimum temperature. The data used for this study 
was collected for the period January 2000 to August 
2013. The Root mean square error (RMSE) was used 
to make selection between the three models and a 
Decomposition model was found to be the best in 
producing out-of-sample forecasts despite its 
simplicity. The study could have used more than one 
error metrics in selecting the models so as to avoid 
biasness or better still power analysis could have 
been performed to assess if the difference between 
the calculated RMSE is of significance or not.  

An empirical study by Taylor et al. (2006) 
compared the efficiency of six univariate methods to 
model and forecast short-term electricity demand. 
The study used an hourly time series electricity 
demand for Rio de Janeiro and half-hourly time 
series electricity demand for England and Wales. 
Despite the use of the so called sophisticated 
models, the exponential smoothing method 
produced better forecasts compared to others. This 
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study lent the use of the mean absolute percentage 
error (MAPE) to measure accuracy in load 
forecasting. Different conclusion could have been 
reached had the authors used more than one error 
metric as a measure of forecast accuracy. 

Chikobvu and Sigauke (2012) developed the 
SARIMA and regression with SARIMA errors models 
to predict the South African daily peak electricity 
demand for the period 1996 to 2009. The study 
further introduced the HWTES model to evaluate the 
performance of these two models. While the MAPE 
and RMSE were in favour of SARIMA model as far as 
short term forecasts are concerned, the regression-
SARIMA model captured important drivers of 
electricity demand in the country. Inversely, the 
study by Sumer et al. (2009) reported the regression 
model with seasonal latent variable to be more 
efficient than ARIMA and SARIMA. 

Ismail et al. (2015) used double seasonal 
autoregressive integrated moving average 
(DSARIMA) to estimate and forecast Egypt’s 
electricity demand. Daily data used covered the 
period 1 June 2012 to 28 June 2012. Bayesian 
information criterion selected DSARIMA 
(1,1,1)

24
(2,1,3) as the best model among other 

tentative models.  The selected model produced 
lower error forecasts according to MAPE than others. 

Molla et al. (2016) assessed the performance of 
ARIMA and Holt-Winter’s additive trend and 
seasonality smoothing methods in forecasting 
electricity generation in Australia. Monthly 
electricity productions data covering the period 
from January, 1980 to August, 1995 was used in this 
study. Among the four forecast error metrics, Theil’s 
U-statistic proved that SARIMA (0, 1, 1) (0, 1, 2)

12
 is a 

good forecaster of Australia’s electricity demand 
than its counterpart. 

Holt Winters exponential smoothing and Box-
Jenkins SARIMA methods have also been used in 
many other areas to model and produce short term 
forecasts. For instance, Olowe (2009) and Etuk (2012, 
2013) used these methods to forecast exchange 
rates, and Junttila (2001), Pufnik and Kunovac 
(2006), Schulze and Prinz (2009) forecasted inflation 
rates using these methods. 

 

3. DATA AND METHODS 
 

Data analysed in this study is based on the South 
African electricity consumption collected from the 
South African reserve bank website. The Statistical 
Analysis Software (SAS) version 9.3, registered to the 
SAS Institute Inc. Cary, NC, USA is used for data 
analysis. A quarterly data covers the period 2008 Q3 
to 2016 Q1. A total of 100 observations is used. 
Since electricity consumption is collected over time 
and thus violates the assumption of unit root, the 
original series is transformed to obtain uniform 
variability. Transformation is done using the natural 
logs as suggested by Sadowski (2010). The author 
advocates for this type when the standard deviation 
of the original time series increases with the series 
mean in a linear fashion. 

One other general class of transformations is 
the Box-Cox transformation suggested by Chatfield 
(1996). This transformation can be shown in a time 
series with 𝑦𝑖 , … 𝑦𝑡,  

{
(𝑌𝑡

𝜆 − 1) 𝜆             𝜆 ≠ 0⁄

log 𝑌𝑡                          𝜆 = 0
} (1) 

where, λ according to Chatfield denotes the 
transformation parameter which may be estimated 
by subjective judgement or by a formal statistical 
procedure. Scholars advice against transformation of 
the series and suggest the use of the original values. 
Further, there is little evidence that the use of a non-
linear transformation improves forecasts (Nelson 
and Granger, 1979). The use of Box-Cox 
transformation does not guarantee that the 
properties of the series will be constant. On the 
same breath, Brockwell and Davis (2002) warned 
against the use of non-stationary series. The authors 
suggested that for a series to be considered 
stationary and be a candidate for Box–Jenkins 
modelling, it must not have any parameter estimates 
inside the unit circle, 𝑖. 𝑒. parameter estimates with 
complex roots. They recommended that this series 
must oscillate around a constant mean with a 
constant variance. Literature identifies some of the 
reasons leading to non-stationarity as random walk, 
drift, or trend. To avoid complicated results, the 
study nonetheless applies the Box-Cox 
transformation to the series prior to primary data 
analysis. 

