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This study compared the in-sample forecasting accuracy of three 
forecasting nonlinear models namely: the Smooth Transition 
Regression (STR) model, the Threshold Autoregressive (TAR) 
model and the Markov-switching Autoregressive (MS-AR) model. 
Nonlinearity tests were used to confirm the validity of the 
assumptions of the study. The study used model selection criteria, 
SBC to select the optimal lag order and for the selection of 
appropriate models. The Mean Square Error (MSE), Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE) served as the 
error measures in evaluating the forecasting ability of the models. 
The MS-AR models proved to perform well with lower error 
measures as compared to LSTR and TAR models in most cases. 
 
Keywords: Stock Price, Nonlinear Time Series Models, Error Metrics 

 

 
1. INTRODUCTION 
 
In recent times nonlinear time series has received 
great attention as opposed to linear time series 
models in modelling economic and financial data. 
This is due to the realization that linear models fail 
to describe the dynamics of financial time series. 
According to Maponga (2013) linear time series 
involves simple models that describe the behaviour 
of time series in terms of past values, may be used 
to describe the dynamics of an individual time 
series. Nonlinear time series are generated by 
nonlinear dynamic equations. These nonlinear 
dynamic equations show attributes that cannot be 
modeled by linear time series models. These 
attributes are time-changing variance, asymmetric 
cycles, higher-moment structures, thresholds and 
breaks data.  

A variety of nonlinear models have been 
considered as alternative to standard linear models. 
For instance, the parametric nonlinear models such 
as the autoregressive conditional heteroscedastic 
(ARCH) of Engle (1982) and the generalized 
autoregressive conditional heteroscedastic (GARCH) 
of Bollerslev (1986) are some of the alternative linear 
models. However, the nonlinear models that receive 
great attention are the regime switching models 
(Franses and Dijk, 2000). These numbers of 
nonlinear models have been suggested in the 
literature to capture the suggested nonlinearities in 
economic and financial data. Commonly used among 
these models are the Threshold Autoregressive 
(TAR) of Tong (1978), Smooth Transition Regressive 

(STR) of Teräsvirta and Anderson (1992) and 
Markov-Switching Autoregressive (MS-AR) of 
Hamilton (1989).  

These three models differ from conventional 
linear econometric models by their assumption of 
existence of different regimes, within which the time 
series may exhibit different behaviour. The study 
sought to explore the possibility of developing 
empirical models capable of describing and 
forecasting each of the five South African major 
banks’ closing stock prices. In addition, the study 
investigates the question that although three 
different nonlinear univariate time series modeling 
and forecasting techniques are used for each of the 
five time series data used in the study; one 
particular method may outperform others. The 
performance of the model will be based on the 
margin of forecast error generated by each model. It 
is assumed that the data used satisfy the nonlinear 
properties in order to allow an efficient performance 
of the three suggested models. 

The findings could empower stock market 
investors to make informed and accurate investment 
decisions. Again this may also boost the confidence 
of stakeholders in the financial industry to do more 
business with less risk exposure. Other beneficiaries 
of the study may be shareholders, regulators and 
other financial institutions as well as researchers in 
the academia. 

The rest of the paper is organized as follows: in 
Section 2 study discuss the literature; in Section 3 
study describe our methodology and data employed; 
the main results of the empirical analysis are 

http://creativecommons.org/licenses/by-nc/4.0/
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presented in Section 4; finally, in Section 5 Study 
provide concluding remarks. 

 

2. LITERATURE REVIEW 
 
There is much interest in modeling and forecasting 
the nonlinearity in a variety of macroeconomic and 
financial series, such as stock market, exchange rate 
and Gross Domestic Products (GDP). A number of 
nonlinear time series models have been suggested in 
literature, for instance the bilinear models of 
Granger and Andersen (1978), the TAR, STR and the 
MS-AR models.  

Moolman (2004) used the idea of MS-AR model 
as a tool to provide evidence that the South Africa 
stock market returns depends on the state of the 
business cycle. McMillan (2005) employed the STAR 
model to examine nonlinear behavior in the 
international stock market. Pérez-Rodriguez et al. 
(2005) concluded that the artificial neural network 
(ANN) and the STAR models in the Spanish market 
outperform the ARMA and the random-walk models. 
Cheung and Lam (2010) have compared profitability 
in the US stock market using the self-exciting 
threshold autoregressive (SETAR) and linear models. 
Ismail and Isa (2006) and Yarmohammadi et al. 
(2012) used MS-AR model to perform model 
comparison and it was found that MS-AR is a best-
fitted model for modeling fluctuations of exchange 
rates.  

Wasim and Band (2011) employed MS-AR 
examine the existence of bull and bear in the Indian 
stock market.  Amiri (2012) have compared the 
forecasting performance of linear and nonlinear 
univariate time series models for GDP growth. The 
evaluation of the forecasting performance of their 
set of non-linear models using real time data is that 
the nonlinear models are able to capture the 
underlying processes of GDP rate time series as 
opposed to linear models. Cruz and Mapa (2013) 
also contributed to the literature by developing an 
early warning system (EWS) for predicting the 
occurrence of high inflation in the Philippines 
Markov switching model. The aim of the study was 
to develop models that could help quantify the 
possibility of the future occurrence of high inflation.  

 

3. METHODOLOGY 
 
This section discusses the data and methods used in 
the study 
 

3.1. Sampling Technique, Data Description and 
Source 
 
There are 31 banks registered with the South African 
Reserve Bank (SARB). Twenty-one (21) of these banks 
are listed on the JSE. The study used the purposive 
sampling technique, due to limited time and 
responses obtained from all the twenty-one (21) 
banks listed on the JSE when a request was made to 
help provide data for the study. Of the 21 banks 
listed on the JSE, only five (5) responded by 
providing data for this study. The banks that 
responded were ABSA Bank (ABSA), Capitec Bank 
(CAPB), First National Bank (FIRB), Nedbank (NEDB) 
and Standard Bank (STDB). These banks were 
considered to be the sampling frame for the study. 
This scenario fits in with the purposive sampling 

since the intention had been to find readily available 
banks willing to provide data for the realization of 
the aims and objectives of the study. Coincidentally, 
these five banks constitute the five largest banks 
listed on the JSE. 

For the purpose of addressing the research 
objectives, the study uses weekly historical data 
starting from the first week of January 2010 to the 
last week of December 2012, a total of 563 
observations. Using the purposive sampling 
technique, five (5) banks from a population of 
twenty-one (21) banks were used. Based on this 
sample, a formal request was made to the JSE for the 
weekly closing stock prices of the selected banks, a 
request that the JSE promptly responded to. 

 

3.2. Preliminary Data Analysis 
 
In statistics the norm is to perform preliminary data 
analysis in order to get the key features of the data 
and summarise the results. Before the main analysis 
of data, the study seeks to address important issues 
such as the normality of the actual data as 
suggested by Kline (2005) and Schumacker and 
Lomax (2004). Other descriptive statistics such as 
the mean, median and standard deviations of the 
variables are discussed. Furthermore, the skewness-
kurtosis measures are estimated to check whether 
actual data is normal distributed, following the work 
of Joreskog (2000) and Cziraky et al. (2002). 

