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The objective of this paper is develop a rational expectation 
equilibrium model of capital insurance to identify too big to fail 
banks. The main results of this model include (1) too big to fail 
banks can be identified explicitly by a systemic risk measure, loss 
betas, of all banks in the entire financial sector; (2) the too big to fail 
feature can be largely justified by a high level of loss beta; (3) the 
capital insurance proposal benefits market participants and reduces 
the systemic risk; (4) the implicit guarantee subsidy can be 
estimated endogenously; and lastly, (5) the capital insurance 
proposal can be used to resolve the moral hazard issue. 
We implement this model and document that the too big to fail 
issue has been considerably reduced in the pro-crisis period. As a 
result, the capital insurance proposal could be a useful macro-
regulation innovation policy tool. 
 
Keywords: Systemic Risk, Too Big To Fail, Capital Insurance 

 
1. INTRODUCTION 
 
The objective of this paper is to develop a new 
methodology to identify too big to fail (TBTF) banks 
by a rational expectation equilibrium model1. Since 
the too big to fail issue is virtually linked to the 
implicit guarantee subsidy2, this model can be also 
useful on the assessment of the implicit subsidy 
endogenously. The model generates a new systemic 
risk measure, loss beta, and we demonstrate that 
this concept of loss beta captures some essential 
economic elements of the TBTF issue. 
The financial crisis 2007-2009 sparks substantial 
research interests in measuring the systemic risk 
recently. Acharya et al (2012), Brownless and Engle 
(2011) show that time-varying correlation structure 
play a crucial role in their systemic risk 
measurements (see also v-lab webpage in New York 
University); and it is well documented that the time-
varying correlation coefficients among big financial 

                                                           
1 The term “too big to fail" is frequently interchanged with other terms such 

as “too important to fail" (TITF), “too interconnected to fail" (TITF) or 

“global systemically important banks" (G-SIBs) with might be slightly 

different contexts. A bank is deemed to be TBTF in this paper if the bank has 

implicit government guarantee during a crisis. 
2 The implicit (guarantee) subsidy, or alternatively, capital surcharge, is often 

estimated by funding costs with and without the guarantee. See, for instance, 

IMF (2014) and Green/EFA group report (2014). See also O’Hara and Shaw 

(1990) in the context of deposit insurance; and BCBS (2013) for assessment 

methodology. 

institutions are broadly positive. Consequently, 
several approaches have been proposed to cast the 
connectivity and correlative features among top 
banks in studying the systemic risk, including 
Adrian and Brunnermeier (2016)'s CoVaR approach 
conditional on financial institutions being in a state 
of financial distress; the network approach by 
Acemoglu et al (2015) and Elliott et al (2014); the 
default probability of the whole financial system 
developed by Shin (2008); the marginal expected 
shortfall measure approach in Acharya (2009), 
Brownless and Engle (2011) and Acharya et al (2012), 
and the CDS premium approach in Zhou, Huang and 
Zhu (2009). Hansen (2012) explains the challenge to 
measure the systemic risk, and a comprehensive 
survey of systemic risk measures is presented by 
Bisias et al (2012)3. None of these approaches, 
however, explores an equilibrium mechanism in 
which banks and regulator interact with each other 
in their best interests. 

At the same time, in response to the crisis, the 
Basel Committee on Banking Supervision (BCBS)4 has 

                                                           
3 Other notably papers include Allen and Gale (2000); Hellwig (2009); Lehar 

(2005); Battiston et al (2012); Billio et al (2012); and Rochet (2009). 
4 Specifically, BCBS issues addition documentation for worldwide regulation 

of banks. First, The Basel Committee has issued consultative version of 

“Basel III’s leverage ratio framework and disclosure requirements" published 

in June 2013. Basel III’s leverage ratio is defined as the “capital measure" 

divided by the “exposure measure", where the capital measure is a Tier 1 

capital and the exposure measure is defined as the sum of on-balance sheet 
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adopted a series of reforms to improve the resilience 
of banks and banking systems. They include forcing 
capital requirements for the banks, improving risk 
coverage, proposing a leverage ratio, introducing 
capital conservation and countercyclical buffers as 
well as a global standard for liquidity risk.5  

BCBS describes the additional loss absorbency 
requirements that will apply to G-SIBs. The 
methodology is based on an indicator-based 
measurement approach, and weights equally each of 
the following five categories of systemic importance: 
“size", “cross-jurisdictional activity", “intercon-
nectedness", “substitutability" and “complexity". 
Banks that have a score produced by the indicator-
based measurement approach that exceeds a cutoff 
level set by the Committee are classified as G-SIBs.6 
The advantage of the multiple indicator-based 
measurement approach for identifying TBTF banks 
is that it encompasses many dimensions of systemic 
importance; however, a cut-off number of G-SIBs is 
chosen exogenously by the Committee so an 
equilibrium approach is still missing. 

This paper develops an equilibrium approach 
to link the systemic risk measure study and recent 
regulatory proposals. The mechanism behind the 
model is as follows. We suggest that TBTF banks 
have to pay insurance premium up front to exchange 
for its  implicit guarantee subsidy. The agreement 
between the bank and the regulator (the issuer of 
the contract), which injects the guaranteed capital 
contingent upon a stressed time period, is treated as 
an insurance contract (a  capital insurance contract). 
Each bank predicts the best insured amount 
whenever the pricing structure of the capital 
insurance is given by the issuer. The issuer of the 
capital insurance fully predicts each bank’s optimal 
insured amount, determines the optimal pricing 
structure, and simultaneously identifies those banks 
endogenously which are willing to purchase this 
kind of capital protection. Those banks to purchase 
the capital insurance are identified as  too big to fail 
banks under this approach. The idea of capital 
insurance to study the systemic risk is first briefly 
proposed by Kashyap et al (2008). It is also resemble 
to the special tax program proposed in Acharya et al 
(2010) in which the insurance premium is viewed as 
special tax for too big to fail.7 This model has four 
important implications. First, the model generates a 
new equilibrium systemic risk measure, loss beta, 

                                                                                         
exposures, derivative exposures, securities financing transaction exposures, 

and other off-balance sheet exposures. Second, the version of “Global 

systemically important banks: updated assessment methodology and the 

higher loss absorbency requirement" published in July 2013 sets out the Basel 

Committee’s methodology for assessing and identifying global systemically 

important banks (G-SIBs). 
5 Specifically, BCBS issues addition documentation for worldwide regulation 

of banks. First, The Basel Committee has issued consultative version of 

“Basel III’s leverage ratio framework and disclosure requirements" published 

in June 2013. Basel III’s leverage ratio is defined as the “capital measure" 

divided by the “exposure measure", where the capital measure is a Tier 1 

capital and the exposure measure is defined as the sum of on-balance sheet 

exposures, derivative exposures, securities financing transaction exposures, 

and other off-balance sheet exposures. Second, the version of “Global 

systemically important banks: updated assessment methodology and the 

higher loss absorbency requirement" published in July 2013 sets out the Basel 

Committee’s methodology for assessing and identifying global systemically 

important banks (G-SIBs). 
6 Alternatively, bucketing approach is used to determine loss-absorbing 

capacity of G-SIBs, while the principles on loss absorbing and 

recapitalization capacity of G-SIBs in resolution are discussed in the 

consultative document of November 2014. 
7 Therefore, the developed equilibrium in this article is also an equilibrium of 

a special tax program. 

which is defined as a ratio of the covariance between 
a bank’s loss portfolio with the aggregate loss 
portfolio in the entire bank sector to the variance of 
the aggregate loss portfolio. Given its concentration 
on loss portfolios, this approach to the systemic risk 
leads to starkly difference between our systemic risk 
measure with other systemic measures that based 
on classical beta, downside beta or tail beta (Bawa 
and Lindenverg, 1977; Hogan and Warren, 1974; Van 
Oordt and Zhou, 2014). For instance, Benoit et al 
(2012) in a recent empirical study shows that from 
both theoretical and empirical perspective, the 
marginal expected shortfall measure introduced in 
Acharya (2009), Brownless and Engle (2011), Acharya 
et al (2012) is largely explained by the classical betas 
of banks; and the classical beta of financial 
institution captures to some extent the inter-
connectedness in the financial sector but adds little 
to rank too big to fail banks. 

Second, we present an algorithm to identity too 
big to fails bank and this algorithm relies merely on 
the loss betas of all banks in the market. Not only 
banks with large loss betas are TBTF; we also show 
that TBTF banks must have large loss betas. 
Therefore, the too big to fail feature is largely 
captured by the loss beta measure. 

Third, we demonstrate several positive effects 
of a capital insurance proposal. The social welfare 
for the regulator is shown to be positive and the 
total systemic risk is reduced with the 
implementation of the capital insurance market. 
TBTF banks are beneficial by purchasing the capital 
protection in the capital insurance market, and those 
banks with larger systemic risk components enjoy 
more expected utility enhancing. More importantly, 
the capital insurance market can be used by the 
regulator to reveal banks’  true loss portfolios and 
identify TBTF banks correctly in the presence of 
asymmetric information between banks and the 
regulator. Overall, the capital insurance proposal is 
shown to be a useful macro-regulation policy tool to 
address the TBTF issue.8 

At last, we calibrate this model by using several 
different capital insurance contracts. We find out 
that TBTF banks can be consistently identified with 
this equilibrium approach over the pre-cris and pro-
cris period, and the too big to fail concern has been 
considerably reduced after the financial crisis. 

This paper merges two important strands of 
previous research. By viewing capital insurance as an 
innovation in a capital market, we explore a similar 
framework examined in Allen and Gale (1994) to 
characterize the equilibrium among a group of 
buyers and a seller in the presence of one financial 
innovation. We follow Harris and Raviv (1995) to 
study the optimal payoff structure within a given 
specification form of the payoff structure of 
financial innovation. Moreover, we study the optimal 
portfolio risk at the presence of financial innovation 
as in Simsek (2013). On the other hand, treating the 
capital insurance as an insurance contract between 
banks and regulator, we develop the model by drawn 
on some essential insights in Borch (1962), Arrow 
(1964), Ravi (1979) and Mace (1999). It is worth 
noting that the framework presented in this paper is 

                                                           
8 Classical prudential regulation theory of banks is explained in Dewatripoint 

and Tirole (1994); Hanson, Kashyap and Stein (2011). See also Aiyar, 

Calomiris and Wieladek (2014) for a comprehensive discussion on bank 

capital regulation. 
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different from the classical insurance setting in 
which the law of large numbers (risk-pooling 
principle) holds under an independent assumption 
of the individual risk across a group of insureds. 
Indeed, the failed risk-pooling principle with 
correlated underlying risks proposes a challenge in 
measuring the systemic risk. The capital insurance 
innovation as shown in this paper shed lights to 
resolve the correlated risk management problem.9 

The paper proceeds as follows. In Section 2 we 
present a theory of capital insurance. In Section 3 we 
report our empirical analysis and illustrate some 
implementation issues. Section 4 concludes and all 
proofs are given in Appendix A. 

 

2. THEORY OF CAPITAL INSURANCE 
 
2.1. Model Setup 
 
There are N financial institutions, namely banks, 
indexed by i = 1,…,N, in a financial sector. Each bank 
is endowed with a loss portfolio (or exposure, and 
we do not distinguish these two concepts in this 
paper), X

1
,…,X

N
, respectively. These loss portfolios 

are given exogenously, model-free, with systemic 
risk components. There is a capital insurance market 
in which each bank decides to purchase or not a 
capital insurance contract to hedge the systemic 
risk. The prototype capital insurance contact’s 
payoff structure (or indemnity in insurance 
terminology) is I

i 
(X, X

i
) for bank i where X represents 

the aggregate loss, X =  ∑ Xi
N
i=1 , of the financial sector. 