 
Seasonal stationarity testing 

A seasonal series can also be non-stationary and 
requires seasonal differencing to render it 
stationary. If, say, 𝑌𝑡 is a seasonal time series with 
seasonal period 𝑠, Wei (2006) suggested a seasonal 
differencing (1 − 𝐵𝑠)𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑠. In such a case, the 
associated time series model contains seasonal unit 
root. Say the time series model (1 − 𝛷𝐵𝑠)𝑌𝑡 = 𝑎𝑡 has 
equivalence; 

 
𝑌𝑡 = 𝛷𝑌𝑡−𝑠 + 𝑎𝑡 (2) 

 
Wei (2006) defines 𝑌1−𝑠, 𝑌2−𝑠, … , 𝑌0 as initial 

conditions and 𝑎𝑡 are identically and independently 
distributed (i.i.d) random variables with zero mean 
and constant variance 𝜎𝑎

2. The ordinary least squares 
estimator of 𝛷 is given by; 

 

𝛷̂ =
∑ 𝑌𝑡−𝑠𝑌𝑡

𝑛
𝑡=1

∑ 𝑌𝑡−𝑠
2𝑛

𝑡=1

 (3) 

 
which is also a maximum likelihood estimator 

when 𝑎𝑡 is Gaussian. The studentized statistic for 
testing the null hypothesis 𝐻0: 𝛷 = 1 is; 

 

𝑇 =
𝛷̂ − 1

𝑠𝑒𝛷̂

 (4) 

 
If the observed absolute 𝑇 value is greater than 

the critical value, no simple differencing is required 
since the series has been rendered stationary. 
Alternatively, a spectral density function is used to 
confirm the stationarity of the series. The desire is 
to have a plot revealing the stochastic properties 
revolving around a zero line to help decide if the 
series is stationary or not. This plot should further 
reveal periodic movements, indicative of high peaks.  

 
Holt-Winters method 

This section reviews forecasting exponential 
smoothing method that captures the trend and 
seasonal cycles developed by Holt in 1957. Suppose 
a trend plus noise (non-seasonal) model given as; 
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𝑋𝑡 = 𝑚𝑡 + 𝑌𝑡                         𝑡 = 1, . . . , 𝑛 (5) 
 

where 𝐸𝑌𝑡 = 0 has observations 𝑌1, 𝑌2, … , 𝑌𝑛. 
Further, suppose the exponential smoothing 
recursions obtained from ; 

 
(1 − 𝛼)𝑚̂𝑡−1                          𝑡 = 2, . . . , 𝑛 (6) 

 
allowed us to compute estimates 𝑚̂𝑡 of the 

trend at times 𝑡 = 1, 2, . . .  , 𝑛. Equation (6) is often 
referred to as exponential smoothing, since the 
recursions imply that for 𝑡 ≥ 2, 𝑚̂𝑡 = ∑ 𝛼(1 −𝑡−2

𝑗=0

𝛼)𝑗𝑋𝑡−𝑗 + (1 − 𝛼)𝑡−1𝑋1 a weighted moving average of 

𝑋𝑡, 𝑋𝑡−1, . . ., with weights decreasing exponentially 
with the exception of the last one. If the series is 
stationary, 𝑚𝑡 becomes constant and the exponential 
smoothing forecast of 𝑌𝑛+ℎ based on the 
observations 𝑌1, 𝑌2, … , 𝑌𝑛 becomes; 

 
𝑃𝑛𝑌𝑛+ℎ = 𝑚̂𝑛,         ℎ = 1, 2, . . .. (7) 

 
In the presence of a trend, then a natural 

generalization of the forecast function (7) that takes 
this into account is; 

 

PnYn+h = ân + b̂nh,         h = 1, 2, . . . ., (8) 

 

𝑎̂𝑛 and 𝑏̂𝑛 are regarded as estimates of the 
“level” 𝑎𝑛 and “slope” 𝑏𝑛 of the trend function at 
time 𝑛. Holt (1957) suggested a recursive scheme for 

computing the quantities 𝑎̂𝑛 and 𝑏̂𝑛 in (8). Denoting 

by 𝑌̂𝑛+1 the one-step forecast 𝑃𝑛𝑌𝑛+ℎ , we have from (8) 