 

3.3. Assessment of Data for Linearity 
 
In order to apply the various methods needed to 
address the research aims and objectives of the 
current study, the data must first be tested for 
linearity and stationarity. Since nonlinearity in time 
series may occur in several ways, there exists no 
single test that dominates others in detecting 
nonlinearity. To test for nonlinearity in the data sets, 
the RESET (Regression Specification Error Test) and 
BDS (Brock- Dechert-Scheinkman) tests are used and 
the Cumulative Sum (CUSUM) test is used to 
investigate stability.  

 
3.3.1. The RESET Test 
 
According to Ramsey (1969) the RESET test is a 
specification test for linear regression analysis. In 
the context of the study, the commonly used linear 
regression model is the univariate autoregressive 
model of order p, denoted by AR (p): 
 

Xt = β0 +∑ βj
p

j=1
Xt−p + εt (3.1) 

 
where, 𝛽0, 𝛽1,  𝛽2, … , 𝛽𝑝   are parameters and 𝜀𝑡 is 

independent and identically distributed random 
variable with mean 0 and variance 𝜎𝜀

2.  The AR order, 
p, is selected to minimize the error, 𝜀𝑡. This is 
practically   accomplished   by    selecting  a  value 
for  p   that   minimizes  an  information  criterion, 
such   as   the   SBC   (Franses & Dijk,  2000).      If 

 𝑋𝑡 = (1, 𝑋𝑡−1, 𝑋𝑡−2, … 𝑋𝑡−𝑝)′,  equation (3.1) becomes 

 

   𝑋𝑡 = 𝑋𝑡−1
′ 𝛽 + 𝜀𝑡         (3.2) 
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The RESET test involves, first, obtaining the 
OLS estimate, , in equation (3.2), the residual  

𝜀�̂� = 𝑋𝑡 − �̂�𝑡, and the sum squared residuals: 
 

n 2
0 tt p 1

ˆSSR
 

   (3.3) 

 
 The second step involves estimating the regression 

𝜀�̂� = 𝑋𝑡−1
′ 𝜆1 +𝑀𝑡−1

′ 𝜆2 + 𝑒𝑡      (3.4) 

 
where,   𝑀𝑡−1

′ = (�̂�𝑡
2 𝑋𝑡

3  … 𝑋𝑡
𝑠+1) for some  𝑠 ≥ 1, 𝑒𝑡 is 

an independent and identically distributed random 
variable with mean 0 and variance 𝜎𝑒

2. From the 

estimated residuals 
t t t

ˆˆ ˆ ˆe     , the sum of squared 

residuals is computed as: 
          

n 2
1 tt p 1

ˆSSR e
 

  (3.5) 

 

 If the underlying AR (p) is adequate, the RESET test 
asserts that 𝜆1  and 𝜆2 are zero. Thus, the 
hypotheses to test are: 
 

 H0 : λ1 = λ2 = 0 (Specification is 
indeed linear) 

 
vs. 

 
H0 : λj ≠ 0   for at least 

one j 
(Specification is 

nonlinear) 

 
The test statistic is the usual F-statistic of the 

equation given by: 
 

* 0 1

1

(SSR SSR ) r
F ~ F (r,n p r)

SSR (n p r)



  

 
          (3.6) 

 
where,  𝑟 = 𝑠 + 𝑝 + 1. At the α level, the null 
hypothesis of linearity is rejected in favour of the 
alternative hypothesis if 

 

 
*F F (r,n p r)    or 

*prob(F )  .    (3.7) 

 
This means that the F test statistic is greater 

than the F critical value, and the study rejects the 
null hypothesis that the true specification is linear 
(which implies that the true specification is non-
linear). 
 

3.3.2. The Brock-Deckert-Schienkman (BDS) Test 
 
If equation (3.1) is correctly specified, then under 
the null hypothesis of linearity, the residuals should 
be serially independent. This forms the basic idea 
behind various tests of nonlinearity. In practice, 
diagnostic tests of serial independence typically are 
based on certain aspects of the data such as the 
serial correlations or ARCH-type dependence while 
other tests explore dependence by testing the 
identical-and-independence-distributed (iid) 
condition of the residual term, which is sufficient 
for serial independence (Kuan, 2008; Kuan,  2009). 
One such test is the so-called Brock-Deckert-
Schienkman (BDS) test - a form of portmanteau test. 
Portmanteau tests are residual-based tests in which 
the null hypotheses are well-stated but do not 
necessary have well-stated alternative hypotheses. 

The BDS test can be applied to the estimated 
residuals from any time series process provided the 
time series process can be transformed into a form 
with iid errors. The BDS test, which focuses on the 
residual obtained after a linear structure has been 
removed from a process, tests the null hypothesis of 
linearity against a variety of alternative hypotheses. 
Under the null hypothesis of the BDS test, if the 
residuals are iid or follow a white noise process, 
then its m-lagged (also referred to as embedding 
dimension) correlation integral  (also referred to as 
correlation function) is equal to the correlation 
integral of the (m-1)-lagged residuals. BDS test 
statistic is given by (Brock et al., 1996) as: 

 

m
m,n 1,n

m,n

m

n C ( ) C ( )
BDS

( )

   
 


 

 (3.8) 

 
where, Cm,n(∈) is the correlation integral, m(∈) is the 

asymptotic standard deviation of the numerator, 
and  is the maximum difference between pairs of 
observations used in calculating the correlation 
integral. Brock et al. (1996) showed that, under the 
null hypothesis of the residuals being iid or 
following a white noise process,  

 

m,nBDS ~ N(0,1)  (3.9) 

 
The null hypothesis of iid residuals (whiteness 

or linearity) is rejected if the test statistic exceeds 
the critical value at the α-level of significance or if 
the p-value of  BDSm,n  is lower than α. Rejection of 

the null hypothesis is indicative of nonlinear 
dependence in time series data. 