We follow standard insurance literature (Arrow, 
1963; and Raviv, 1979) to apply a classical linear 
insurance premium principal. Specifically, the 
insurance premium P

i
 for bank i to pay for is, P

i
=(1+ 

+ρ)E[X, X
i
] where ρ is a load factor that is determined 

by the issuer. It is convenient for now to assume a 
constant load factor across the financial sector, and 
its extension to a bank-specific load factor is 
presented in Section 3. In this paper, we focus on the 
following capital insurance contract, I

i
(X, X

i
)=a

i
Z for 

each bank i, where a
i
 is a nonnegative coinsurance 

coefficient and Z=I(X) is an arbitrarily specification 
of indemnity that relies on the aggregate loss in the 
financial sector. Bank i chooses the best coinsurance 
coefficient a

i
, and the optimal coinsurance 

coefficient is written as a
i 

(ρ), to highlight its 

dependence on the load factor ρ. 
Each bank i, i =1,…,N,, is risk-averse, and its 

risk preference is represented entirely by the mean 
and the variance of the wealth with the reciprocal of 

risk aversion parameter γ
i
˃0.10 Given a load factor ρ, 

bank i solves an optimal portfolio problem by 
choosing the best coinsurance coefficient:   

 
 

(1) 

where:  
 

][)(1=
~

0 ZaZaXWW iii

ii     

 
is the ex post terminal wealth for the bank i after 

                                                           
9 Panttser and Tian (2013) conducts a comparative analysis between capital 

insurance and classical coinsurance contract in a correlated risk environment. 
10 Mace (1991) addresses the aggregate uncertainty insurance under the same 

assumption. 

purchasing the capital insurance and W0
i  is the initial 

wealth of bank i. Similarly, Wi=W0
i  -Xi represents the  

ex ante wealth of bank i before buying capital 
insurance. Moreover, without loss of generality we 
assume that each γi = γ for i =1,…,N, so these banks 
are distinguished from each other due to in essence 
their different loss exposures instead of risk 
preference. By the first order condition in (1), the 
optimal coinsurance coefficient for bank i is given by 
   







 

,0
)(

)(),(
max=)(

ZVar

ZZXCov
a i

i


  

(2) 

   
The issuer of capital insurance contracts can be 

a private-sector, reinsurance company, a central 
bank or a government entity such as Financial 
Stability Oversight Council (FSOC) in Dodd-Frank 
Act, which is universally named as a  regulator. The 
regulator is assumed to be risk-neutral and receives 
the insurance premium from each capital insurance 
contract. Therefore, the terminal wealth of the 
regulator is   

 

   ,)(1=
=1=1=1

ZacZaZaW i

N

i

i

N

i

i

N

i

r

  
 (3) 

 

 
where c(a

i
Z) denotes the cost for the regulator 

to issue the contract a
i
Z. This regulatory cost c(•) 

can be a fixed cost, a constant percentage of the 
indemnity or a general function of the indemnity. To 
focus on the equilibrium analysis of TBTF, we 
assume that the regulatory cost is a constant for 
each bank.11 

Given the optimal demand for each bank (with 

a load factor ρ) in (2), the regulator is presumed to 

maximize the expected welfare E[Wr] by determining 

the best load factor ρ and the optimal insurance 

premium in (2). Specifically, by plugging equation (2) 
into equation (3), the regulator’s optimal load factor 
is derived from the following optimization problem:  

  








 
 ,0

)(

][),(
maxmax

1=0}>{ ZVar

ZZXCov i
N

i






 
 

(4) 

  
 and the optimal coinsurance coefficient for 

each bank  i = 1,…,N, is given by a
i
(ρ*), where ρ

*
 is the 

optimal load factor in (4). In the end, the capital 
insurance’s payoff for each bank i, a

i
(ρ*)Z, relies on 

both demand (from all banks) and supply (from the 
regulator) in a rational expectation equilibrium. Both 

the optimal a
i
(ρ*), and ρ

*
 are determined 

endogenously. 
In light of the non-concavity feature of its 

objective function, the regulator’s optimization 
problem (4) is non-standard; thus, its solution 
cannot be easily characterized by virtue of the first 
order condition. In Appendix A, we elaborately 
reduce the optimization problem (4) to a set of 
standard optimization problems; and as a 
consequence, solve the existence of the equilibrium. 

The following definition captures the main 
insights of the equilibrium model on TBTF. 

 
Definition 1. With a capital insurance Z=I(X), the  loss 

                                                           
11 We refer to Huberman, Mayers and Mayers (1982) for a discussion of the 

cost structure in insurance market. 
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~

(
2

1
]

~
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beta of bank i  is 
)(

),(

ZVar

ZXCov i .  

 
Bank i  is deemed to be TBTF, from the capital 
insurance Z=I(X) perspective, if its optimal 
coinsurance coefficient a

 
(ρ*), is positive.  

The capital insurance premium, ][)()(1 ** Za   , 

is an  insurance capital for bank i.  
 Clearly, the capital insurance premium offers 

an assessment of the implicit subsidy from an 
insurance perspective. 

 

2.2.  Identifying TBTF Banks 
 
By virtue of equation (2), bank i is too big to fail as 
long as its loss beta, )()/,( ZVarZXCov i

, is large 

enough such that: 
  

.
)(

][
>

)(

),( *








 

ZVar

Z

ZVar

ZXCov i   
(

(5) 
 

 

But the optimal load factor ρ
*
 in (5) is subject 

to determined endogenously. The optimal load 
factor is solved by (4), and it depends on all loss 
portfolios information, in particularly, all banks’ loss 
betas. Therefore, an individual bank’s loss beta is 
not sufficient yet to recognize whether it is too big 
to fail or not; rather, we have to study the entire 
financial sector as a whole to identify all TBTF banks 
simultaneously. Briefly speaking, a bank is TBTF 
only when its loss beta is relatively large compared 
with other banks’ loss betas in the same financial 
sector. 

Again, because of its non-standard feature, it is 
plausible to have multiple optimal solutions in (4) 
and thus multiple equilibria in the capital insurance 
market. We argue that this plausible multiple 
equilibria issue is not serious though.12 The higher 
the load factor is, the less banks are identified as 
TBTF and those identified TBTF banks have to pay 
higher insurance premiums. In contrast, a smaller 
load factor ensures a larger number of TBTF banks 
whereas each TBTF bank pays a smaller insurance 
premium. Evidently, the regulator is willing to 
choose the smallest load factor, among all plausible 

solutions of ρ
*
, to enlarge the number of TBTF banks 

under monitoring even though the expected welfare 
for the regular is indifferent. Those banks with 
higher systemic risk components also desire a 
smaller load factor because of smaller insurance 
premiums. Only banks with relatively small loss 
betas have benefited from a higher load factor, 
because these banks are otherwise characterized as 
TBTF and forced to pay insurance premiums. For 
these reasons, it is reasonable to choose the  
smallest load factor for the regulator in the presence 
of possible multiple optimal solutions in problem 
(4). 

As shown in Appendix A, the following simple 
algorithm identifies TBTF banks by merely using of 
loss betas. 

  
Step 1. Let  

                                                           
12 However, the multiple equilibrium issue might be very severe in some 

economic contexts. See, for instance, Diamond and Dybvig (1983), 

Sundaresan and Wang (2013). 

 

)(

),(
=

ZVar

ZXCov i
i

, and reorder {β1,…,βN}, such that 

0>1 N  . We omit those banks with negative or 

zero loss betas.  
Step 2. Let  

i

m

im
m

  1=2

1
=  for m=1,…,N. 

Define:  

  mmmm  ,max,min= 1
 for m=1,…,N-1 and 

NN  = .  

 

Step 3. Compute )(= mmm hB   for each m=1,…,N, 

where )(=)( 2

1=
  i

m

imh . 

 
Step 4. Compute m* as 

mNm Bargmax 1
, and choose 

the smallest m* if there exist multiple solutions of 
m*.  
 
Step 5. Bank i is TBTF if and only if *> mi  ,  

for i = 1,…,N,.  
The next proposition shows that the bank with 

the highest loss beta must be a TBTF bank.  
 
Proposition 1.  Among all banks in a financial sector, 
the bank with the highest loss beta must be too big to 
fail.  

By Proposition 1, there do exist TBTF banks in 
any financial sector. Therefore, the capital insurance 
is of necessary from the regulatory perspective. 
Several examples are presented below to illustrate 
the algorithm. 
 
Example 1. If each bank contributes equivalently to 
the systemic risk in the sense that:  
 

c
ZVar

ZXCov i =
)(

),(  for any i = 1,…,N, 

and a positive number c, then each bank is TBTF and 
the optimal load factor is:  
 

][

)(

2 Z

ZVarc


 

 
Moreover, the optimal coinsurance coefficient for 
each bank is its half loss beta. 

Example 1 follows easily from Proposition 1, in 
which each bank has the same loss beta; therefore, 
each bank is too big to fail. The optimal load factor 
and the corresponding coinsurance coefficient can 
be calculated easily. 
 
Example 2. Consider a financial sector with two 
banks, i=1,2, and assume that ),(),( 21 ZXCovZXCov  . 

Then each bank is TBTF if ),(=),( 21 ZXCovZXCov ; 

and only bank 1 is TBTF if, and only if the following 
condition holds: 
  

12

1

),(

),(
<1

2

1




ZXCov

ZXCov  

 
The first case in Example 2 follows from 

Example 1. Assume that ),(<),( 12 ZXCovZXCov . Then 

only the first bank is TBTF, by using the algorithm, if 
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and only if )()( 1122  hh  . It is easy to verify that, the 

last inequality holds if and only if:  
 

12

1

),(

),(

2

1




ZXCov

ZXCov  

 
The next example is concerned with a financial 

system with more than three banks, in which only 
one bank is TBTF if this bank’s loss beta 
significantly dominates all other banks’ loss betas.   
 
Example 3. Given a loss beta structure such that:  
 

1=
)(

),( ii c
ZVar

ZXCov
  for each i = 1,…,N, 

 
a positive number c and a positive number (0,1) , 

only the first bank is TBTF when τ is small enough. 

Moreover, the optimal load factor is  
 

][

)(

2
=*

Z

ZVarc


  

 
Example 3 is interesting in its own right. Even 

though some banks contribute positively to the 
systemic risk and banks are heavily correlated, those 
banks might still not be TBTF banks, given the fact 
that by insuring the bank with the most significant 
systemic risk exposure, other banks’ systemic risks 
can be insured to some extent. Example 3 illustrates 
an essential insight of the capital insurance 
proposal, which in contrast with the network 
approach (Acemoglu et al, 2015; Elliott et al 2014) to 
the systemic risk that connectedness amongst the 
banks play a key role. 

 

2.3. Positive Social Values 
 
The following result affirms a positive social value 
of the capital insurance market. 
 
Proposition 2.  With an immaterial regulatory cost, 
the expected welfare of the capital insurance market 

for the regulator, ][ rW , is always positive.  

 
The expected welfare for the regulator depends 

on a number of market factors such as all banks’ 
loss betas in a financial sector. Under what 
circumstance the social value is positively related to 
loss betas or negatively affected by the loss betas? 
There is no clear-cut on a comparative analysis given 
the complexity of the equilibrium. Remarkably, 
Proposition 2 demonstrates a positive effect of the 
capital insurance market for all possible loss 
exposures. 