𝑌̂𝑛+1 = 𝑎̂𝑛 + 𝑏̂𝑛. 
Brockwell and Davis (2002) suggested that as in 

exponential smoothing, the estimated level at time 
𝑛 + 1 is a linear combination of the observed value at 
time 𝑛 + 1 and the forecast value at time 𝑛 + 1. As a 
result, 

 

𝑎̂𝑛+1 = 𝛼𝑌𝑛+1 + (1 − 𝛼)(𝑎̂𝑛 + 𝑏̂𝑛) (9) 

 
The slope at time 𝑛 + 1 can be estimated as a 

linear combination of 𝑎̂𝑛+1 − 𝑎𝑛 and the estimated 

slope 𝑏̂𝑛 at time 𝑛 . Consequently, 
 

𝑏̂𝑛+1 = 𝛽(𝑎̂𝑛+1 − 𝑎̂𝑛) + (1 − 𝛽)𝑏̂𝑛 (10) 
 
In the presence of both the trend and seasonal 

variations, the model with period  𝑑 becomes; 
 

𝑋𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑌𝑡 ,              𝑡 = 1, … , 𝑛, (11) 
 

where, 𝐸𝑌𝑡 = 0,    𝑠𝑡+𝑑 = 𝑠𝑡 ,    and ∑ 𝑠𝑗 = 0𝑑
𝑗=1 .  

Further generalization of the forecast function (11) 
that takes this into account is; 

 

𝑃𝑛𝑌𝑛+ℎ = 𝑎̂𝑛 + 𝑏̂𝑛ℎ + 𝑐̂𝑛+ℎ         ℎ = 1, 2, . . . ., (12) 
 

Where,  𝑎̂𝑛, 𝑏̂𝑛 and 𝑐̂𝑛  are thought of as estimates 
of the “trend level” 𝑎𝑛 , “trend slope” 𝑏𝑛 and 
“seasonal component” 𝑐𝑛 at time 𝑛. If 𝑘 is the 
smallest integer such that 𝑛 +  ℎ −  𝑘𝑑 ≤  𝑛, then; 

 
𝑐̂𝑛+ℎ = 𝑐̂𝑛 + ℎ − 𝑘𝑑 ,                     ℎ = 1, 2, . . . ., (13) 

 

The values of 𝑎̂𝑖, 𝑏̂𝑖 and 𝑐̂𝑖 , 𝑖 = 𝑑 + 2, . . . , 𝑛 are 
calculated from recursions analogous to (9) and (10) 
given as; 

𝑎̂𝑛+1 = 𝛼(𝑌𝑛+1 − 𝑐̂𝑛+1−𝑑) + (1 − 𝛼)(𝑎̂𝑛 + 𝑏̂𝑛) (14) 

 

𝑏̂𝑛+1 = 𝛽(𝑎̂𝑛+1 − 𝑎̂𝑛) + (1 − 𝛽)𝑏̂𝑛, and, (15) 
 

𝑐̂𝑛+1 = 𝛾(𝑌𝑛+1 − 𝑎̂𝑛+1) + (1 − 𝛾)𝑐̂𝑛+1−𝑑 (16) 
 

on condition that 𝑎̂𝑑+1 = 𝑌𝑑+1, 𝑏̂𝑑+1 =
(𝑌𝑑+1−𝑌1)

𝑑
 

and 𝑐̂𝑖 = 𝑌𝑖−(𝑌1 − 𝑏̂𝑑+1(𝑖 − 1)),       𝑖 = 1, . . . , 𝑑 + 1. 

Brockwell and Davis (2002) recommended that 
equations (14) to (16) can be solved successively 

for 𝑎̂𝑖 , 𝑏̂𝑖 and 𝑐̂𝑖 , 𝑖 = 𝑑 + 1, … , 𝑛  and the predictors 
𝑃𝑛𝑌𝑛+ℎ found from (12). The forecasts of (14) to (16) 
depend entirely on the parameters 𝛼, 𝛽 and 𝛾. 