 

3.2.3. CUSUM Test 
 
Stability is another aspect of nonlinearity in data. 
CUSUM examines data stability by testing for 
possible structural change in the data. On the one 
hand, if the model is stable, then  and the variance 
of the residuals do not change over time. In that 

case, the coefficients, �̂� = (1 𝛽1 𝛽2  … 𝛽𝑝)′, in 

equation (3.2) can be obtained from the matrix 
(Brown et al., 1975): 

    

β̂ = (Xt−1
′  Xt−1)

−1Xt−1
′ Xt (3.10) 

         
where, 𝑋𝑡  is the dependent variable in equation (3.1) 

and 𝑋𝑡−1 = (1 𝑋𝑡−1 𝑋𝑡−2  …  𝑋𝑡−𝑝)′ and  𝜀𝑡~𝑖𝑖𝑑(0, 𝜎𝜀
2). On 

the other hand, if the model is unstable, then  and 
the variance of the residuals possibly change over 
time. In that case, then  is replaced by bt, say, and 
so: 

  

�̂� = (𝑋𝑡−1
′  𝑋𝑡−1)

−1𝑋𝑡−1
′ 𝑋𝑡 (3.11) 

      
where, 𝑋𝑡−1 = (1  𝑋𝑡−1  𝑋𝑡−2  …  𝑋𝑡−𝑝)′ and     

𝜀𝑡~𝑖𝑖𝑑(0, 𝜎𝑡,𝜀
2 ). If the AR(p) is stable, the parameters 

remain constant over time, suggesting the absence 
of any structural change in the data. Thus, the 
hypotheses to test are: 
 

 𝐻0 : 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 𝛽 (say) 
(3.12) 

or  𝐻0 : 𝜎1,𝜀
2 = 𝜎2,𝜀

2 = ⋯ = 𝜎𝑛,𝜀
2 = 𝜎𝜀

2 (say) 
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 Then, the variance of the recursive residuals is 
computed as: 

 
 

𝑣𝑎𝑟 (𝜀𝑡) = 𝐸(𝜀𝑡
′𝜀𝑡) = 𝑣𝑎𝑟{𝜀𝑡 − 𝑋𝑡

′(𝑏𝑡−1 − 𝛽)}
= 𝜎𝜀

2 + 𝑋𝑡
′𝜎𝜀
2(𝑋𝑡−1

′ 𝑋𝑡−1)
−1𝑋𝑡

= 𝜎𝜀
2{1 + 𝑋𝑡

′(𝑋𝑡−1
′ 𝑋𝑡−1)

−1𝑋𝑡} 
 

     
(3.13) 

             

Define the scaled recursive residuals, t , as: 

 

𝜔𝑡 =
𝜀𝑡

√{1 + 𝑋𝑡
′(𝑋𝑡−1

′ 𝑋𝑡−1)−1 𝑋𝑡}
=

𝜀𝑡

√𝑣𝑎𝑟(𝜀𝑡)

=
𝜀𝑡

𝑠. 𝑒. (𝜀𝑡)
=
𝜀𝑡
𝜎𝜔

 

(3.14) 

 
 
Then under constant parameters, 𝜔𝑡~𝑖𝑖𝑑(0, 𝜎𝜔

2). Then 
the CUSUM test statistic is given by: 

   

Wt = ∑ ωj,                       t = k + 1, k + 2,… , n

t

j=k+1

 

    

(3.15) 

 
The cumulative sum of the square (CUSUMSQ) 

test statistic is given by: 
   
  

St = ∑ 𝜔𝑗
2

𝑡

𝑗=𝑘+1

∑ 𝜔𝑗
2

𝑛

𝑗=𝑘+1

,      𝑡 = 𝑘 + 1, 𝑘 + 2, … , 𝑛⁄  

 

(3.16) 

   
These tests are performed by plotting Wt  or  St 

against time t. The confidence bounds are obtained 
by plotting the two lines that connect the points 

[𝑘, ±𝑎√𝑛 − 𝑘] and [𝑛, ±3𝑎√𝑛 − 𝑘]. At the 5% level 

(that is, 95% confidence interval) a = 0.948  while at 
the 1% level (that is, 99% confidence interval) 

a = 1.143. A test statistic meandering outside the 
confidence interval is indicative of a possible a 
structural change, non-constancy in the parameters, 
and hence instability in the data, leading to the 
rejection of the null hypothesis of model stability.  

Under the null hypothesis of model stability, 
Harvey and Collier (1977) developed a test with test 
statistic given by: 

   
* 1 2 1T (n 1) S .W   (3.17) 

       
where,   

n

j
j k 1

1
W

n k  

 


 and 

n
2

j
j k 1

1
S ( W)

n k 1  

  
 

  

 

The estimated 
*T  has a t-distribution with (n-

k-1) degree of freedom. The null hypothesis of 
model stability is rejected if  𝑇∗  is greater than a 

critical value at the α-level or if the p-value of 𝑇∗ is 
less than α, often 0.05. 

 
 
 

3.2.4 ARCH Test 
 
Under the null hypothesis of linearity, the residuals 
of a properly specified AR(p) model should be 
independent. Denote the autocorrelations of the 
residuals by 𝜌1,𝜌2, … , 𝜌𝑚, where  𝑚 = 𝑛/4 (n=sample 

size), then the independence of the residuals, 𝜀𝑡, can 
be tested based on the hypotheses (Engle, 1982): 
 

 H0 : ρ1 = ρ2 = ⋯ = ρm = 0 (Residuals are 
independent) 
 

vs. 

 
H1 : ρj ≠ 0   for at least one j (Residuals are not 

independent) 

 
The test statistic is the Q-statistic of squared 

residuals given by: 
2m

2k

k 1

Q(m) n(n 2) ~ (m p)
n k





   


    (3.18) 

 
At the α level, the null hypothesis of linearity is 

rejected in favour of the alternative hypothesis if 
   

 
2Q(m) (m p)   or prob[Q(m)]          (3.19) 

 
This same test is particularly useful in 

detecting conditional heteroskedasticity in tX . 

A closely related test to the Q-statistic test is the 
Lagrange test of Engle (1982) for autoregressive 
conditional heteroskedasticity (ARCH) test based on 
the linear regression: 

 

m
2 2
t 0 i t i t

i 0

ˆ




         (3.20) 

 
     where,  𝜂0, 𝜂1, 𝜂2, … , 𝜂𝑚  are parameters and 𝜐𝑡 is 
independent and identically distributed random 
variable with mean 0 and variance 𝜎𝜀

2. Testing for 
heteroskedasticity involves testing the hypotheses: 

 

𝐻0 ∶ 𝜂1 = 𝜂2 = ⋯ = 𝜂𝑚 = 0 (Homoskedasticity) 
 

vs.  
𝐻0 ∶ 𝜂𝑗 ≠ 0      for at least one j (Heteroskedasticit) 

 
The test statistic is the usual F-statistic: 
 

2
*

2

R m
F ~ F (m,n 2m 1)

(1 R ) (n m 1)
  

  
 (3.21) 

 
At the α level, the null hypothesis of linearity is 

rejected in favour of the alternative hypothesis if 
   

 
*F F (m,n 2m 1)    or 

*prob(F )   (3.22) 

 

Asymptotically, 
* 2F ~ (m) . 