We next study the effect of the capital 
insurance market to TBTF banks. While TBTF banks 
are identified by the regulator, an important 
question arises. Whether these TBTF banks are 
willing to purchase capital insurance contracts on 
their interests? What happens if these TBTF banks 
do not purchase the capital insurance? or even if 
they are enforced to purchase the capital insurance 
by a regulator, are they intend to manipulate the 
loss exposure because the purchase decisions are 
against their willingness? The next result resolves 

this potential conflict interest between the regulator 
and TBTF banks.  
 
Proposition 3.  The expected utility of a TBTF bank is 
strictly increased after purchasing the capital 
insurance. Moreover, the higher the loss beta of a 
TBTF bank, the higher the improved expected utility 
of the bank.  

Not only are TBTF banks willing to purchase 
the capital insurance contracts, but also the banks 
with higher loss betas have more ex post benefits, so 
those banks are more motivated to participate in 
this capital insurance market. Both Proposition 2 
and Proposition 3 together ensure Pareto 
improvement by implementing a capital insurance 
market.  
 

2.4.  Aggregate Capital Insurance 
 
In this section, we specialize the capital insurance - 
aggregate capital insurance - by assuming that the 
indemnity, Z, is the aggregate loss. With the 
aggregate capital insurance, we show that TBTF 
banks must have large loss betas. Accordingly to 
equation (2), the optimal coinsurance coefficient of 
the aggregate insurance for a TBTF bank i is: 
 

,
)(

][

)(

),(
=)( **

XVar

X

XVar

XXCov
a i

i





  

 
(6) 

   
in which the second component on the right side of 
(6) is the same for all banks. The first component is 
(by abuse of notation) its loss beta of the loss 
exposure,   

.
)(

),(
=

XVar

XXCov i
i

 
 

(7) 

 
We define concretely the systemic risk from 

both the market level and the individual bank 
perspective in an aggregate capital insurance 
market. 

 
Definition 2. The  systemic risk ex ante in the bank 
sector is the variance, )(XVar , of the aggregate loss in 

the financial sector. The  systemic risk component of 
bank i is its loss beta, 

)(

),(

XVar

XXCov i .  

 
Proposition 4.  The loss beta of a TBTF bank in the 
aggregate capital insurance market must be greater 
than or equal to 1/2N.  

In Example 1, each bank has the same loss beta 
and belongs to TBTF banks, so each loss beta β

i
 =1/N 

because the sum of all loss betas equals to one. In 
spite of all possible loss exposures, Proposition 4 
shows that all TBTF banks’s loss betas must be 
bounded below by (1/2N), a remarkably tight  
distribution-free lower bound of loss betas for all 
TBTF banks regardless the distribution of loss 
exposure of each bank. 

We turn next to the systemic risk. By using our 
systemic risk measurements, we demonstrate that 
the systemic risk is indeed reduced in the entire 
financial sector by the next result. 

 
Proposition 5.  In a  positive correlated risk 
environment in the sense that: 
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NjiXXCov ji ,1,=,0,),(  ,  

the total systemic risk in the financial sector is strictly 
reduced after implementing the aggregate capital 
insurance.  

 

2.5.  Moral Hazard 
 
We have so far assumed that the regulator 
recognizes all banks’ true loss exposures in the 
capital insurance market. However, the asymmetric 
information about loss distributions between banks 
and the regulator could distort significantly the 
insurance premium, the optimal indemnity, and 
probably affect entirely the major insights of the 
capital insurance market. The objective of this 
subsection is to examine the moral hazard issue 
between banks and the regulator. We show that the 
regulator is able to reveal each bank’s true loss 
exposure in the capital insurance market and to 
identity TBTF banks correctly; thus, the true loss 
exposures have to be reported in the presence of the 
capital insurance market. 

Precisely, each bank i’s true loss exposure is 
denoted by X

i
, but this bank’s reporting loss 

exposure to the regulator is Xî. We write Xi ̂ =X
i 
+εi, 

for i = 1,…,N, and each noise term εi  has mean 0 

and variance Ϭi
2. We assume that these noise terms, 

ε1, … , εN, are independent from each other, 

Moreover, these noise terms are independent from 
banks’ true loss exposures {Xi,…, XN}. For regulator, 

the aggregate loss is X ̂ = ∑ Xî
N
i=1 , but it might be not 

the true aggregate loss of the market due to the 
asymmetric information on the loss distributions. 

We consider two kinds of moral hazard. First, 
we assume that these banks know the true loss 
exposures each other but they collectively report 
“wrong" loss exposures to the regulator. This case is 
called a collective moral hazard (see Farhi and Tirole, 
2012, in a similar context). Second, these banks do 
not know the true loss exposures each other. In 
other words, each bank misrepresents its loss 
exposures to anyone else to take information 
advantage in the capital insurance market. This case 
is termed as a mutual moral hazard. In what follows, 
we show that the regulator is able to reveal the true 
loss exposures and identify TBTF banks with the 
help of the aggregate capital insurance in these two 
cases, respectively.  
 

2.5.1. Collective Moral Hazard 
 
Since bank i knows all true loss exposures in this 
collective moral hazard situation, bank i’s optimal 
coinsurance coefficient, if being positive with a given 

load factor ρ, is determined by the same equation 

(6). Moreover, even though the true loss exposure X
i
 

and the true aggregate loss exposure X might be 
unknown to the regulator, the regulator fully 
observes ai(ρ) for each i = 1,…,N from the capital 
insurance market. The next proposition shows that, 

given the information set {ai(ρ),Xî ; i = 1, … , N}, the 
regulator is able to identify Ϭi

2 for each bank i. 
 

Proposition 6. Given a load factor ρ with 

Niai ,1,=0,>)(  , the variances {Ϭ1
2, … , ϬN

2 } can be 

derived uniquely by the data set  NiXa ii ,1,=;ˆ),(  .  

By Proposition 6, as the regulator offers the 
capital insurance contracts with vary load factors, 
the regulator is able to identify the variances, Ϭi

2, i = 
1,…,N, of the error terms of the loss exposures. 
Notice that these banks are not necessarily to be 
TBTF since the load factor might be not the optimal 
load factor though. However, knowing Ϭi

2, both the 
“true" covariance:  

2)ˆ,ˆ(=),( iii XXCovXXCov    

and the “true" variance:  
2

1=
)ˆ(=)( i

N

i
XVarXVar   are known accordingly. 

Therefore, the optimal load factor problem of the 
regulator is reduced to be:   

 


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
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(8) 
 

 
Problem (8) can be solved exactly as in solving 

problem (4). Thus, the regulator is able to identify all 
TBTF banks correctly in this collective moral hazard 
situation. 

 

2.5.2. Mutual Moral Hazard 
 
In a mutual moral hazard situation, bank i is only 
aware of its own loss exposure X

i
 and “reported" loss 

exposures X̂j, j ≠ i, of all other banks. Then, from 

bank i’s perspective, the aggregate loss exposure is 

X
i
+∑ X̂jj≠i , which is X̂-εi. Consequently, bank i’s 

terminal wealth in equation (1), after purchasing 
capital insurance, is replaced by: 
 

)]ˆ([)(1)ˆ(0 iiiii

i XaXaXW   . 

 
As a result, the first order condition yields the 
optimal coinsurance coefficient for bank i,  
  












,0

)ˆ(

]ˆ[)ˆ,(
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i

iii
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XVar

XXXCov
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
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(9) 

 
Proposition 7.  In a  positive correlated risk 
environment in the sense that: 
 

NjiXXCov ji ,1,=,0,),(   

 
the regulator is able to identify TBTF banks correctly 
in a mutual moral hazard situation. Precisely, given a 
load factor ρ with ai̅ (ρ)˃0, i = 1, … , N, the variances 
{Ϭ1

2, … , ϬN
2 } can be derived uniquely by the data set 

 NiXa ii ,1,=;ˆ),(  .  

Since the noises’ variances {Ϭi
2; i = 1, … , N} can 

be solved by the regulator, the regulator knows 
2)ˆ,ˆ(=)ˆ,( iiii XXCovXXCov     

and  
2)ˆ(=)ˆ( ii XVarXVar   .  

Then, the optimal load factor for the regulator 
is reduced to be:   
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(10) 
 

Again, Problem (10) can be solved similarly by a 
method explained in Appendix A. Therefore, the 
regulator can identify all TBTF banks in this mutual 
moral hazard situation. 

We have developed an equilibrium model of the 
capital insurance market and shown the advantages 
of the proposed capital insurance market in several 
aspects (Proposition 1 to Proposition 7). Our 
theoretical results justify that the loss betas capture 
significant component of the systemic risk. We next 
illustrate how our theoretical results can be 
implemented empirically. 

 

3. EMPIRICAL ANALYSIS AND IMPLEMENTATION 
 

To illustrate the presented methodology in Section 2 
we implement the model in this section. We apply 
several capital insurance contracts to identify TBTF 
banks. Then we discuss some implementation issues 
and make some comments to extend the model. 

 

3.1. Data 
 
In our empirical analysis, we identify TBTF banks 
over the period from 2004 to 2012 on the year by 
year basis. There are 14 big financial institutions 
during the pre-financial crisis period from 2004 to 
2008 in our sample. The institutions have been 
selected according to their role in the U.S. financial 
sector. It has been widely recognized in the 
literature that most of the systemic risk is 
concentrated in just a few places. For example, 
Acharya et al (2010) show that just 5 firms provide 
over 50% of all the systemic risk in the US financial 
markets, and 15 firms 92% of the risk. The 
institutions in our sample can be categorized in 
groups of banks, insurance companies, investment 
firms and government sponsored enterprises. They 
are: Freddie Mac, Fannie Mac, American International 
Group, Merrill Lynch, Bank of America, Bear Sterns, 
Citigroup, Goldman Sachs, JP Morgan, Lehman 
Brother, Metlife, Morgan Stanley, Wachovia and Wells 
Fargo. For simplicity, we use the corresponding 
symbols “3FMCC*1000", “3FNMA", “AIG", “BAC2", 
“BAC", “BSC.1", “C", “GS", “JPM", “LEHMQ", “MET", 
“MS", “WB" and “WFC" to represent these 14 big 
financial institutions, respectively. Only 10 financial 
institutions out of 14 left in the market after 
financial crisis, so we report TBTF banks from these 
ten banks over the pro-crisis period 2009-2012. We 
obtain information on the bank characteristics such 
as total assets, total equity and number of shares 
outstanding from Compustat and stock returns data 
from CRSP. 

Similar to Adrian and Brunnermeier (2016), we 
compute the asset loss exposure for each financial 
institution i, i = 1,…,N. For this purpose, we define 
the following variables:  
    •Lt

i : the leverage ratio of institution i at time t, the 
ratio of total asset value over the total equity value;  

    •Mt
i: the market capitalization of institution i at 

time t;  
    •Yt

i: the profit and loss of institution i at time t, 

that is, i

t

i

t

i

t

i

t

i

t MLMLY 11   ;  

    •Xt
i: the loss exposure of institution i at time t, 

that is, Xt
i = max{-Yt

i, 0}.  
    •X

t
: the aggregate loss exposure at time t, X

t
=∑ Xt

i
i .  

Therefore, in this empirical analysis the loss 
exposure, X

i
, is measured by the negative changes in 

the market valued assets of bank i. Since the number 
of banks in our sample changes before and after 
financial crisis, we conduct our analysis for two sub-
periods pre-crisis (2004-2008) and pro-crisis (2009-
2012) separably.  