 
Seasonal ARIMA  

Suppose the fitted ARIMA model has seasonal 
behaviour present and it needs to be accounted for. 
Box and Jenkins (1976) proposed that seasonal 
differencing could render the series stationary. Use 
letters 𝑑 and 𝐷 as the degrees of non-seasonal and 
seasonal differencing respectively, to make the 
series stationary. Box et al., (2008); Cryer and Chan 
(2008) proposed the following generalised form of 
the model to account for seasonal variations; 

 
𝛷𝑃 (𝐵𝑆)𝑍𝑡 = 𝛩𝑄(𝐵𝑆)𝑎𝑡 (17) 

 
where, 𝑠 = 12 if data is collected on monthly 

basis and 4 if quarterly data is used. A proposed 
SARIMA model given by: 

 
𝛷𝑃  (𝐵𝑠)𝜙(𝐵)𝛻𝑠

𝐷∇𝑑𝑍𝑡 = 𝛼 + 𝛩𝑄(𝐵𝑠)𝜃𝑎𝑡 (18) 

 
This model is denoted as a 

multiplicative 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑠, where Φ and 
Θ are polynomials of order P and Q respectively. The 
non-seasonal AR and MA characteristics operators 
are; 

 
𝜙 (𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝  𝐵𝑝 (19) 

 
and 
 

𝜃 (𝐵) = 1 − 𝜃1 𝐵 − ⋯ − 𝜙 𝑞  𝐵𝑞 (20) 

 
The the seasonal AR and MA characteristics 

operators are: 
 

𝛷𝑃(𝐵𝑠) = 1 − 𝛷1𝐵𝑠 − ⋯ − 𝛷𝑃𝐵𝑃𝑠 
 

(21) 

𝛩𝑄(𝐵𝑠) = 1 − 𝛩1𝐵𝑠 − ⋯ − 𝛩𝑄𝐵𝑄𝑠 

 

(22) 

𝛻𝑠
𝐷∇𝑑𝑍𝑡 = (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 

 
(23) 

where 𝐵 = the backward shift operator, d and D = 
the non-seasonal and seasonal order of differences 
respectively. This operation is usually abbreviated as 
SARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆. In the absence of seasonal 
effect, a 𝑆𝐴𝑅𝐼𝑀𝐴 model reduces to pure 
𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) and in case of stationary time series 
dataset, a pure 𝐴𝑅𝐼𝑀𝐴 reduces to 𝐴𝑅𝑀𝐴 (𝑝, 𝑞).  

Forecasting SARIMA model is analogous to the 
forecasting of ARIMA. Following Brockwell and Davis 
(2002) approach, the trick is to use operator (16) and 
setting 𝑡 = 𝑛 + ℎ to obtain; 

 

𝑋𝑛+ℎ = 𝑌𝑛+ℎ + ∑ 𝑎𝑗

𝑑+𝐷𝑠

𝑗=1
𝑋𝑛+ℎ−𝑗 (24) 
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Under the assumption that the first 𝑑 + 𝐷𝑠 
observations 𝑋−𝑑−𝐷𝑠+1, . . . 𝑋0 are uncorrelated with 
{𝑌𝑡 , 𝑡 ≥ 1} the best linear predictors of (18) can be 
determined based on {1, 𝑋 − 𝑑 − 𝐷𝑠 + 1, . . . , 𝑋𝑛} by 
applying 𝑃𝑛 to each side of (18) to obtain the 
expression; 

  

𝑃𝑛𝑋𝑛+ℎ = 𝑃𝑛𝑌𝑛+ℎ + ∑ 𝑎𝑗

𝑑+𝐷𝑠

𝑗=1
𝑃𝑛𝑋𝑛+ℎ−𝑗 (25) 

 
The first term on the right is just the best 

linear predictor of the ARMA process {𝑌𝑡 } in terms 
of {1, 𝑌1, . . . , 𝑌𝑛}. The predictors 𝑃𝑛𝑋𝑛+ℎ can then be 
computed recursively for  ℎ = 1, 2, . .. from (25) 
provided that 𝑃𝑛𝑋𝑛+1−𝑗 = 𝑋𝑛+1−𝑗 for each 𝑗 ≥  1. This 

therefore gives a prediction mean squared error as; 
 

𝜎𝑛
2(ℎ) = 𝐸(𝑋𝑛+ℎ − 𝑃𝑛𝑌𝑛+ℎ)2

+ ∑ (∑  𝑋𝑟𝜃𝑛+ℎ−𝑟−1,𝑗−𝑟

𝑗

𝑟=0
)

ℎ−1

𝑗=0
 𝑣𝑛 + ℎ − 𝑗 − 1 

(26) 

 
where, 𝜃𝑛𝑗 and 𝑣𝑛 are obtained by applying the 

innovations algorithm to the differenced series {𝑍𝑡} 
(23). 