 

3.4. Modelling and Forecasting Methods 
 
This section presents an overview of the three 
nonlinear time series modelling and forecasting 
methods which include the TAR model, STR model, 
and MS-AR model. 
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3.4.1 Threshold Autoregressive Model 
 
The TAR model is basically an extension of the 
Autoregressive model, which allows for the 
parameters to change in the model according to the 

number of segments (breaks), m, deemed to exist 
within the data. If the time series, {𝑋𝑡 ∶ 𝑡 = 1, 2, 3, … , 𝑛} 
changes structurally with m break points, then there 
are 𝑤 = 𝑚 + 1 segments or regimes with a TAR 
model representation given by (Tong, 1978): 

 
 

𝑋𝑡 =

{
 
 

 
 
𝛼 1,0 + 𝜑1,1𝑋1,𝑡−1 + 𝜑1,2𝑋1,𝑡−2 + 𝜑1,3𝑋1,𝑡−3 +⋯+ 𝜑1,𝑝1𝑋1,𝑡−𝑝1 + 𝜀1,𝑡 𝑡 = 1, 2,… , 𝑛1
𝛼 2,0 + 𝜑2,1𝑋2,𝑡−1 + 𝜑2,2𝑋2,𝑡−2 + 𝜑2,3𝑋2,𝑡−3 +⋯+ 𝜑2,𝑝2𝑋2,𝑡−𝑝2 + 𝜀2,𝑡  ,              𝑡 = 𝑛1 + 1, 𝑛1 + 2,… , 𝑛2

⋮

𝛼 𝑤,0 + 𝜑𝑤,1𝑋𝑤,𝑡−1 + 𝜑𝑤,2𝑋𝑤,𝑡−2 +𝜑𝑤,3𝑋𝑤,𝑡−3 +⋯+𝜑𝑤,𝑝𝑤𝑋𝑤,𝑡−𝑝𝑤 + 𝜀𝑤,𝑡         𝑡 = 𝑛𝑤 + 1, 𝑛𝑤+1, … , 𝑛

 

 

(3.23) 

 

where, 𝜀𝑗,𝑡 (𝑗 = 1, 2, … , 𝑤) are iid error term and 

n1, n2, … , nw   (where n1 < n2, < ⋯ ,< nw) are 
respectively the sample sizes of segment 1, segment 
2, …, and segment w. The TAR model in 

equation (3.23) allows different variances for all w 
segments (regimes). In order to stabilize the variance 
over different segments (regimes), restriction of the 
form is applied: 

 
 

𝑋𝑡 = 𝐼1 [𝛼1,0 +∑ 𝜑1,𝑖𝑋1,𝑡−𝑖
𝑝1

𝑖=1
] + 𝐼2 [𝛼2,0 +∑ 𝜑2,𝑖𝑋2,𝑡−𝑖

𝑝2

𝑖=1
] + ⋯+ 𝐼𝑤 [𝛼𝑤,0 +∑ 𝜑𝑤,𝑖𝑋𝑤,𝑡−𝑖

𝑝𝑤

𝑖=1
] + 𝑒𝑡                       (3.24) 

 

Where, 𝐼𝑡 is the indicator function such that 𝐼𝑡 = 1 
when it correspond to segment j and 𝐼𝑡 = 0, if 
otherwise. Each of the m segments can easily be 
estimated using OLS while the TAR model in 
equation (3.24) can be estimated using Nonlinear 
Least Squares (NLS), however, boundaries for the 
segments need to be determined. One possible 
approach to determining boundaries for the 
segments is by possible locating structural breaks. 

The existence of at least structural break in a time 
series is indicative that the data is nonlinear. 

To test for structural change due to the 
presence of one break point, the Chow test is widely 
used. However, for multiple break points the Bai-
Perron test is usually applied. The Bai-Perron test 
assumes the following vector-form multiple-
structural-break model with m breaks (w segments/ 
regimes): 

 
 

𝑋𝑡 =

{
 
 

 
 
𝑋𝑡−1
′ 𝛽 + 𝑍𝑡

′𝛿1 + 𝜀1,𝑡     ,  𝑡 = 1, 2, … , 𝑛1
𝑋𝑡−1
′ 𝛽 + 𝑍𝑡

′𝛿2 + 𝜀2,𝑡    ,          𝑡 = 𝑛1 + 1, 𝑛1 + 2,… , 𝑛2
⋮

𝑋𝑡−1
′ 𝛽 + 𝑍𝑡

′𝛿𝑚+1 + 𝜀𝑚+1,𝑡   ,  𝑡 = 𝑛𝑚 + 1, 𝑛𝑚 + 2,… , 𝑛

                                      

(3.25)

  

where is  Xj,t−1 = (1   Xj,t−1  Xj,t−2… Xj,t−pj)′   is the 

column vector of with j=1,2,..,m+1 at time t whose 
effects are invariant with time and 𝑍𝑡 is a column 
vector of the explanatory variables at time t whose 
effects vary over time, and 𝜀𝑗,𝑡 are the error terms. 

The break points,   n1, n2, … , nm  , are treated as 
unknowns and are estimated together with the 
unknown coefficients,   and 𝛿𝑗  are coefficients,  

when n observations available. A structural change 
in a given time series means  𝛽 = 0. Using the OLS 
principle, the Bai-Perron test involves sequentially 
estimating the regression coefficients of the m+1 
data segments/regimes along with the break points 
in the sample of n observations. Bai and 
Perron (2003) discussed three types of test – a test 
of no break vs. a fixed number of breaks, a double 
maximum test, and a sequential test – notable 
among them is the sequential test. The sequential 
test involves the following steps: 

 Using the full sample, a test of parameter 
constancy with unknown break is conducted. If the 
test rejects the null hypothesis of constancy, the 
breakpoint associated with this result is estimated 
and noted as the first breakpoint. A test statistic 

called the Fisher statistic associated with the first 
breakpoint is then obtained. 

 If the Fisher statistic associated with the 
first breakpoint is greater than the critical value, this 
first breakpoint is then used to divide the sample 
into two samples. For each of the two sub-samples, a 
single unknown breakpoint test is conducted in each 
subsample. If the Fisher statistic is greater than the 
critical value for each of the two samples, the date 
corresponding to the higher value is chosen as the 
second breakpoint. 

 Sequentially, this procedure is repeated 
until all of the subsamples do not reject the null 
hypothesis of constancy (that is, no further 
breakpoints are left). 

 

3.3.2. Smooth Transition Regression Models 
 
Smooth Transition Regression models are a set of 
nonlinear models that incorporates both the 
deterministic changes in parameters over time and 
the regime switching behaviour within the time 
series data (van Dijk, Teräsvirta & Franses, 2002). 
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The general STR model for a time series {𝑋𝑡 ∶ 𝑡 =
1, 2, 3, … , 𝑛} is: 
 

p p

t 0 i t i 0 i t i t d t
i 1 i 1

X X X G(S , ,c)  
 

   
             
   

 

 

(3.26) 

 where,  G(St−d, γ, c)  is the transition function with 
St−d as the transition variable which determines the 
switching point, d is the decay parameter, 𝛾 is the 
smoothing parameter that determines the 
smoothness of the transition variable, c is the 
threshold parameter, 𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑝 and  

𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝 are the parameters of the two 

autoregressive components of the model with 
optimal lag length p, and  𝜀𝑡 is an error term. The 
two most popular transition functions are the 
logistic smooth and exponential functions given, 
respectively, by: 

 
 Logistic Function: 

 
t d

t d

1
G(S , ,c)

1 exp{ (S c)}




 
  

 ,    0    

 
 Exponential Function: 

 
t d 2

t d

1
G(S , ,c)

1 exp{ (S c) }




 
  

,    0  . 