 
3.2.  Identify TBTF Banks Empirically 
 
We make use of two types of capital insurance 
contracts, deductible insurance and cap insurance 
contracts, respectively. A deductible capital 
insurance has a payoff structure Z=max{X-L,0}, where 
L is an exogenously given deductible level. The 
deductible capital insurance is inspired by the 
classical deductible insurance contract, which is 
optimal for the insured with a linear premium 
principle (Arrow, 1965). On the other hand, a cap 
contract with a payoff structure Z=min{X,L} is shown 
to be optimal for insurer under some assumptions 
in Raviv (1979), where L represents a capped level 
for the loss. Aggregate capital insurance is a special 
deductible contract with zero deductible level or a 
special cap contract with infinitely large cap level. 
For a robust purpose, we examine three different 
levels of L including ][0.1= XL  , ][0.2= XL   and 

][0.5= XL   in both deductible and cap insurance 

contract, where E[X] is the expected aggregate loss 
exposure across all the banks in our sample. In total, 
six capital insurance contracts are used in 
implementing the model. 

Our identification of TBTF banks are presented 
in Table 1 - Table 9 on the year by year basis. 

Table 1 displays the procedure of identifying 
TBTF banks in 2004 with these six different capital 
insurance contracts, in which TBTF banks are 
reported for both deductible insurance and cap 
insurance contracts in red and blue colors, 

respectively. We highlight *m  and *m  for each 

contract. By using three deductible insurance 
contracts, only “BAC" is identified as TBTF. However, 
there are additional three TBTF banks, 3FNMA, AIG 
and MS, if cap insurance contracts are employed. To 
a certain degree, it is not a surprise that there are 
more TBTF banks from a cap insurance market than 
a deductible insurance market because a cap 
contract itself is optimal from issuer’s perspective 
(Raviv, 1979), and we observe similar patterns in 
Table 2- Table 9 as well. Moreover, these four banks, 
BAC, 3FNMA, AIG and MS, are TBTF banks in each 
cap insurance market, and they have the highest loss 
betas in each deductible market. It demonstrates 
that these four banks indeed have significant 
systemic risk exposures. Identifying TBTF banks 
becomes more interesting and serious in 2005 than 
in 2004, as reported in Table 2. In Table 2, there are 
five TBTF banks, 3FNMA, AIG, MS, BAC2 and JPM, in 
each deductible market. Notice that these five banks 
are also TBTF banks in each cap insurance market, 
but the cap insurance market reveals more TBTF 
banks in 2005. When the cap level is given by 

][0.1= XL  , there are ten TBTF banks in total; and 

there are seven TBTF banks when the cap level is 
higher ( ][0.2= XL   or ][0.5= XL  ). In other words, 
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five new banks are TBTF banks with the first cap 
contract and two new banks are TBTF by using other 
cap insurance contracts. As a summary, at least 
seven banks are deemed to be too big to fail from 
the regulator’s perspective, by implementing the 
capital insurance market. In these seven banks, 
3FMNA, AIG, MS, BAC, BAC2, JPM and 3FMCCC*1000, 
two banks, BAC and 3FMCC*1000, are not identified 
as TBTF banks in deductive insurance market but 
both of them have large loss betas right next to 
those other five TBTF banks in each deductible 
insurance market. 

Table 3 displays TBTF banks in 2006. This table 
also demonstrates some important differences 
between the deductible contract and the cap 
insurance contract. As illustrated in Table 3, only 
one “WFC" is identified as TBTF in each deductible 
insurance market. On the right side of Table 3, 
however, there are many more TBTF banks; there are 
ten, nine, and eight TBTF banks in each cap 
insurance market with different cap level, 
respectively. In each cap insurance market, WFC has 
the highest loss beta so it is TBTF naturally 
(Proposition 1), but there are at least seven other 
banks which are deemed to be TBTF banks in each 
cap insurance market. It is interesting to check 
positions of LEHMQ in Table 3. LEHMQ is TBTF in 
each cap insurance market. More importantly, 
LEHMQ has very high loss beta so as large systemic 
risk exposure: it has the third largest loss beta 
persistently in each cap insurance market and the 
second highest loss beta persistently in each 
deductible market. The latter point is worth 
mentioning because LEHMQ is not identified as TBTF 
just because another bank’s loss beta dominates all 
other banks’ loss betas (as explained in Example 3). 
The year 2007 is important in many aspects to 
understand the financial crisis because some critical 
issues regarding the mortgage-backed securities and 
CDO market have been emerged in the market. The 
identification of TBTF banks, reporting in Table 4, is 
fairly consistent with the substantial systemic risk 
issue occurred in this year. First of all, comparing 
with only one TBTF bank in 2006 in each deductible 
insurance market, there are  ten TBTF banks in 2007 
when we make use of the same deductible contracts. 
Second, these ten TBTF banks are fairly the same as 
TBTF banks from the cap insurances perspective. 
Over the entire pre-crisis period, 2007 is the only 
one year in which deductible markets and cap 
insurance markets identify TBTF most consistently. 

Owing to several dramatic market events in 
2008, we have to be deliberate with regard to the 
data analysis. Because of well known events 
happened on Bear Sterns (BSC1), Lehman Brother 
(LEHMQ), Merrill Lynch (BAC2) and Wachovia (WB), 
the loss exposures of these four banks are under 
scrutiny. Moreover, because of significant losses 
across the financial sector in 2008, some cap 
insurance contracts might not work well in 2008 
anymore. For instance, the variance of Z is almost 
zero when the cap level is set too low in 2008 such 

][0.1= XL  as. Therefore, the top cap insurance 

market on the right side in Table 5 should be read 
with diligence because of some negative loss betas. 
Still, we find that those TBTF banks in 2007 are 
either TBTF banks or have high level loss betas in 
each capital insurance market in 2008. By combining 
Table 4 and Table 5 together, the TBTF issue is so 

significant that should be alarmed seriously for the 
regulator. 

Over the post-crisis period (2009-2012), only 
ten banks left in the original financial sector. The 
TBTF banks in 2009 are identified and reported in 
Table 6. As observed, the TBTF issue is still very 
serious because there are four banks, “AIG", “WFC", 
“JPM" and “BAC", are deemed to be TBTF banks in 
each capital insurance market. This is the second 
year (the first time is on 2007) when both deductible 
and cap insurance market identify identical TBTF 
banks. This list of TBTF banks is intuitively 
appealing because “AIG" plays a crucial role in its 
CDS issuance and other three are the largest three 
commercial banks in U.S. 

The TBTF issue has been reduced considerably 
after 2009 according up to our empirical analysis. As 
shown in Table 7-9, only GS is identified as TBTF 
between 2009-2012. This fact might result from our 
construction of asset loss exposure, because the 
leverage ratio is of essential in this construction and 
GS has relatively large leverage ratio. Given its 
substantially large loss beta comparing with all 
other banks, only the bank, GS, with the highest loss 
beta is TBTF (as illustrated in Example 3). From the 
regulatory perspective, it shows some positive signs 
on the TBTF issues but they should pay a closer 
attention to GS to reduce its leverage ratio. 

Our empirical results can be summarized as 
follows. 

• Deductible capital insurance markets with 
different deductible levels identify TBTF banks  
consistently in each year.  

• Cap insurance markets with vary cap levels 
also identify TBTF banks fairly  consistently.  

• In general, TBTF banks in deductible market 
are very likely TBTF banks in cap insurance market, 
but not vice versa. When a bank is deemed to be 
TBTF bank in both deductible and cap insurance 
market, it should have large systemic risk.  

• The regulator should be alerted when both 
the deductible and the cap market identify a large 
number of TBTF banks consistently (say in 2007 and 
2009).  

• When one bank has significantly large loss 
beta comparing with all other banks, only this bank 
is TBTF according to our presented methodology. In 
this case, other banks with large loss betas should 
be analyzed in diligent as well.  

• The regulator should conduct the TBTF 
analysis by using several different capital contracts. 
The regulator should also be careful to construct 
loss exposures to analyze the systemic risk.  

• The TBTF issues has been considerably 
reduced in the pro-crisis time period.  

 

3.3.  Implementation and Comments 
 

In this section, we show how the previous 
discussions can be modified or extended in a more 
general setting. We first discuss different 
specifications of the bank loss exposure. Next, we 
explore how to address the background risk. We also 
incorporate a richer indemnity structure of the 
capital insurance as well as the general specification 
of the load factor into the setting.  
 

 
 



Risk Governance and Control: Financial Markets & Institutions/ Volume 7, Issue 4, Fall 2017 

 
70 

3.3.1. Loss Exposure 
 
Essential to our methodology is the loss exposure of 
each bank as input to identify TBTF banks. The 
presented approach takes each bank’s loss exposure 
as given exogenously without imposing specific 
assumptions on its distribution, so we are able to 
apply other systemic risk measures or the regulatory 
proposals to construct the loss exposure with 
potential systemic risk component. For instance, 
incorporating the assessment methodology of BCBS 
to identify TBTF banks, bank i’s loss exposure can be 
estimated by the negative changes of the total 
exposure measure used as a proxy of bank size in 
the Basel III leverage ratio. This will allow us to 
capture two key measures - correlations and sizes - 

of systemic importance.13 Specifically, define Et
i as 

the total exposure measure of bank i at time t. Then 
the loss exposure of institution i at time t is defined 
as ,0}{max i

t

i

t EX  . As another example, we look at 

the liquidity because of its importance to the proper 
functioning of financial market. One of the Basel 
Committee’s key reforms to develop a more resilient 
banking sector is to promote the short-term 
resilience of the liquidity risk profile of banks 
measured by the Liquidity Coverage Ratio (LCR).14 To 
emphasizing the importance of the liquidity losses, 
bank i’s loss exposure can be chosen to be the 
negative changes in the unencumbered high-quality 
liquid assets (HQLA) as defined by BCBS. In doing so, 
we are able to adequately incorporate recent changes 
on banking supervision into the equilibrium 
framework of capital insurance to address systemic 
risk and identify TBTF banks. 

 

3.3.2.  Background Risk 
 
Since the loss exposure construction is related to its 
systemic risk exposure, the background risk can not 
be ignored. For instance, when the mortgage-based 
securities risk is a big concern as in 2007-2008, we 
can choose X

i
 to be the loss exposure concentrated 

on mortgage-based risk only. In this way, the initial 
wealth with other possible risk exposures is not 
deterministic anymore. Assume the time period 
starts from time t and all loss exposures of banks 
are realized at the next time period t+1. Let F

t
 denote 

the information set at time t which is observed by all 
banks and regulator. The wealth of bank i at time t is 

W
i,t
. Due to the background risk, W

i,t
 could be  

correlated with the loss exposure X
i,t+1

. Let 

X
t+1

=∑ Xi,t+1
N
i=1  denote the aggregate loss exposure 

in the time period [t,t+1], and the capital insurance 
contract proposed in this time period is a multiple 

of Z
t+1 

=I(X
t+1

). 
First of all, the bank i’s terminal wealth at time 

t+1 is:  

][)(1= 1,1,1,,1,   ttittttitititi ZaZaXWW  , 

                                                           
13 The consultative version of Basel III’s leverage ratio framework and 

disclosure requirements published in June 2013 defines exposure measure as 

the sum of the book values of the following items and provides a specific 

treatment of each categories : (a) on-balance sheet exposures, (b) derivative 

exposures, (c) securities financing transaction exposures, and (d) other off-

balance exposures. 
14 The liquidity ratio is the ratio of value of the unencumbered high-quality 

liquid assets (HQLA) that can be converted easily and immediately in private 

markets into cash to meet their liquidity needs for a 30 calendar day liquidity 

stress scenario and total net cash outflows over the next 30 calendar days. 

where E
t
[•] denotes the conditional expectation 

operator with respect to the information set F
t
 and 

a
i,t 

 is the optimal coinsurance coefficient for bank i. 
Secondly, let Cov

t
(•) denote the conditional 

covariance with respect to the information set F
t
. By 

using of the method in Section 2, the optimal 
coinsurance parameter at time t for bank i is: 
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(11) 

By comparing equation (2) with equation (11), it 
suffices to replace the loss exposure in equation (2) 
by the difference between the loss exposure and the 
initial wealth at time t. Lastly, the regulator 

determines the best load factor, ρ
t
, at time t, by 

solving the conditional-based optimization problem: 
 

,0}][),({maxmax 11,,

1=0}>{
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N

it
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The problem (12) can be solved similarly at 

time t, given the information set F
t
. 