 
Model assumptions evaluation  

The study assesses the model residuals for 
normality and heteroscedasticity. These 
assumptions concern the mean and variance of the 
distribution. The proposed test of normality is the 
Kolmogorov-Smirnov which requires a minimum 
sample of size 𝑁 ≥ 50.  The selected sample used in 
this study perfectly fit in the supremum class of 
empirical distribution function statistic (Conover, 
1999). The proposed null hypothesis is that the 
residuals are normally distributed. This hypothesis 
is rejected if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 associated with the test 
statistic is less than an appropriate level of 
significance. 

Heteroscedasticity assumption is evaluated 
using the Lagrange multiplier test based on the 
autoregressive conditional heteroscedasticity (ARCH) 
disturbances based on the ordinary least squares 
residuals. The observed probabilities associated with 
the Lagrange multiplier (LM) test from this 
procedure must be greater than a conventional level 
of significance to render the residuals 
homoscedastic. Once these assumptions have been 
assessed, the study uses the model(s) to produce the 
forecasts of the series. Both the in-sample and out-
of-sample forecasts are obtained using the model. 

 
Choosing between candidate models 

A couple of models are anticipated from the SARIMA 
framework. This implies that only one optimal 
model should be selected and be used for further 
analyses. The main idea behind this process is better 
described using the Occam’s razor (Blumer et al. 
1987) stating that given a set of models all of which 
explain data equally well, the simplest should be 
chosen. A substantive number of approaches are 
available based on this trade-off between the 
increase in data likelihood and model over fitting 
when adding parameters to a model, the Akaike 
information criterion (AIC) (Sakamoto et al., 1986) 
and Bayesian information criterion (BIC). The latter 
is most preferred in this study. This approach 
provides a framework for estimating the optimal 
model order by penalising models with larger 

number of parameters more heavily as does the AIC. 
As a result, a model with relatively lower complexity 
is selected. For a given data set 𝐷 with parameters 𝜃, 
the BIC is defined according to (Bishop, 2006; and 
Cavanaugh and Neah, 2012) as; 

 

𝐵𝐼𝐶 = ℓ(𝜃|𝐷) −
1

2
𝑁𝜃 log 𝑁𝐷 (27) 

 
where, 𝑁𝜃 and 𝑁𝐷 are the number of model 

parameters and data points in respect. A model that 
maximises the BIC is chosen, and it should be noted 
that this criterion selects a model which maximises 
the log-likelihood of the data, ℓ(𝜃|𝐷) with respect to 

the model’s complexity,  
1

2
𝑁𝜃 log 𝑁𝐷. 

 
Forecast error model selection 

It is not surprising to realize that several models 
representing a series may be found adequate. The 
ultimate choice of a model depends on a goodness-
of-fit. Suppose the main intention of the analysis is 
to apply the model to produce forecasts of a series, 
the criteria for model selection can be based on 
forecast errors. Assuming the 𝑙 − 𝑠𝑡𝑒𝑝 ahead forecast 
error is; 

 
𝑒𝑙 = 𝑍𝑛+1 − 𝑍̂𝑙 (28) 

 
with 𝑛 defined as forecast origin larger than or equal 
to the length of the series so that the evaluation is 
based on out-sample forecasts. This section 
compares the forecasting capability of the time 
series models, HWTES and SARIMA. In a broad 
spectrum, the forecasting capability and accuracy of 
the model is evaluated with reference to their 
forecast errors (29). To be precise, the study uses 
the mean absolute percentage error (MAPE), 
suggested by Khan (2011) which according to 
Makridakis et al. (1997) is less sensitive to outlier 
distortion than the mean square forecast error 
(MSFE). To avoid bias, the study further uses the 
mean absolute error (MAE), mean square error (MSE) 
and the root of MSE as described below; 

 

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑒𝑡

2
𝑛

𝑖=1
 (29) 

 
and 
 

𝑅𝑜𝑜𝑡 𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2
𝑛

𝑖=1
 (30) 

 
where, 𝑒𝑡 = 𝑌𝑡 − 𝐹𝑡.  𝑌𝑡 and 𝐹𝑡  are observed and 

forecasted values at time 𝑡, 𝑛 is the sample size. The 
MSE is calculated as; 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|

𝑛

𝑖=1
. (31) 

  
Finally, the MPE is the mean of the relative or 

percentage error and is given by; 
 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |𝑃𝐸𝑡|,

𝑛

𝑖=1
 (32) 

 

where, 𝑃𝐸𝑡 =
𝑌𝑡−𝐹𝑡

𝑌𝑡
× 100% is the relative or 

percentage error at time 𝑡. The model that gives the 
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minimum measures of these errors will be the 
expected model for further forecasting (Khan, 2011). 