 
The optimal lag length, p, of the autoregressive 

components is selected using automatic selectors 
based on information criteria. Using the appropriate 
transition function and transition variable, the STR 
model can be estimated using nonlinear least 
squares (NLS). The estimated parameters are 
obtained by minimizing the sum of squared 
residuals: 

n
2
t

t 1

RSS( )


    (3.27) 

      
where,  ψ = (α′, β′, γ, c)   with   α = (α0 α1 α2… αp)′ and  

β = (β0 β1 β2… βp)′. Using nonlinear optimization 

algorithm, a two-dimensional grid search is 

conducted over  and c, allowing the selection of the 
pair that gives the smallest estimator for the 

residual variance,  𝜎𝜀
2(𝛾, 𝑐). 

 

 
3.3.3. Markov Switching Autoregressive Models 

 
The underlying principle of Markov Switching 
Models is to decompose nonlinear time series into a 
finite sequence of distinct stochastic processes, 
states or regimes, whereby the parameters are 
allowed to take on different values with regard to 
the state/regime prevailing at time t. Switches 
between states/regimes arise from the outcome of 
an unobservable regime variable,  St, which is 
assumed to be evolve according to a Markov Chain. 
One particular type of MSM is the Markov Switching 
Autoregressive (MS-AR) model. Given the time series    
{Xt ∶ t = 1, 2, 3,… , n}, the MS-AR model assumes the 
representation (Hamilton, 1989): 
 
𝑋𝑡 − 𝜇(𝑆𝑡) = 𝜑1[𝑋𝑡−1 − 𝜇(𝑆𝑡−1)] + 𝜑2[𝑋𝑡−2 − 𝜇(𝑆𝑡−2)] + ⋯

+ 𝜑𝑝[𝑋𝑡−𝑝 − 𝜇(𝑆𝑡−𝑝)] + 𝜀𝑡 

which, when re-parameterised yields: 
 

𝑋𝑡 = 𝑐 + 𝜑1𝑋𝑡−1 + 𝜑2 +⋯+ 𝜑𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

 

or          𝑋𝑡 = ∑ 𝜑𝑖𝑋𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡                                (3.28) 

 
 
where, 𝜑1, 𝜑2, … , 𝜑𝑝 represent the coefficients of the 

AR(p) process,  εt~ iid(0, σε
2) and μ (St) are constants 

that are dependent on the states/regimes   St and 

represent μ1 if the process is in state/ regime  

1(St = 1), μ2  if the process in state/regime 2(St =
2),…, and μR   if the process is in state/regime 
R(St = R), the last state/regime). The change from 
one state to another is governed by the R-state first-
order Markov Chain with transition probabilities, 
expressed as: 
 

pij = P(St = j |St−1 = i), i, j = 1,2 

 
(3.29)

 

where, pij is the probability of moving from state i at 

time t-1 to state j at time t. Using the fact that: 
 

1i 2i Rip p ... p 1     
 

(3.30) 

 
the probability of state i being followed by state j 
(also known as the transition matrix) is given by: 
 

11 21 R1

12 22 R2

1R 2R RR

p p ... p

p p ... p

P .

.

p p ... p

 
 
 
 
 
 
 
 

 (3.31) 

 
In the current study, two states or regimes 

assumed that R=2 and the underlying MS-AR (p) 
model is given by: 

 
p

1 1,i t i 1,t ti 1

t

p
2 2,i t i 2,t ti 1

c X ,       if  S 1 

X    

c X ,     if  S 2





     


 


    





 
(3.32) 

 
The transition matrix is, thus, given by: 
 

11 21

12 22

p p
P

p p

 
  
 

 (3.33) 

   
so that p11 + p12 = 1  and p21 + p22 = 1. 
P represents the probability of change in regime. For 
this two-regime MS-AR model, there are four 
transition probabilities given by: 
 

𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 1) =  𝑝11 

𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 1) =  𝑝12 = 1 − 𝑝11               (3.34) 

𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 2) =  𝑝22 

𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 2) =  𝑝21 = 1 − 𝑝22 
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The MS-AR allows one to make inferences 
about the value of the observed regime, St, through 

the observed behaviour of Xt. This inference takes 
the form of probabilities called ‘filtered 
probabilities’, which are estimated using a simple 
iterative algorithm that computes both the 
likelihood function recursively and  P(St = i|Ωt)  , the 
filtered probability conditional on the set of 
observations,   Ωt = (Xt, Xt−1, Xt−2, … , X1,X0)  up to 

time t. If the whole data set is used, the probabilities 
obtained are called the ‘smoothed probabilities' 
which is estimated conditional on all the n available 
observations, Ωn = (Xt, Xt−1, Xt−2, … , X1,X0). An 

important result that can be derived from the 
transition matrix is the expected duration (or 
average duration) of regime i as well as the average 
duration of regime i. The expected duration of 
regime i is given by: 

 

t t ii ijE[D(S i)] D(S i) 1 (1 p ) 1 p      (3.35) 

 
A small value of pij (𝑖 ≠ 𝑗) is an indication that 

the model tends to stay longer in state i while its 
reciprocal   1/pij describes the expected duration of 

the process to stay in state i. 
 

3.5. Model Selection Criteria 
 
Schwarz Bayesian Criterion (SBC) developed by 
Schwarz (1978) was derived from a Bayesian 
modification of the AIC criterion. The idea of SBC is 
to select the model that has a minimise value. SBC is 
a function of the number of observation n, the SSE, 
the number of independent variables p ≤ m + 1 
where p includes the intercept, as shown in equation 
(3.40). 

SSE
SBC n ln p ln(n)

n
 

 
 
 

 (3.36) 

The penalty term for SBC is similar to AIC, but 
uses a multiplier of ln n for p instead of a constant 
by incorporating the sample size n.  

3.6. Comparison of Model Performance 
 
On the basis of reliability, validity and wide use, the 
following performance (error) measuring metrics are 
recommended for evaluating models. In order to 
select the appropriate models for each of the five 
closing stock prices among the three nonlinear 
modelling techniques which include SETAR, STR and 
MS-AR, four error metrics, RMSE, MAE, MAPE, and 
RSMPE, are appealed to. Given the time series, Xt and 

estimated series, X̂t, the four error metrics are 
defined below: 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑡 − �̂�𝑡)2
𝑛
𝑡=1

𝑛
 

(3.37) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑋𝑡 − �̂�𝑡|

𝑛

𝑡=1
 

(3.38) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑋𝑡 − �̂�𝑡
𝑋𝑡

|
𝑛

𝑡=1
∗ 100% 

(3.39) 

𝑅𝑀𝑆𝑃𝐸 = √
1

𝑛
∑ (

𝑋𝑡 − �̂�𝑡
𝑋𝑡

)

2𝑛

𝑡=1
 

(3.40) 

 
            

4.  EMPIRICAL ANALYSIS 
 
4.1. Preliminary Analysis 
 
The study employed the stock prices of the South 
Africa collected daily for the period 2010-2012, a 
total of 563 observations and was obtained from 
http://www.jse.com. Study used the purposive 
sampling technique; five (5) banks from a population 
of twenty-one (21) banks were used. The banks that 
responded were ABSA Bank (ABSA), Capitec Bank 
(CAPB), First National Bank (FIRB), Nedbank (NEDB) 
and Standard Bank (STDB). Figure 1 depicts a picture 
of the closing stock price series.  