 

3.3.3.  Payoff Structure 
 

While we develop the theory for a class of capital 
insurance contract, I

i
(X,X

i
)=a

i
I(X), for some function 

forms of I(•), the payoff structure can be quite 
general. I

i
(X,X

i
) can be designed in a way that both 

the aggregate loss X and the individual loss exposure 
X

i
 are involved for bank i, or I

i
(X,X

i
) even depends on 

the entire set of loss exposures, {X1,…,XN}. For 
instance, I

i
(X,X

i
)=a

i 
(X-X

i
), is a contract proposed in 

Kashyap et al (2008). In general, the indemnity can 
be chosen as:   
 

),(=),( 11 NNiii XbXbIaXXI   (13) 

 
where the parameters b

i
,…,b

N
 capture some 

firm-specific features of the banks. It is worth 
mentioning that the methodology developed in 
Section 2 is different from the classical insurance 
literature even for a classical coinsurance contract, 
I
i
(X,X

i
)=a

i
X

i
. In classical insurance literature, the 

insureds’ loss exposures are assumed to be 
independent from each other, so the law of large 
number is applied. Panttser and Tian (2013) 
develops an equilibrium analysis following the same 
methodology in Section 2 for classical coinsurance 
contracts at the presence of dependent structure 
among loss exposures.  
 

3.3.4. Load Factor 
 
Finally, we consider the load factor in the form of 
ρi=ρ(θ,X

i
) to incorporate the firm-specific information 

such as size, credit risk, liquidity, and its 

complexity, where θ is a set of parameters and ρ(θ,X
i
) 

is used to compute the insurance premium for bank 
i. The equilibrium analysis can be developed 
similarly. For instance, for the capital insurance 
contract, I

i
(X,X

i
)=a

i
Z, bank’s i optimization problem is 

still the same as in equation (1) and the optimal 
coinsurance coefficient is given by: 
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Therefore, the regulator’s optimization 
problem is   

,0}.][),(),({max),(max
1=0}>),(,{




ZXZXCovX iii

N

ii
X
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(15) 

The equilibrium is solved similarly to the 
optimization problem described in equation (4). 

 

4.  CONCLUSIONS 
 

This paper proposes a new methodology of studying 
systemic risk from an insurance perspective. By 
developing an equilibrium model of the capital 
insurance, we show that this capital insurance 
proposal is promising to examine some systemic 
risk issues because of the following results. (1) The 
insurer (say, a regulator) is better off to issue the 
capital insurance and the systemic risk on the 
market level is reduced. (2) Banks are better off to 
increase their expected utilities and their systemic 
risk components are reduced ex post. (3) This capital 
insurance program enables the regulator to identify 
which banks are deemed to be TBTF irrespective of 
absence of moral hazard or not. (4) The TBTF issues 
can be mainly captured by a high level of loss beta, a 
new systemic risk measure introduced in this 
equilibrium approach. These theoretical results have 
some important policy implications and practical 
appeals. The regulator can design several optimal 
capital insurance contracts and identifies TBTF 
banks. The insurance premium received by the 
regulator can be viewed as a new type of capital - 
insurance capital, to protect the insured financial 
institutions in the face of crisis. Finally, the 
insurance capital can be also used to assess the 
implied guarantee subsidy for TBTF banks. 
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APPENDIX A 
 

Solution of the Optimization Problem (4) 
 

We present a solution of the optimization problem (4) and the equilibrium in a general situation with 

different risk aversion parameters γ
i
. We re-order the bank sector such that: 
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Moreover, we assume that Cov(X

i
, Z) ˃0  for each bank i = 1,…,N, because those banks with negative 

covariance Cov(X
i
, Z) have no contribution to (4); thus, those banks with negative or zero covariance Cov(Z

i
, Z)  

should be removed from this setting. 
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We first demonstrate that, noting that 0=(0)f , 
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Therefore, the optimization problem (4) is reduced to a sequence of solving A

m
, which in turn are solved 

by a set of standard optimization problem of g
m
(ρ). 

On one hand, let ρ*, be the one such that 
*
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On the other hand, for any m=1,…,N it is evidently that: 
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for any 0 . Hence, )(maxmax 01  fAmNm   . We have thus proved equation (1).            

By virtute of (1), the equilibrium of the capital insurance market can be solved by three steps as follows. 

First. Compute mA  and )(  m
m

m gargmax I  for each m=1,…,N-1. 
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Second. Compute mNm Amax1   and 
mNm Aargmaxm 1

* = . 

It is possible to have multiple m* and thus multiple equilibrium, because of the non-concavity feature of 
the objective function f (ρ) for the regulator. As explained in Section 2, it is natural to choose the smallest one 

among {m*} if there are more than one optimal solutions. 
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Algorithm to identifying TBTF banks in terms of loss beta only: 
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By definition 1, those banks with the highest loss beta are too big to fail.            
 
Proof of Proposition 2: 
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The proof of Proposition 4 relies on a simple combinational-type result as follows. 
 

Lemma 1 Given N positive numbers such that 
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Proof:  We prove the first part of this lemma while the proof for the second part is the same. 
We first consider the case when N is divided by i, that is, N=mi for a positive integer m. Notice that 
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The lemma is proved if N can be divided by such an i. 

If N can’t be divided by i , write N=m
i
+t for some 0<t<i and m≥1. We use the decreasing property of b
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This lemma is proved.  
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Proof of Proposition 4: 

By using the solution of Problem (4), there are two possibilities for the optimal load factor ρ*. 

Case 1. ρ*= ρ
m
 for some m and 
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The last inequality in turn is equivalent to 
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By using Lemma 1 again, 
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Proof of Proposition 5: 
Notice that after implementing the capital insurance, the loss exposure is 
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= . To prove that the total systemic risk is reduced, that is, 

)(<)
~
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where those banks i=1,…,m are too big to fail banks. The positive correlated assumption yields that 

1=
1=1= i
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The proof of Proposition 6 depends on the following Sherman-Morrison formula in linear algebra. 
 
Lemma 2 Suppose A is an invertible S×S matrix and u,v are s×1 vectors. Suppose further that 

01 1   uAvT . Then the matrix TuvA  is invertible and 
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(12) 

 
Proof of Proposition 6: 
 
For each i=1,…,N, we have 
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By assumption, it is easy to see 
2),(=)ˆ,ˆ( iii XXCovXXCov   and   ]ˆ[= XX  .  
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Replacing ),( XXCov i
 by 

2)ˆ,ˆ( ii XXCov   in equation (13) and using equation (14), we obtain 
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which is written as 
TuvI  , where I is an identity matrix, T

Naau ))(,),((= 1     and Tv ,1)(1,1,=  . 

Furthermore, 
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we have 0>)(1=1
1=

1 i
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T auIv   . Then the Sherman-Morrison formula (Lemma 2) ensures that the 

coefficient matrix TuvI   is invertible. Therefore, the noises’ variance vector, T

N ),,( 22

1   , is  uniquely 

determined by the set  NiXa ii ,1,=;ˆ),(  . The proof is completed.  

 
Proof of Proposition 7: 
By assumption, 

 2

1=
),(=),(=)ˆ,ˆ( iii

N

iiii XXCovXXCovXXCov    , & 

),(=),(=)ˆ,( XXCovXXCovXXCov ijijiii   
 Then: 

.)ˆ,ˆ(=)ˆ,( 2

iiii XXCovXXCov     
(17) 
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. Then, by the definition of )(ia , we obtain 
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Therefore, 
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in which we make use of equation (14). Hence, we have 
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To determine 
2

i  uniquely, it thus suffices to show that 1<)(ia  under assumption on correlated risk 

environment. In fact, by definition of )(ia  and 0>][X , we have )ˆ,(<)ˆ()( iiii XXCovXVara   . 

Notice that 0),( ji XXCov  in a correlated risk environment, then )(),( XVarXXCov i   for each i=1,…,N. 

Therefore, )ˆ(=)(),(=)ˆ,( 22

iiiiii XVarXVarXXCovXXCov   . Therefore, we have proved that 



Risk Governance and Control: Financial Markets & Institutions/ Volume 7, Issue 4, Fall 2017 

 
78 

1<)(<0 ia  

Details of Example 3: 
 

We claim that when   is small enough such that 
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then only the first bank is too big to fail. In fact, by formula (21), 
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Table  1. TBTF Banks in 2004 
 

This table displays a bank sector with 14 financial institutions and identifies “too big to fail" banks in year 2004 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  

 

][0.1= XL  , ][0.2= XL   and ][0.5= XL  . 

)(

),(
=

ZVar

ZXCov i
m
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i

m

im
m

  1=2

1
=  for i=1,…,N.   mmmm  ,max,min= 1

 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    1=*m   ][0.1= XL    4=*m  