 

4. EMPIRICAL FINDINGS 
 

4.1. Initial analyses results 
 

This section provides results for investigation into 
properties of time series data used in the study. The 
initial plot representing log transformed electricity 

and water consumption in South Africa for the 
period 2008 Q3 to 2016 Q1 is given as Figure 1. This 
plot gives a reasonable understanding of the time 
series properties unveiled by the data. 

Figure 1 shows a positive linear trend and some 
seasonal fluctuations during some of the months. 
This series suggests that there has been a steady 
increase in electricity and water consumption in 
South Africa over the years. 

 
Figure 1. Original electricity and water plot 

 

 

However, there is no solid pattern shown by the data 
on monthly basis. Generally, it could be deduced 
from the data that electricity and water demand will 
be high in years to come. This general increase in 
consumption implies that the stochastic properties 
of the series vary with time and as a result the series 
have unit root. To iron out the differences, the Box-
Cox transformation was imposed and by 
observation, the estimations of the lambdas implied 

that transformation of the actual values is 
appropriate. 

A visual display of the transformed series 
revealed a nearly smoothed linear upward trend with 
variations during particular months. The natural 
logarithm transformation further helps to control 
heteroscedasticity that may be present as a result of 
the large data set (Hekkenberg et al., 2009).  

 
Figure 2. Spectral density of log transformed data 

 

 
 
Over and above the Box-Cox transformation, 

differencing was applied to render the series 
stationary. This is due to a linear trend exhibited by 
the data implying that the associated stochastic 
properties have unit root. The results from first 
seasonal differencing are presented in Figure 2. 

Revealed by spectral analysis is periodicity in 
the data. Figure 2 shows the spectral density of 
electricity and water consumption. The first major 
peak in the spectral density is evident during the 
period12, the first month indicating the presence of 
a periodic movement on monthly basis. The plot 
further reveals that the stochastic properties of the 
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series oscillate around a zero line suggesting that 
the series is stationary. This revelation concludes 
that the proposed methods for this study could be 
applied. 

The observed probabilities associated with the 
tests for ARCH disturbances based on OLS residuals 
shown in Table 1 shows residuals from lag 1 are 
greater than 0.05 level of significance, suggesting 
that the residuals are homoscedastic. Further, the 
fact that the observed 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 (0.1500) of the 
Kolmogorov-Smirnov test (see Table 4 on the 
appendix) for normality exceed the 0.05 level of 
significance implies that the normality assumption 
is not violated. The histogram as shown on Figure 6 
(see appendices) also confirms the validity of this 
assumption. 

 
Table 1. Tests for ARCH Disturbances Based on 

OLS Residuals 
 

Order LM Pr > LM 

2 2.3228 0.1275 

3 2.3231 0.3130 

4 4.9189 0.1778 

5 8.2237 0.0837 

6 8.4842 0.1315 

7 10.9972 0.0885 

8 10.9979 0.1387 

9 11.6551 0.1673 

10 13.0657 0.1597 

11 13.0709 0.2197 

12 13.6833 0.2510 

Note: Model estimation and diagnostics results 

 
The purpose of this section is to estimate and 

select the best model from candidate models. Firstly, 
HWTES technique was used to produce the initial 
and final results summarized in Table 2. 

 
Table 2. Holt-Winters Triple exponential 

smoothing results 
 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 Estimates 
𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 

𝐞𝐫𝐫𝐨𝐫 
𝐭 𝐯𝐚𝐥𝐮𝐞 

𝐀𝐩𝐩𝐫𝐨𝐱 
𝑷𝒓 > |𝒕| 

LEVEL 0.6329 0.0491 12.8941 0.0000 

TREND 0.0010 0.0159 0.0631 0.9498 

SEASON 
SBC: −238.6713 

0.9990 0.1817 5.4980 
0.0000 

 

LEVEL 0.8333 0.0651 112.7950 0.0000 

SEASON 0.9990 0.4058 2.4618 0.01557 

SBC: − 261.79258     

 
The results from SARIMA modelling are 

presented in Table 3. 
The maximum likelihood method was used to 

estimate model parameters. Both the signs of the 
initial (on the upper tier) and final Holt-Winter’s 
model (on the lower tier) are positive. This could 
suggest an increased demand in electricity and water 
in the country over time. The appropriate Holt-
Winters smoothing factors (𝛼 = 0.6329, 𝛽 =
0.0010 and 𝛾 = 0.9990) are shown for the initial 
model. The presence of seasonality in the series is 
evident from the gamma value. A glance at the 
𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 ((0.0000) less than 0.05 level of 
significance) of the initial model confirm that both 
level and seasonal models have significant 
parameters. The associated p-value of the trend 
(0.9498) is however insignificant. Consequently, the 
trend had to be removed from the model and re-

estimation be done without a trend (lower tier). The 
smoothing equations according to [13] and [15] 
convert to; 