 
Figure 1. Graphical Representation of the Five Closing Stock Prices

 
The results reveal that FIRB has the lowest 

stock prices and is estimated by an upward sloping 
trend. Stock prices of other banks are explained by 

irregular increasing patterns with ABSA and NEBD 
showing convergence at several stages. Given this 
movements by the stock prices, the data is not 
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stationary at all levels. The series are further 
checked for nonlinearity by employing different 
tests.  

Since nonlinearity in time series may occur in 
several ways, there exists no single test that 
dominates others in detecting nonlinearity. 
Therefore the study uses the Regression 
Specification Error Test (RESET) by Ramsey (1969) 
and Brock-Dechert-Scheinkman (BDS) by Brock et al. 
(1996) tests for this purpose. The null hypothesis of 

nonlinearity is rejected if the RESET and the BDS 
tests are greater than the critical values at 
conventional levelod significance, implying that the 
true specification is nonlinear. To determine the 
stability of the models, a Cumulative Sum (CUSUM) 
test  by Brown et al. (1975) will be used. The null 
hypothesis is rejected if the CUSUM test exceeds the 
critical value. The results of the three tests are 
summarised in Table 1. 

 
Table 1. Estimated AR Models with Nonlinearity Tests 

 
 

ABSA CAPB FIRB NEDB STDB 

Parameter Estimate 

 

263.614 
(1.8731) 
[0.0616] 

197.824 
(2.001) 
[0.0459] 

2.9902 
(0.3089) 
[0.7575] 

47.3057 
(0.6324) 
[0.5274] 

182.023 
(2.013) 
[0.0446] 

 

0.862676 
(20.5228) 
[0.0000] 

0.9897 
(187.60) 
[0.0000] 

0.9995 
(237.80) 
[0.0000] 

0.8596 
(20.51) 

[0.0000] 

0.9828 
(114.0) 
[0.0000] 

 
0.119039 
(2.8155) 
[0.0050] 

  
0.1379 
(3.279) 

[0.0011] 
 

RESET Test for Specification Test Statistic 
4.00483 
[0.0188] 

3.4352 
[0.0329] 

3.6984 
[0.0254] 

4.9172 
[0.0076] 

8.7728 
[0.0002] 

CUSUM Test for Parameter 
Stability 

Test Statistic 
(Harvey-Collier) 

2.58915 
[0.0099] 

0.6004 
[0.5485] 

1.7090 
[0.0880] 

2.6447 
[0.0084] 

0.2375 
[0.8123] 

Test for ARCH Effects LM 
3.1967 

[0.07379] 
71.2252 
[0.0000] 

3.0925 
[0.0787] 

5.9051 
[0.0151] 

12.1992 
[0.0022] 

BDS z-statistics 
3.1967 

[0.07379] 
3.1967 

[0.07379] 
3.1967 

[0.07379] 
3.1967 

[0.07379] 
3.1967 

[0.07379] 

Figures in () are t-statistics while figures in [] are p-values 
 

Results from the RESET tests of the five variables 
suggested that the use of a linear regression 
modelling technique was inappropriate. In addition, 
the residuals from various autoregressive (AR) 
models fitted to the data were found to have ARCH 
structures, further supporting the use of nonlinear 
modelling methods. There is no evidence of 
structural change in the data according to the BDS 
tests. The preliminary results of the data proves that 
the data is suitable for the application of STR, TAR, 
MS-AR models. 
 

4.2.Modelling and Forecasting models 
 
This section presents the results of the three 
nonlinear time series models suggested.   
 

4.3. Threshold Autoregressive Models for Closing 
Stock Price 
 

Switches between one regime and another depend 
on a threshold variable and threshold value. This 
study followed the Hsu et al. (2010) structural break 
concept in selecting the thresholds. In particular, 
assuming that the numbers of thresholds are 
unknown, the Bai-Perron multiple breakpoint 
method was applied.  

This section focuses on estimating TAR models 
on the basis that each stock price is a linear AR 
within a regime of that particular variable. First, for 
each regime of a particular variable, an AR model 
was run by allowing maximum five (5) lags and their 
respective SBC. Using these optimal lag lengths, the 
AR models were estimated for each segment of each 
of the five variables. At the 5% level, the final 
estimated AR models were obtained by eliminating 
the insignificant lags. The final estimated TAR 
models are reported in the estimated TAR models 
for the closing stock prices, ABSA, CAPB, FIRB, NEDB 
and STDB are, respectively: 

 
𝐴𝐵𝑆𝐴𝑡 = 𝐼1 ∗ (2372.97 + 0.8258 ∗ 𝐴𝐵𝑆𝐴𝑡−1) + 𝐼2 ∗ (2386.70 + 0.8205 ∗ 𝐴𝐵𝑆𝐴𝑡−1) + 𝐼3 ∗ (3733.22 + 0.7329 ∗ 𝐴𝐵𝑆𝐴𝑡−1) +
𝐼4 ∗ (1840.19 + 0.8811 ∗ 𝐴𝐵𝑆𝐴𝑡−1) + 𝐼5 ∗ (1.0003 ∗ 𝐴𝐵𝑆𝐴𝑡−1)  
 
𝐶𝐴𝑃𝐵𝑡 = 𝐼1 ∗ (1.0005 ∗ 𝐶𝐴𝑃𝐵𝑡−1) + 𝐼2 ∗ (1441.48 + 0.9202 ∗ 𝐶𝐴𝑃𝐵𝑡−1) + 𝐼3 ∗ (1.0008 ∗ 𝐶𝐴𝑃𝐵𝑡−1) + 𝐼4 ∗ (2983.46 +
0.7163 ∗ 𝐶𝐴𝑃𝐵𝑡−1 + 0.3746 ∗ 𝐶𝐴𝑃𝐵𝑡−2 − 0.2281 ∗ 𝐶𝐴𝑃𝐵𝑡−3) + 𝐼5 ∗ (0.9980 ∗ 𝐶𝐴𝑃𝐵𝑡−1)  
 
𝐹𝐼𝑅𝐵𝑡 = 𝐼1 ∗ (0.9990 ∗ 𝐹𝐼𝑅𝐵𝑡−1) + 𝐼2 ∗ (355.556 + 0.8199 ∗ 𝐹𝐼𝑅𝐵𝑡−1) + 𝐼3 ∗ (1.0022 ∗ 𝐹𝐼𝑅𝐵𝑡−1) + 𝐼4 ∗ (1.00112 ∗
𝐹𝐼𝑅𝐵𝑡−1) + 𝐼5 ∗ (1.00114 ∗ 𝐹𝐼𝑅𝐵𝑡−1)  
 