1 BAC 0.7447 0.3723 0.3723 3FNMA 2.4512 1.2256 1.9021 

2 3FNMA 0.0746 0.2048 0.0746 BAC 1.9021 1.0883 1.0883 

3 AIG 0.0524 0.1453 0.0524 AIG 1.0112 0.8941 0.9090 

4 MS 0.0431 0.1144 0.0431 MS 0.9090 0.7842 0.7842 

5 JPM 0.0223 0.0937 0.0223 JPM 0.5644 0.6838 0.5644 

6 BAC2 0.0156 0.0794 0.0156 BAC2 0.4495 0.6073 0.4495 

7 3FMCC*1000 0.0106 0.0688 0.0106 3FMCC*1000 0.2942 0.5415 0.2942 

8 WFC 0.0074 0.0607 0.0074 WFC 0.2523 0.4896 0.2523 

9 WB 0.0058 0.0543 0.0058 GS 0.2313 0.4481 0.2313 

10 MET 0.0048 0.0491 0.0048 LEHMQ 0.1893 0.4127 0.1893 

11 LEHMQ 0.0039 0.0448 0.0039 WB 0.1854 0.3836 0.1854 

12 C 0.0034 0.0412 0.0034 MET 0.1481 0.3578 0.1481 

13 BSC.1 0.0032 0.0382 0.0032 BSC.1 0.1055 0.3344 0.1055 

14 GS -0.0024 0.0353 0.0353 C 0.0883 0.3136 0.0883 

 ][0.2= XL    1=*m   ][0.2= XL    4=*m  

1 BAC 0.7665 0.3832 0.3832 3FNMA 1.3133 0.6567 1.0647 

2 3FNMA 0.0718 0.2096 0.0718 BAC 1.0647 0.5945 0.5945 

3 AIG 0.0518 0.1483 0.0518 AIG 0.5642 0.4904 0.5094 

4 MS 0.0425 0.1166 0.0425 MS 0.5094 0.4315 0.4315 

5 JPM 0.0218 0.0954 0.0218 JPM 0.3131 0.3765 0.3131 

6 BAC2 0.0151 0.0808 0.0151 BAC2 0.2478 0.3344 0.2478 

7 3FMCC*1000 0.0104 0.0700 0.0104 3FMCC*1000 0.1577 0.2979 0.1577 

8 WFC 0.0071 0.0617 0.0071 WFC 0.1407 0.2694 0.1407 

9 WB 0.0056 0.0551 0.0056 WB 0.1025 0.2452 0.1025 

10 MET 0.0046 0.0499 0.0046 MET 0.0829 0.2248 0.0829 

11 LEHMQ 0.0038 0.0455 0.0038 LEHMQ 0.0769 0.2079 0.0769 

12 C 0.0033 0.0418 0.0033 GS 0.0746 0.1937 0.0746 

13 BSC.1 0.0032 0.0387 0.0032 BSC.1 0.0502 0.1807 0.0502 

14 GS -0.0027 0.0359 0.0359 C 0.0471 0.1695 0.0471 

 ][0.5= XL    1=*m   ][0.5= XL    4=*m  

1 BAC 0.8662 0.4331 0.4331 3FNMA 0.6057 0.3028 0.6025 

2 3FNMA 0.0569 0.2308 0.0569 BAC 0.6025 0.3020 0.3020 

3 AIG 0.0469 0.1617 0.0469 AIG 0.2946 0.2505 0.2703 

4 MS 0.0370 0.1259 0.0370 MS 0.2703 0.2216 0.2216 

5 JPM 0.0186 0.1026 0.0186 JPM 0.1517 0.1925 0.1517 

6 BAC2 0.0114 0.0864 0.0114 BAC2 0.1326 0.1714 0.1326 

7 3FMCC*1000 0.0083 0.0747 0.0083 3FMCC*1000 0.0823 0.1528 0.0823 

8 WFC 0.0049 0.0656 0.0049 WFC 0.0726 0.1383 0.0726 

9 WB 0.0047 0.0586 0.0047 WB 0.0434 0.1253 0.0434 

10 MET 0.0039 0.0529 0.0039 MET 0.0356 0.1146 0.0356 

11 BSC.1 0.0031 0.0483 0.0031 LEHMQ 0.0355 0.1058 0.0355 

12 C 0.0030 0.0444 0.0030 C 0.0206 0.0978 0.0206 

13 LEHMQ 0.0028 0.0411 0.0028 BSC.1 0.0167 0.0909 0.0167 

14 GS -0.0030 0.0380 0.0380 GS 0.0071 0.0847 0.0071 
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Table  2. TBTF Banks in 2005 
 
This table displays a bank sector with 14 financial institutions and identifies “too big to fail" banks in year 2005 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  

 

][0.1= XL  , ][0.2= XL   and ][0.5= XL  . 
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  1=2

1
=  for i=1,…,N.   mmmm  ,max,min= 1

 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    5=*m   ][0.1= XL    9=*m  

1 3FNMA 0.2205 0.1103 0.1745 3FNMA 0.2617 0.1308 0.1513 

2 AIG 0.1745 0.0987 0.1680 AIG 0.1513 0.1032 0.1277 

3 MS 0.1680 0.0938 0.0943 MS 0.1277 0.0901 0.1179 

4 JPM 0.0943 0.0822 0.0941 BAC 0.1179 0.0823 0.0999 

5 BAC2 0.0941 0.0751 0.0751 3FMCC*1000 0.0999 0.0758 0.0926 

6 3FMCC*1000 0.0655 0.0681 0.0655 JPM 0.0926 0.0709 0.0830 

7 BAC 0.0650 0.0630 0.0630 BAC2 0.0830 0.0667 0.0796 

8 WFC 0.0483 0.0581 0.0483 GS 0.0796 0.0633 0.0636 

9 WB 0.0396 0.0539 0.0396 WB 0.0636 0.0598 0.0598 

10 BSC.1 0.0224 0.0496 0.0224 WFC 0.0562 0.0567 0.0562 

11 C 0.0199 0.0460 0.0199 LEHMQ 0.0337 0.0530 0.0337 

12 MET 0.0163 0.0429 0.0163 MET 0.0285 0.0498 0.0285 

13 GS 0.0160 0.0402 0.0160 BSC.1 0.0278 0.0470 0.0278 

14 LEHMQ 0.0139 0.0378 0.0378 C 0.0223 0.0445 0.0223 

 ][0.2= XL    5=*m   ][0.2= XL    7* m  

1 3FNMA 0.2181 0.1091 0.1753 3FNMA 0.7121 0.3560 0.4214 

2 AIG 0.1753 0.0983 0.1705 AIG 0.4214 0.2834 0.3294 

3 MS 0.1705 0.0940 0.0946 MS 0.3294 0.2438 0.3076 

4 BAC2 0.0946 0.0823 0.0940 BAC 0.3076 0.2213 0.2753 

5 JPM 0.0940 0.0752 0.0752 3FMCC*1000 0.2753 0.2046 0.2622 

6 3FMCC*1000 0.0635 0.0680 0.0635 JPM 0.2622 0.1923 0.2289 

7 BAC 0.0625 0.0627 0.0625 BAC2 0.2289 0.1812 0.1812 

8 WFC 0.0479 0.0579 0.0479 GS 0.1747 0.1695 0.1695 

9 WB 0.0383 0.0536 0.0383 WB 0.1631 0.1597 0.1597 

10 BSC.1 0.0224 0.0493 0.0224 WFC 0.1529 0.1514 0.1514 

11 C 0.0200 0.0458 0.0200 LEHMQ 0.0878 0.1416 0.0878 

12 MET 0.0161 0.0426 0.0161 BSC.1 0.0652 0.1325 0.0652 

13 GS 0.0141 0.0399 0.0141 MET 0.0632 0.1248 0.0632 

14 LEHMQ 0.0129 0.0375 0.0375 C 0.0553 0.1178 0.0553 

 ][0.5= XL    5=*m   ][0.5= XL    7=*m  

1 3FNMA 0.2370 0.1185 0.2237 3FNMA 0.3957 0.1978 0.2006 

2 AIG 0.2237 0.1152 0.2154 AIG 0.2006 0.1491 0.1908 

3 MS 0.2154 0.1127 0.1164 MS 0.1908 0.1312 0.1822 

4 BAC2 0.1164 0.0991 0.1099 BAC 0.1822 0.1212 0.1416 

5 JPM 0.1099 0.0902 0.0902 JPM 0.1416 0.1111 0.1229 

6 3FMCC*1000 0.0695 0.0810 0.0695 3FMCC*1000 0.1229 0.1028 0.1211 

7 WFC 0.0539 0.0733 0.0539 BAC2 0.1211 0.0968 0.0968 

8 BAC 0.0491 0.0672 0.0491 WFC 0.0809 0.0897 0.0809 

9 WB 0.0408 0.0620 0.0408 WB 0.0786 0.0841 0.0786 

10 BSC.1 0.0287 0.0572 0.0287 GS 0.0453 0.0780 0.0453 

11 C 0.0244 0.0531 0.0244 LEHMQ 0.0276 0.0721 0.0276 

12 MET 0.0189 0.0495 0.0189 C 0.0270 0.0673 0.0270 

13 LEHMQ 0.0148 0.0462 0.0148 BSC.1 0.0269 0.0631 0.0269 

14 GS 0.0140 0.0434 0.0434 MET 0.0266 0.0596 0.0266 
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Table  3. TBTF Banks in 2006 
 
This table displays a bank sector with 14 financial institutions and identifies “too big to fail" banks in year 2006 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  

 

][0.1= XL  , ][0.2= XL   and ][0.5= XL  . 
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  1=2

1
=  for i=1,…,N.   mmmm  ,max,min= 1

 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    1* m   ][0.1= XL    10=*m  

1 WFC 0.3996 0.1998 0.1998 WFC 1.3649 0.6824 1.0263 

2 LEHMQ 0.1471 0.1367 0.1367 MS 1.0263 0.5978 0.9328 

3 MS 0.1061 0.1088 0.1061 LEHMQ 0.9328 0.5540 0.9138 

4 JPM 0.0746 0.0909 0.0746 GS 0.9138 0.5297 0.8830 

5 BAC2 0.0558 0.0783 0.0558 BAC 0.8830 0.5121 0.7260 

6 AIG 0.0541 0.0698 0.0541 JPM 0.7260 0.4872 0.6530 

7 BAC 0.0475 0.0632 0.0475 BAC2 0.6530 0.4643 0.5625 

8 3FNMA 0.0319 0.0573 0.0319 3FMCC*1000 0.5625 0.4414 0.5510 

9 WB 0.0209 0.0521 0.0209 AIG 0.5510 0.4229 0.4881 

10 GS 0.0188 0.0478 0.0188 3FNMA 0.4881 0.4051 0.4051 

11 3FMCC*1000 0.0134 0.0441 0.0134 WB 0.3837 0.3857 0.3837 

12 BSC.1 0.0119 0.0409 0.0119 BSC.1 0.2240 0.3629 0.2240 

13 C 0.0091 0.0381 0.0091 MET 0.1472 0.3406 0.1472 

14 MET -0.0017 0.0353 0.0353 C 0.0817 0.3192 0.0817 

 ][0.2= XL    1=*m   ][0.2= XL    9* m  

1 WFC 0.4157 0.2078 0.2078 WFC 0.7695 0.3848 0.5890 

2 LEHMQ 0.1515 0.1418 0.1418 MS 0.5890 0.3396 0.5290 

3 MS 0.1080 0.1125 0.1080 LEHMQ 0.5290 0.3146 0.5032 

4 JPM 0.0760 0.0939 0.0760 BAC 0.5032 0.2988 0.4219 

5 BAC2 0.0564 0.0807 0.0564 GS 0.4219 0.2813 0.4144 

6 AIG 0.0550 0.0719 0.0550 JPM 0.4144 0.2689 0.3714 

7 BAC 0.0468 0.0650 0.0468 BAC2 0.3714 0.2570 0.3094 

8 3FNMA 0.0321 0.0588 0.0321 AIG 0.3094 0.2442 0.2442 

9 WB 0.0207 0.0535 0.0207 3FNMA 0.2420 0.2305 0.2305 

10 GS 0.0174 0.0490 0.0174 WB 0.2190 0.2184 0.2184 

11 3FMCC*1000 0.0131 0.0451 0.0131 3FMCC*1000 0.1948 0.2074 0.1948 

12 BSC.1 0.0120 0.0419 0.0120 BSC.1 0.1045 0.1945 0.1045 

13 C 0.0093 0.0390 0.0093 MET 0.0868 0.1829 0.0868 

14 MET -0.0024 0.0361 0.0361 C 0.0544 0.1718 0.0544 

 ][0.5= XL    1=*m   ][0.5= XL    8=*m  

1 WFC 1.7067 0.8534 0.8534 WFC 0.4484 0.2242 0.3161 

2 LEHMQ 0.5889 0.5739 0.5739 MS 0.3161 0.1911 0.2815 

3 MS 0.3864 0.4470 0.3864 LEHMQ 0.2815 0.1743 0.2273 

4 JPM 0.2702 0.3690 0.2702 JPM 0.2273 0.1592 0.2116 

5 AIG 0.1949 0.3147 0.1949 BAC 0.2116 0.1485 0.2012 

6 BAC2 0.1914 0.2782 0.1914 BAC2 0.2012 0.1405 0.1672 

7 BAC 0.1501 0.2492 0.1501 AIG 0.1672 0.1324 0.1598 

8 3FNMA 0.1126 0.2251 0.1126 GS 0.1598 0.1258 0.1258 

9 WB 0.0586 0.2033 0.0586 WB 0.1148 0.1182 0.1148 

10 3FMCC*1000 0.0387 0.1849 0.0387 3FNMA 0.1078 0.1118 0.1078 

11 BSC.1 0.0373 0.1698 0.0373 3FMCC*1000 0.0744 0.1050 0.0744 

12 GS 0.0355 0.1571 0.0355 BSC.1 0.0547 0.0985 0.0547 

13 C 0.0321 0.1463 0.0321 C 0.0303 0.0921 0.0303 

14 MET -0.0141 0.1353 0.1353 MET 0.0190 0.0862 0.0190 
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Table  4. TBTF Banks in 2007 
 