𝑎̂𝑛+1 = 0.6329(𝑌𝑛+1 − 𝑐̂𝑛+1−𝑑) + 0.3671(𝑎̂𝑛 + 𝑏̂𝑛),  (33) 

and 
 
𝑐̂𝑛+1 = 0.9990(𝑌𝑛+1 − 𝑎̂𝑛+1) + 0.001𝑐̂𝑛+1−𝑑 . (34) 
 
The final HWTES model parameters were found 

significant at 0.05 significance. The minimum 
information criterion (SBC) was used to select the 
best fitted-smoothing model and the re-estimated 
(on lower tier) was found favourable by these criteria 
and was a candidate model to SARIMA. Presented 
next are the results produced from SARIMA 
procedure. The autocorrelation and partial 
autocorrelation plots were used to identify tentative 
models. The parameters of identified models were 
estimated using the maximum likelihood method 
and the results are presented in Table 3. 

 
Table 3. SARIMA maximum likelihood 

estimates 
 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 
Stan-
dard 
Error 

𝐭 𝐕𝐚𝐥𝐮𝐞 
𝐀𝐩𝐩𝐫𝐨𝐱 
𝐏𝐫 
>  |𝐭| 

𝐋𝐚𝐠 

AR1,1 0.51978 0.09397 5.53 <.0001 1 

AR2,1 
Standard error: 0.030929 
SBC: − 346.209 

-0.18493 0.12401 -1.49 0.1359 12 

MA1,1 -0.87097 
0.06057          
-14.38 

<.0001 1 

MA2,1 
Standard error: 0.02577 
SBC: − 375.298 

0. 3402         
0.1107 

3.07 0.0021 12 

MA1,1 -0.75979 0.08817 -8.62 <.0001 1 

MA2,1 0.99981 0 Infty <.0001 12 

AR1,1 0.15011 0.12369 1.21 0.2249 1 

AR2,1 
Standard error: 0.023851 
SBC:  − 372.197 

0.63321 0.12404 5.11 <.0001 12 

 
It is notable that the SBC (-375.298) is in favour 

of the first model. This therefore implies that 
seasonal 𝐴𝑅𝐼𝑀𝐴 (0,2,1)(0,2,1)12 fits the data well and 
will be used as a competing model against the 
smoothed Holt-winters triple exponential model. The 
standard error of this model is also the lowest 
compared to those of the counterparts. The 
estimated parameters of the selected model were 
diagnosed for statistical significance and stability. 
These parameter estimates must not be close to 1 to 
be rendered significant (Yaffee and MacGee, 2000). It 
is clear that the stability condition is satisfied when 
taking a quick glance at the parameters 
of seasonal 𝐴𝑅𝐼𝑀𝐴 (0,2,1)(0,2,1)12. Therefore the 
SARIMA model is written according to (21) as; 

 
𝛷𝑃(𝐵12) = (1 + 0.8709B)(1 −  0.3402B)12 (35) 
 
The models were subjected to a battery of 

diagnostics testing to assess their overall fit. A 
visual examination of the histograms (see Figure 6 
on the appendix) for smoothed Holt-Winters’s and 
SARIMA confirmed that the residuals of these 
models are normally distributed. The associated 
observed probabilities for Kolmogorov-Smirnoff 
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tests are greater than the significance level of 0.05 
providing more evidence to conclude that models’ 
residual are explained by a normal distribution. The 
selected models were later used for making 
projections into the future and summary of the 
results are presented in the form of Figures 3 and 4 
for Holt-Winters and SARIMA respectively. 

  

4.2. Forecast results 
 

The purpose of this section is to assess the accuracy 
of the forecasts produced. The forecasts shown in 
Tables 4 are obtained using the Holt-Winters and 
SARIMA models respectively. Figure 3 and Figure 4 
are graphical representations of the forecasts for the 
period May 2016 to April 2017. 
 