0


1

2
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𝑁𝐸𝐷𝐵𝑡 = 𝐼1 ∗ (1414.94 + 0.8925 ∗ 𝑁𝐸𝐷𝐵𝑡−1) + 𝐼2 ∗ (3785.64 + 0.9518 ∗ 𝑁𝐸𝐷𝐵𝑡−1 − 0.2153 ∗ 𝑁𝐸𝐷𝐵𝑡−3) + 𝐼3 ∗  (1726.92 +
0.8769 ∗ 𝑁𝐸𝐷𝐵𝑡−1) + 𝐼4 ∗ (0.7171 ∗ 𝑁𝐸𝐷𝐵𝑡−1 + 0.2848 ∗ 𝑁𝐸𝐷𝐵𝑡−3) + 𝐼5 ∗ (3017.19 + 0.8329 ∗ 𝑁𝐸𝐷𝐵𝑡−1)  
 
𝑆𝑇𝐷𝐵𝑡 = 𝐼1 ∗ (1485.84 + 0.8590 ∗ 𝑆𝑇𝐷𝐵𝑡−1) + 𝐼2 ∗ (1557.05 + 0.8438 ∗ 𝑆𝑇𝐷𝐵𝑡−1) + 𝐼3 ∗ (1771.69 + 0.8170 ∗ 𝑆𝑇𝐷𝐵𝑡−1) +
𝐼4 ∗ (1384.42 + 0.8772 ∗ 𝑆𝑇𝐷𝐵𝑡−1) + 𝐼5 ∗ (1.0007 ∗ 𝑆𝑇𝐷𝐵𝑡−1)  
 

where, 𝐼𝑘 = {
1,      regime k
0, other wise

  

 

4.4. Smooth Transition Regression Analysis 
 
This section provides the results for the STR 
modelling technique. Also shown are the forecasts 
of the model for the five variables. As a starting 
point, AR models up to lag five (5) were estimated 

with each of the five variables in order to determine 
the appropriate lag order. 

Once the suggested STR models have been 
specified, the nonlinear least squares (NLS) method 
was used to estimate them and the results are 
summarised in Table 2. 

 
Table 2. Estimated LSTR Models 

 
Dep. Var. Variable Estimate t-Stat                 p-Value R-Square Adj. R-Square 

ABSA(t) 

----- Linear Part ------ 

0.94704 0.9471 

CONST 1407.01652             4.4602                       0.0000 
ABSA(t-1)                 0.89731           38.7516                     0.0000 

---- Nonlinear Part ---- 

ABSA(t-1)                  0.01213            3.8226                     0.0001 

Gamma 14.19718             0.7681                     0.4427 
C1 14598.19084         138.9240                    0.0000 

CAPB(t) 

----- Linear Part ------ 

0.98467 0.9847 

CONST 244.32152            2.3887                       0.0172       
CAPB(t-1)                 0.98762         177.9250                    0.0000 

---- Nonlinear Part ---- 

CONST -244.32152           -2.3887                     0.0172       
Gamma 17.97761            1.2362                     0.2169       
C1   22476.78769          94.3540                     0.0000     

FIRB(t) 

----- Linear Part ------ 

0.99051 0.9905 

CONST 239.56090 3.8898 0.0001 
FIRB(t-1) 0.87937 28.3434 0.0000 

---- Nonlinear Part ---- 

CONST -206.50774 -3.1367 0.0018 
FIRB(t-1) 0.10941 3.3907 0.0007 
Gamma 800.73372 0.1317 0.8953 
C1 2132.44609 347.5154 0.0000 

NEDB(t) 

 

----- Linear Part ------ 

0.98693 0.9870 

NEDB(t-1)                1.00023    1121.5372                      0.0000       
---- Nonlinear Part ---- 

CONST 813.8 2.2596                         0.0242 
NEDB(t-1)             -0.0                 -2.2466 0.0251 
Gamma 14.1                  0.7563                           0.4498 
C1 15526.9 30.4711 0.0000 

STDB(t) 

----- Linear Part ------ 

0.96003 0.9601 

CONST 268.61160        1.8589                          0.0636       
STDB(t-1)                0.99933      95.3909                        0.0000       

---- Nonlinear Part ---- 

CONST -266.04              -2.2890                           0.0225 
Gamma  7.29               1.9281                             0.0544 
C1 9284.20             98.9096                           0.0000 

 
As revealed by the results, all five variables 

have been found to be autoregressive processes 
since their lags are significant in both the linear and 
nonlinear parts. By observation the estimated 
models seem good judging from the high 𝑅2 and 𝑅𝑎𝑑𝑗

2  

values. Again, the transition values (C1), for ABSA, 
CAPB, NEDB, and STDB suggest that closing stock 
price of these banks switch between two regimes. In 
fact, a closing stock price less than transition values 
14598.19 for ABSA, 22476.79 for CAPB, 2132.45 for 
FIRB, 15526.88 for NEDB, and 9284.20 for STDB are 
regarded as low stock yield periods for these banks. 
Closing stock price larger than these values implies 
even higher stock prices. 

 

4.5. Markov-Switching AR Models for Stock Prices 
 
First, in order to ascertain the possibility of using 
two-regime switching models for the variables, 
linearity likelihood ratio (LR) tests were conducted 
and the regime results reported in Table 3.  The test 
rejects the null hypothesis of no regime switching in 
favour of the existence of two regimes since the p-
value of the chi-square statistics for all the five 
variables are less than the 10%, 5% or 1% level. 
Therefore, the LR test results support a two-state 
regime for all the five variables. Similar results were 
reported by Ismail and Isa (2007), Psaradakis et al. 
(2009), Wasin and Bandi (2011) and Yarmohammadi 
et al. (2012).  
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Table 3.  Linearity LR Test of Two-Regime Switch 
 

Variable Chi-Square Test Statistic  P-value 

ABSA 53.794 0.0000 

CAPB 100.1 0.0000 

FIRB 21.788 0.0006 

NEDB 11.296 0.0796 

STDB 12.042 0.0610 

 
In order to find the optimal lag length for the 

estimation of the univariate MS-AR (p) model, 
different AR models were estimated with up to five 
(5) and their SBC. From these results, an optimal lag 
length one (1) is deemed appropriate for each of the 
five two-regime MS-AR (p) models. Results for the 
estimated MS-AR (1) models are shown in Table 4.18. 
As observed from these results, with ABSA, CAPB 
and FIRB, the variances of Regime 2,   𝜎2(𝑠𝑡 = 2), is 

greater than the variance of Regime 1, 𝜎2(𝑠𝑡 = 1), 
suggesting that for these three closing stock prices, 
Regime 2 is more volatile than Regime 1. In other 
words, Regime 2 captures the behaviours in ABSA, 
CAPB and FIRB in an unstable manner while Regime 
1 captures the behaviours of the three stock prices 
in a stable manner. The opposite happens in the 
case of NEDB and STDB since the variances of 
Regime 1, 𝜎2(𝑠𝑡 = 1), is greater than the variance of 
Regime 2, 𝜎2(𝑠𝑡 = 2) . It is also observed that, for 
ABSA, FIRB, NEDB and STDB, the estimated regime-
dependent intercepts (expected daily increments in 
closing stock prices) are higher in Regime 1 than in 
Regime 2 (that is,  𝜇(𝑠𝑡 = 1) > 𝜇(𝑠𝑡 = 2) for ABSA, 
FIRB, NEDB and STDB) while the opposite holds in 
the case of CAPB. In other words, changes in ABSA, 
FIRB, NEDB and STDB closing stock prices increased 
in a stable state while opposite holds for NEDB.  