This table displays a bank sector with 14 financial institutions and identifies “too big to fail" banks in year 2007 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    10=*m   ][0.1= XL    10=*m  

1 MS 0.1878 0.0939 0.1323 MS 2.0123 1.0061 1.4468 

2 BAC2 0.1323 0.0800 0.1084 GS 1.4468 0.8648 1.1686 

3 BAC 0.1084 0.0714 0.0925 3FNMA 1.1686 0.7713 1.1598 

4 3FMCC*1000 0.0925 0.0651 0.0834 3FMCC*1000 1.1598 0.7234 1.1376 

5 3FNMA 0.0834 0.0604 0.0803 BAC2 1.1376 0.6925 1.1294 

6 JPM 0.0803 0.0571 0.0589 BAC 1.1294 0.6712 0.9387 

7 AIG 0.0589 0.0531 0.0531 JPM 0.9387 0.6424 0.8657 

8 LEHMQ 0.0520 0.0497 0.0505 LEHMQ 0.8657 0.6162 0.7710 

9 WB 0.0505 0.0470 0.0504 AIG 0.7710 0.5906 0.5906 

10 WFC 0.0504 0.0448 0.0448 WB 0.5895 0.5610 0.5610 

11 GS 0.0295 0.0421 0.0295 WFC 0.4807 0.5318 0.4807 

12 BSC.1 0.0264 0.0397 0.0264 BSC.1 0.4714 0.5071 0.4714 

13 C 0.0227 0.0375 0.0227 MET 0.3233 0.4806 0.3233 

14 MET 0.0101 0.0352 0.0352 C 0.2737 0.4560 0.2737 

 ][0.2= XL    10* m   ][0.2= XL    9=*m  

1 MS 0.1898 0.0949 0.1339 MS 1.2654 0.6327 0.8666 

2 BAC2 0.1339 0.0809 0.1096 GS 0.8666 0.5330 0.7153 

3 BAC 0.1096 0.0722 0.0934 BAC2 0.7153 0.4745 0.7147 

4 3FMCC*1000 0.0934 0.0658 0.0841 3FNMA 0.7147 0.4452 0.7102 

5 3FNMA 0.0841 0.0611 0.0811 BAC 0.7102 0.4272 0.6703 

6 JPM 0.0811 0.0577 0.0594 3FMCC*1000 0.6703 0.4119 0.5903 

7 AIG 0.0594 0.0537 0.0537 JPM 0.5903 0.3952 0.4984 

8 LEHMQ 0.0524 0.0502 0.0510 LEHMQ 0.4984 0.3770 0.4832 

9 WB 0.0510 0.0475 0.0510 AIG 0.4832 0.3619 0.3619 

10 WFC 0.0510 0.0453 0.0453 WB 0.3469 0.3431 0.3431 

11 GS 0.0289 0.0425 0.0289 WFC 0.3053 0.3258 0.3053 

12 BSC.1 0.0266 0.0400 0.0266 BSC.1 0.2688 0.3098 0.2688 

13 C 0.0229 0.0378 0.0229 MET 0.1802 0.2929 0.1802 

14 MET 0.0101 0.0355 0.0355 C 0.1604 0.2777 0.1604 

 ][0.5= XL    10=*m   ][0.5= XL    10* m  

1 MS 0.1995 0.0998 0.1419 MS 0.6470 0.3235 0.3819 

2 BAC2 0.1419 0.0854 0.1161 BAC2 0.3819 0.2572 0.3715 

3 BAC 0.1161 0.0763 0.0978 GS 0.3715 0.2334 0.3447 

4 3FMCC*1000 0.0978 0.0694 0.0878 3FMCC*1000 0.3447 0.2181 0.3343 

5 3FNMA 0.0878 0.0643 0.0846 3FNMA 0.3343 0.2079 0.3312 

6 JPM 0.0846 0.0606 0.0617 BAC 0.3312 0.2009 0.3108 

7 AIG 0.0617 0.0564 0.0564 JPM 0.3108 0.1944 0.2462 

8 LEHMQ 0.0544 0.0527 0.0540 AIG 0.2462 0.1855 0.2259 

9 WB 0.0540 0.0499 0.0537 LEHMQ 0.2259 0.1774 0.1774 

10 WFC 0.0537 0.0476 0.0476 WFC 0.1645 0.1679 0.1645 

11 BSC.1 0.0275 0.0445 0.0275 WB 0.1605 0.1599 0.1599 

12 GS 0.0262 0.0419 0.0262 BSC.1 0.1198 0.1516 0.1198 

13 C 0.0240 0.0396 0.0240 C 0.0816 0.1431 0.0816 

14 MET 0.0101 0.0371 0.0371 MET 0.0697 0.1353 0.0697 
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Table  5. TBTF Banks in 2008 
 

This table displays a bank sector with 14 financial institutions and identifies “too big to fail" banks in year 2008 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    6=*m   ][0.1= XL    4=*m  

1 3FNMA 0.2606 0.1303 0.1323 WB 1.4994 0.7497 1.3649 

2 BAC 0.1323 0.0982 0.1192 AIG 1.3649 0.7161 0.7161 

3 BAC2 0.1192 0.0853 0.1185 MS 0.6151 0.5799 0.6151 

4 JPM 0.1185 0.0788 0.0998 BAC 0.6151 0.5118 0.5118 

5 MS 0.0998 0.0730 0.0799 BSC.1 0.4421 0.4537 0.4421 

6 WFC 0.0799 0.0675 0.0675 MET 0.1922 0.3941 0.1922 

7 AIG 0.0624 0.0623 0.0623 JPM -0.1538 0.3268 -0.1538 

8 WB 0.0471 0.0575 0.0471 C -0.3556 0.2637 -0.3556 

9 BSC.1 0.0178 0.0521 0.0178 WFC -1.1150 0.1725 -1.1150 

10 MET 0.0134 0.0475 0.0134 GS -1.3456 0.0879 -1.3456 

11 C 0.0132 0.0438 0.0132 3FNMA -1.5379 0.0100 -1.5379 

12 LEHMQ 0.0105 0.0406 0.0105 LEHMQ -1.6532 -0.0597 -1.6532 

13 GS 0.0036 0.0376 0.0036 3FMCC*1000 -2.1146 -0.1364 -2.1146 

14 3FMCC*1000 0.0021 0.0350 0.0350 BAC2 -2.3453 -0.2104 -2.3453 

 ][0.2= XL    6=*m   ][0.2= XL    8=*m  

1 3FNMA 0.2607 0.1303 0.1323 3FNMA 11.1738 5.5869 10.5320 

2 BAC 0.1323 0.0982 0.1192 JPM 10.5320 5.4265 10.4936 

3 BAC2 0.1192 0.0854 0.1185 BAC 10.4936 5.3666 9.2761 

4 JPM 0.1185 0.0788 0.0998 MS 9.2761 5.1844 8.2246 

5 MS 0.0998 0.0731 0.0799 BAC2 8.2246 4.9700 6.4195 

6 WFC 0.0799 0.0675 0.0675 WFC 6.4195 4.6766 6.2804 

7 AIG 0.0625 0.0624 0.0624 AIG 6.2804 4.4571 5.1676 

8 WB 0.0471 0.0575 0.0471 3FMCC*1000 5.1676 4.2230 4.2230 

9 BSC.1 0.0178 0.0521 0.0178 GS 3.3960 3.9424 3.3960 

10 MET 0.0134 0.0476 0.0134 MET 2.9175 3.6941 2.9175 

11 C 0.0133 0.0438 0.0133 LEHMQ 2.2898 3.4623 2.2898 

12 LEHMQ 0.0105 0.0406 0.0105 WB 1.9683 3.2558 1.9683 

13 GS 0.0036 0.0376 0.0036 C 1.3849 3.0586 1.3849 

14 3FMCC*1000 0.0021 0.0350 0.0350 BSC.1 1.0872 2.8790 1.0872 

 ][0.5= XL    6=*m   ][0.5= XL    7=*m  

1 3FNMA 0.2650 0.1325 0.1338 JPM 1.2355 0.6177 1.2006 

2 BAC 0.1338 0.0997 0.1208 3FNMA 1.2006 0.6090 1.1744 

3 BAC2 0.1208 0.0866 0.1196 BAC 1.1744 0.6018 1.0702 

4 JPM 0.1196 0.0799 0.1007 MS 1.0702 0.5851 0.9036 

5 MS 0.1007 0.0740 0.0808 BAC2 0.9036 0.5584 0.7364 

6 WFC 0.0808 0.0684 0.0684 WFC 0.7364 0.5267 0.7304 

7 AIG 0.0629 0.0631 0.0629 AIG 0.7304 0.5036 0.5036 

8 WB 0.0479 0.0582 0.0479 3FMCC*1000 0.4562 0.4692 0.4562 

9 BSC.1 0.0181 0.0527 0.0181 LEHMQ 0.4057 0.4396 0.4057 

10 C 0.0134 0.0481 0.0134 GS 0.3909 0.4152 0.3909 

11 MET 0.0134 0.0444 0.0134 MET 0.2378 0.3883 0.2378 

12 LEHMQ 0.0102 0.0411 0.0102 WB 0.2309 0.3655 0.2309 

13 GS 0.0032 0.0381 0.0032 C 0.1368 0.3427 0.1368 

14 3FMCC*1000 0.0015 0.0354 0.0354 BSC.1 0.1275 0.3227 0.1275 
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Table  6. TBTF Banks in 2009 
 

This table displays a bank sector with 10 financial institutions and identifies “too big to fail" banks in year 2009 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    4=*m   ][0.1= XL    4=*m  

1 GS 0.3287 0.1643 0.2133 GS 1.2916 0.6458 1.0060 

2 C 0.2133 0.1355 0.1987 C 1.0060 0.5744 0.9089 

3 JPM 0.1987 0.1235 0.1468 JPM 0.9089 0.5344 0.7893 

4 MS 0.1468 0.1109 0.1109 3FMCC*1000 0.7893 0.4995 0.4995 

5 MET 0.0534 0.0941 0.0534 MS 0.3723 0.4368 0.3723 

6 WFC 0.0271 0.0807 0.0271 MET 0.2945 0.3886 0.2945 

7 AIG 0.0083 0.0697 0.0083 WFC 0.2046 0.3477 0.2046 

8 BAC 0.0073 0.0615 0.0073 AIG 0.1619 0.3143 0.1619 

9 3FNMA 0.0060 0.0550 0.0060 BAC 0.0938 0.2846 0.0938 

10 3FMCC*1000 0.0015 0.0495 0.0495 3FNMA 0.0324 0.2578 0.2578 

 ][0.2= XL    4=*m   ][0.2= XL    4=*m  

1 GS 0.3455 0.1728 0.2225 GS 1.2916 0.6458 1.0060 

2 C 0.2225 0.1420 0.2076 C 1.0060 0.5744 0.9089 

3 JPM 0.2076 0.1293 0.1522 JPM 0.9089 0.5344 0.7893 

4 MS 0.1522 0.1160 0.1160 3FMCC*1000 0.7893 0.4995 0.4995 

5 MET 0.0546 0.0983 0.0546 MS 0.3723 0.4368 0.3723 

6 WFC 0.0276 0.0842 0.0276 MET 0.2945 0.3886 0.2945 

7 AIG 0.0071 0.0727 0.0071 WFC 0.2046 0.3477 0.2046 

8 BAC 0.0064 0.0640 0.0064 AIG 0.1619 0.3143 0.1619 

9 3FNMA 0.0061 0.0572 0.0061 BAC 0.0938 0.2846 0.0938 

10 3FMCC*1000 0.0004 0.0515 0.0515 3FNMA 0.0324 0.2578 0.2578 

 ][0.5= XL    4=*m   ][0.5= XL    4=*m  

1 GS 0.4261 0.2131 0.2756 GS 0.6497 0.3248 0.4289 

2 C 0.2756 0.1754 0.2568 C 0.4289 0.2696 0.3989 

3 JPM 0.2568 0.1598 0.1809 JPM 0.3989 0.2462 0.3400 

4 MS 0.1809 0.1424 0.1424 MS 0.3400 0.2272 0.2272 

5 MET 0.0678 0.1207 0.0678 MET 0.1156 0.1933 0.1156 

6 WFC 0.0284 0.1030 0.0284 WFC 0.0889 0.1685 0.0889 

7 AIG 0.0096 0.0889 0.0096 3FMCC*1000 0.0882 0.1507 0.0882 

8 BAC 0.0063 0.0782 0.0063 AIG 0.0880 0.1374 0.0880 

9 3FNMA -0.0025 0.0694 -0.0025 BAC 0.0188 0.1232 0.0188 

10 3FMCC*1000 -0.0143 0.0617 0.0617 3FNMA 0.0156 0.1116 0.1116 
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Table  7. TBTF Banks in 2010 
 