Figure 3. Holt-Winters forecasts 

 
 

Figures 3 and 4 reveal that the models mimic 
the data very well. Original and estimated values are 
parallel to each other. The figures display that the 

forecasted values are in an increasing fashion 
implying that utility resource demand in South 
Africa is expected to be high in the next period. 

 
Figure 4. SARIMA (0,2,1) (0,2,1)

12
 forecasts 

 
 
Since the process is non-stationary, the 95% 

confidence limits tend to widen with an increased 
number of forecasts. These confidence intervals 
suggest a very high stochasticity in the data. 
Captured in these figures are both the trend and the 
seasonal peaks. This is a confirmation that the two 
models have the ability to forecast the series.  

The out-of-sample forecasts show that from 
May 2016 to April 2017, utility resource demand will 
increase gradually with some fluctuations just as 
also witnessed in Figures 3 and 4. 

 
 
 
 
 
 
 

Table 4. One year forecasts 
 

Date Holt-Winters SARIMA 

MAY16 147.073 147.865 

JUN16 141.978 147.616 

JUL16 139.856 145.465 

AUG16 140.782 145.104 

SEP16 147.717 150.558 

OCT16 149.103 154.878 

NOV16 148.866 154.773 

DEC16 148.984 158.389 

JAN17 148.119 157.120 

FEB17 148.433 160.805 

MAR17 148.250 160.983 

APR17 147.500 163.252 

 
The forecasts reasonably follow the same 

pattern of the original data confirming that the two 
models are relevant as predictors of resource 
utilisation.  
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4.3. Evaluating forecast accuracy 
 

Discussed in this section is the results of the 
measures used for evaluating the accuracy of 
forecasts from both models and the results are 
summarised in Table 5. 

 
Table 5. Forecast accuracy measures 
 

Model AvMAE_Ratio AvMAPE_Ratio AvMSE_Ratio 

Holt-Winters 
Model 

1.72677 0.025823 4.28063 

SARIMA 
Model 

2.31255 0.026374 8.09056 

 
From the analysis above, it is clear that the 

HWTES model provides minimum forecast error 
values compared to the Seasonal ARIMA model. 
Measures of forecast error metrics, MSE, MAE and 
the MAPE average ratios are very small for the 
HWTES model implying that this model could 
produce very small and insignificant errors when 
used for forecasting utility resource demand.  

 

5. CONCLUSIONS 
 

This paper compared the forecasting ability of 
HWTES and seasonal ARIMA models with respect to 
the electricity and water consumption, herein 
referred to as utility resource usage. Historical data 
used in this study was sourced from the South 
African Reserve Bank website, and covered the 
period Q3 2008 to April 2016. This was the only 
data available for this variable during the time of the 
study. Due to the nature of the data, seasonal 
differencing was imposed to induce stationarity 
prior to the primary analysis of data. This is also a 
preliminary requirement of the application of both 
the SARIMA and Holt-Winter’s frameworks. Upon  
inspection of the AIC and SBC, ARIMA (0,2,1)(0,2,1)12 
was found to be well suited for the data among three 
other candidate ARIMA models. This model together 
with the HWTES was used for forecasting purposes. 
Both models were found to be good forecasters 
since they mimic the data very well. However, the 
findings revealed the HWTES model to produce 
reliable forecasts than the seasonal ARIMA model. 
All the forecast measurement errors for the selected 
model were found to be less than those of the other 
model. Accurate forecasts of electricity and water 
demand is crucial for decision makers.  

For better accuracy, the study can be enhanced 
by comparing other time series forecasting methods 
such as the Artificial Neural Networks, the 
Threshold Autoregressive and Smooth Transitional 
Autoregressive. In particular, the study recommends 

the application of SARIMA– GARCH enhanced models 
to similar studies in order to take care of the 
volatility shocks. This model may also capture the 
effects of heteroscedasticity in the data. Using the 
forecasts from either of the models, relevant 
authorities may be able to determine the consistent 
and reliable supply schedules during peak hours or 
demanding seasons. The availability of accurate 
short term forecasts might further make it possible 
for the authorities to implement effective load 
shifting between transmission substations as well as 
scheduling start-up times of peak stations. Further 
studies that model annual winter peaks in relation to 

electricity demand using extreme value theory are 
also encouraged. 
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APPENDIX: 
 

Figure 6. Histogram of residuals 
 
 

 
 

Goodness-of-Fit Tests for Normal Distribution 
 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.06369224 Pr > D >0.150 

Cramer-von Mises W-Sq 0.02594695 Pr > W-Sq >0.250 

Anderson-Darling A-Sq 0.19446334 Pr > A-Sq >0.250 

 