 
Table 4. Two-Regime MS-AR Modelling Results 

 
 ABSA CAPB FIRB NEDB STDB 

𝜇(𝑠𝑡 = 1) 
𝜇(𝑠𝑡 = 2) 

13749.6 
13642.6 

17853.9 
18761.8 

2276.56 
2194.16 

15390.1 
14488.6 

10507.0 
10457.0 

𝜑1(𝑠𝑡 = 1) 
𝜑1(𝑠𝑡 = 2) 

0.996758 
0.531652 

1.00108 
0.945820 

0.998810 
1.259510 

0.994343 
1.000960 

0.973702 
1.180030 

𝜎2(𝑠𝑡 = 1) 
𝜎2(𝑠𝑡 = 2) 

178.457 
241.037 

201.356 
331.188 

34.4960 
116.217 

241.296 
190.232 

137.350 
18.7274 

p11 

p12  

p21 

p22 

0.989355 
0.061359 
0.010645 
0.938640 

0.98621 
0.041621 
0.013793 
0.958380 

0.995928 
0.999979 

0.0040724 
0.0000212 

0.995980 
0.004151 
0.004019 
0.995850 

0.94730 
0.69051 
0.052702 
0.309490 

E[𝐷(𝑠𝑡 = 1)] 
E[𝐷(𝑠𝑡 = 2)] 

16.2975 
93.9408 

24.0263 
72.5005 

1.0000 
245.5554 

240.8884 
248.8181 

1.4482 
18.9746 

 
Furthermore, the probabilities of a closing 

stock price remaining in Regime 1, p11, are smaller 
than the probability of a closing stock price staying 
in Regime 2, p22, for all the five closing stock prices. 
In fact, the probabilities of a closing stock price 
staying in Regime 1 lie in the range of 0.947 to 0.996 
with an expected duration, E[𝐷(𝑠𝑡 = 1)], of 1 to 241 
days. Similarly, the probabilities of a stock price 
staying in Regime 2 lie in the range 0.000 to 0.958 
with an expected duration, E[𝐷(𝑠𝑡 = 2)], of 19 to 249 
days. In other words, closing stock prices can stay 
slightly longer in Regime 2 than in Regime 1.  

  

Model performance 
 
This section provides the results of the forecast 
perfomance of the three models. One Forecasted 
future values are of great importance for decision-

making and policy formulation. The evaluation of 
nonlinear models is based on the properties of 
resulting residuals. Using the residuals, various tests 
for misspecification, including non-normality, 
parameter stability and autocorrelation checks were 
conducted. The diagnostic tests of the residuals of 
the three models did not violate the required 
assumptions and as a result rendered the models 
accurate and sufficient.  

On the basis of reliability, validity and wide 
use, the performance (error) measuring metrics are 
recommended for evaluating the efficieny of models 
in forecasting. The study uses the four error metrics 
such as RMSE, MAE, MAPE, and RSMPE. The model 
that generate the least forecast error is chosen and 
suggested for further analysis. Table 5 provides the 
results for the four measures. 

 
Table 5. Forecast Comparison among LSTR, TAR and MS-AR Models 

 

Measure Method ABSA Capitec FRIB NEDB STDB 

RMSE 
LSTR 
TAR 

MS-AR 

200.2572 
196.5424 
186.7458 

270.9698 
266.1471 
217.5940 

35.48659 
35.48629 
35.32322 

219.5906 
210.4875 
213.6210 

133.0790 
131.0235 
129.6859 

MAE 
LSTR 
TAR 

MS-AR 

148.9902 
147.2353 
143.0377 

189.5397 
186.6499 
160.6033 

27.03180 
26.93976 
27.34744 

167.8142 
162.2681 
165.5507 

103.7846 
101.3549 
97.6963 

MAPE 
LSTR 
TAR 

MS-AR 

0.010624 
0.010502 
0.010188 

0.010107 
0.009945 
0.008587 

0.011973 
0.011929 
0.012121 

0.011023 
0.010653 
0.010863 

0.009965 
0.009735 
0.009400 

RMSPE 
LSTR 
TAR 

MS-AR 

0.251849 
0.248965 
0.241512 

0.239601 
0.235339 
0.203568 

0.283848 
0.282786 
0.287354 

0.261327 
0.252104 
0.257530 

0.236247 
0.230791 
0.222846 
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According to the results, the four error metrics 
select the MS-AR(1) model for ABSA, CAPB and STDB, 
and TAR model for NEDB accordingly. MAE, MAPE 
and RMSPE select the TAR model for FIRB, RMSE 
selects the MS-AR(1) model for FIRB. The results are 
in accordance with those by Dacco and Satchell 
(1999), whose study identified the FIRB as best 
modelled by the MS-AR(1).  

 

4. CONCLUSION REMARKS 
 
Study explored the perfomance of the TAR, STAR 
and the MS-AR models in modelling and forecasting 
daily stock prices series of five banks of South 
Africa. Five banks considered are the ABSA, Capitec , 
First Rand Bank, Nedbank , and Standard Bank for 
the period from 2010 to 2012. One of objective of 
the study was to provide evidence that the five 
variables used in the study were nonlinear in nature. 
Three test used proved that all series are nonlinear 
in nature and nonlinear models are more 
appropriate to model five varaibles. The study 
technique suggested the LSTR1 models for all five 
variables, while the TAR modelling technique 
involved a maximum lag of three in coming up with 
suitable TAR models for the five variables, and the 
MS-AR modelling technique allowed up to a 
maximum lag of one in determining the appropriate 
MS-AR models for the five variables. The study 
employed the four error metrics to select the best 
performing model. The results showed that while 
ABSA, CAPB, FIRB and STDB are best modelled by 
MS-AR(1), NEDB is best modelled by TAR. Generally, 
the results proved that the MS-AR modelling 
technique performed better in most cases compared 
to the LSTR and TAR models. From the discussions 
of the results, the following conclusions can be 
drawn: 

 All five closing stock prices are nonlinear in 
nature. 

 All five closing stock prices do not change 
structurally. 

 The almost negligible error measures suggest 
that the various estimated predictive models for the 
five closing stock prices are robust, efficient and 
reliable for purposes of forecasting. 

Although the three nonlinear models proved to 
be good, there is room for further improvement. 
More specifically, in the case of MS-AR results. It is 
recommended that the Neural Networks (NN) be 
used and results compared with the current results 
of MS-AR. 
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