This table displays a bank sector with 10 financial institutions and identifies “too big to fail" banks in year 2010 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    1=*m   ][0.1= XL    1=*m  

1 GS 0.4945 0.2472 0.2472 GS 5.9744 2.9872 2.9872 

2 C 0.1343 0.1572 0.1343 C 0.6010 1.6438 0.6010 

3 JPM 0.1240 0.1255 0.1240 JPM 0.5413 1.1861 0.5413 

4 MS 0.1103 0.1079 0.1079 3FMCC*1000 0.5280 0.9556 0.5280 

5 MET 0.1001 0.0963 0.0963 MS 0.4642 0.8109 0.4642 

6 WFC 0.0113 0.0812 0.0113 MET 0.1811 0.6908 0.1811 

7 AIG 0.0072 0.0701 0.0072 WFC 0.1583 0.6034 0.1583 

8 BAC 0.0059 0.0617 0.0059 AIG 0.1106 0.5349 0.1106 

9 3FNMA 0.0021 0.0550 0.0021 BAC 0.1072 0.4814 0.1072 

10 3FMCC*1000 -0.0004 0.0495 0.0495 3FNMA 0.0794 0.4373 0.4373 

 ][0.2= XL    1=*m   ][0.2= XL    1=*m  

1 GS 0.4981 0.2490 0.2490 GS 5.9744 2.9872 2.9872 

2 C 0.1372 0.1588 0.1372 C 0.6010 1.6438 0.6010 

3 JPM 0.1266 0.1270 0.1266 JPM 0.5413 1.1861 0.5413 

4 MS 0.1124 0.1093 0.1093 3FMCC*1000 0.5280 0.9556 0.5280 

5 MET 0.1019 0.0976 0.0976 MS 0.4642 0.8109 0.4642 

6 WFC 0.0113 0.0823 0.0113 MET 0.1811 0.6908 0.1811 

7 AIG 0.0073 0.0711 0.0073 WFC 0.1583 0.6034 0.1583 

8 BAC 0.0059 0.0625 0.0059 AIG 0.1106 0.5349 0.1106 

9 3FNMA 0.0019 0.0557 0.0019 BAC 0.1072 0.4814 0.1072 

10 3FMCC*1000 -0.0006 0.0501 0.0501 3FNMA 0.0794 0.4373 0.4373 

 ][0.5= XL    1=*m   ][0.5= XL    1=*m  

1 GS 0.5075 0.2538 0.2538 GS 3.0825 1.5412 1.5412 

2 C 0.1483 0.1640 0.1483 C 0.2994 0.8455 0.2994 

3 JPM 0.1363 0.1320 0.1320 JPM 0.2637 0.6076 0.2637 

4 MS 0.1201 0.1140 0.1140 MS 0.2430 0.4861 0.2430 

5 MET 0.1100 0.1022 0.1022 MET 0.2217 0.4110 0.2217 

6 WFC 0.0115 0.0861 0.0115 WFC 0.0781 0.3490 0.0781 

7 AIG 0.0074 0.0744 0.0074 3FMCC*1000 0.0480 0.3026 0.0480 

8 BAC 0.0060 0.0654 0.0060 AIG 0.0465 0.2677 0.0465 

9 3FNMA 0.0015 0.0583 0.0015 BAC 0.0379 0.2400 0.0379 

10 3FMCC*1000 -0.0008 0.0524 0.0524 3FNMA 0.0342 0.2178 0.2178 
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Table  8. TBTF Banks in 2011 
 

This table displays a bank sector with 10 financial institutions and identifies “too big to fail" banks in year 2011 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows.  

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name m  
m  

m  Bank Name m  
m  

m  

 DEDUCTIBLE    CAP  
 ][0.1= XL    1=*m   ][0.1= XL    1=*m  

1 GS 0.8334 0.4167 0.4167 GS 7.0885 3.5443 3.5443 

2 C 0.0492 0.2206 0.0492 C 0.6449 1.9334 0.6449 

3 JPM 0.0439 0.1544 0.0439 JPM 0.3427 1.3460 0.3427 

4 MS 0.0272 0.1192 0.0272 3FMCC*1000 0.3012 1.0472 0.3012 

5 MET 0.0218 0.0976 0.0218 MS 0.2196 0.8597 0.2196 

6 WFC 0.0147 0.0825 0.0147 MET 0.1466 0.7286 0.1466 

7 AIG 0.0101 0.0715 0.0101 WFC 0.1104 0.6324 0.1104 

8 BAC 0.0018 0.0626 0.0018 AIG 0.0949 0.5593 0.0949 

9 3FNMA -0.0003 0.0557 -0.0003 BAC 0.0085 0.4976 0.0085 

10 3FMCC*1000 -0.0103 0.0496 0.0496 3FNMA -0.0037 0.4477 0.4477 

 ][0.2= XL    1=*m   ][0.2= XL    1=*m  

1 GS 0.8492 0.4246 0.4246 GS 7.0885 3.5443 3.5443 

2 C 0.0497 0.2247 0.0497 C 0.6449 1.9334 0.6449 

3 JPM 0.0449 0.1573 0.0449 JPM 0.3427 1.3460 0.3427 

4 MS 0.0278 0.1214 0.0278 3FMCC*1000 0.3012 1.0472 0.3012 

5 MET 0.0223 0.0994 0.0223 MS 0.2196 0.8597 0.2196 

6 WFC 0.0150 0.0841 0.0150 MET 0.1466 0.7286 0.1466 

7 AIG 0.0103 0.0728 0.0103 WFC 0.1104 0.6324 0.1104 

8 BAC 0.0018 0.0638 0.0018 AIG 0.0949 0.5593 0.0949 

9 3FNMA -0.0003 0.0567 -0.0003 BAC 0.0085 0.4976 0.0085 

10 3FMCC*1000 -0.0113 0.0505 0.0505 3FNMA -0.0037 0.4477 0.4477 

 ][0.5= XL    1=*m   ][0.5= XL    1=*m  

1 GS 0.9053 0.4527 0.4527 GS 3.2685 1.6343 1.6343 

2 C 0.0509 0.2391 0.0509 C 0.2890 0.8894 0.2890 

3 JPM 0.0481 0.1674 0.0481 JPM 0.1575 0.6192 0.1575 

4 MS 0.0298 0.1293 0.0298 MS 0.1003 0.4769 0.1003 

5 MET 0.0242 0.1058 0.0242 MET 0.0659 0.3881 0.0659 

6 WFC 0.0162 0.0895 0.0162 WFC 0.0492 0.3275 0.0492 

7 AIG 0.0110 0.0775 0.0110 3FMCC*1000 0.0422 0.2838 0.0422 

8 BAC 0.0020 0.0680 0.0020 AIG 0.0411 0.2509 0.0411 

9 3FNMA -0.0003 0.0604 -0.0003 BAC 0.0042 0.2232 0.0042 

10 3FMCC*1000 -0.0131 0.0537 0.0537 3FNMA -0.0009 0.2008 0.2008 
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Table  9. TBTF Banks in 2012 
 

This table displays a bank sector with 10 financial institutions and identifies “too big to fail" banks in year 2012 
following the capital insurance approach explained in Appendix A. The analysis is performed for two types of 
capital insurance contracts and for three different deductible levels. Two types of contracts are as follows. 

DEDUCTIBLE INSURANCE is the deductible capital insurance contract, in which the indemnity of the contract 
is given by Z=max(X-L,0).  

CAP INSURANCE is the cap capital insurance contract, in which Z=min(X,L). We utilize the following three 

deductible levels, L, defined as the percentage of the expected aggregate loss in the banking sector:  

 

][0.1= XL  , ][0.2= XL   and ][0.5= XL  . 
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 for m=1,…,N-1 and τN=τN. 

 

The bank i is too big to fail if and only if βi > τm*, for each i = 1,…,N. Thus, the banks marked in red (blue) are too 

big to fail if the indemnity of the contract follows deductible insurance (cap insurance). 
 

i  Bank Name 
m  m  m  Bank Name 

m  m  m  

 DEDUCTIBLE   

1=*m  

 CAP  
 ][0.1= XL     ][0.1= XL    1=*m  

1 GS 0.8872 0.4436 0.4436 GS 4.4281 2.2141 2.2141 

2 JPM 0.0423 0.2324 0.0423 JPM 0.3238 1.1880 0.3238 

3 MS 0.0206 0.1584 0.0206 MS 0.1848 0.8228 0.1848 

4 MET 0.0177 0.1210 0.0177 MET 0.1500 0.6358 0.1500 

5 C 0.0145 0.0982 0.0145 3FNMA 0.1366 0.5223 0.1366 

6 3FNMA 0.0143 0.0831 0.0143 3FMCC*1000 0.1331 0.4464 0.1331 

7 WFC 0.0125 0.0721 0.0125 C 0.1086 0.3904 0.1086 

8 AIG 0.0084 0.0636 0.0084 WFC 0.1016 0.3479 0.1016 

9 BAC 0.0000 0.0565 0.0000 AIG 0.0593 0.3125 0.0593 

10 3FMCC*1000 -0.0027 0.0507 0.0507 BAC 0.0008 0.2813 0.2813 

 ][0.2= XL         1=*m   ][0.2= XL       1=*m  

1 GS 0.9311 0.4655 0.4655 GS 4.4281 2.2141 2.2141 

2 JPM 0.0434 0.2436 0.0434 JPM 0.3238 1.1880 0.3238 

3 MS 0.0209 0.1659 0.0209 MS 0.1848 0.8228 0.1848 

4 MET 0.0180 0.1267 0.0180 MET 0.1500 0.6358 0.1500 

5 C 0.0148 0.1028 0.0148 3FNMA 0.1366 0.5223 0.1366 

6 3FNMA 0.0147 0.0869 0.0147 3FMCC*1000 0.1331 0.4464 0.1331 

7 WFC 0.0128 0.0754 0.0128 C 0.1086 0.3904 0.1086 

8 AIG 0.0087 0.0665 0.0087 WFC 0.1016 0.3479 0.1016 

9 BAC 0.0000 0.0591 0.0000 AIG 0.0593 0.3125 0.0593 

10 3FMCC*1000 -0.0043 0.0530 0.0530 BAC 0.0008 0.2813 0.2813 

 ][0.5= XL    1=*m   ][0.5= XL    1=*m  

1 GS 0.7848 0.3924 0.3924 GS 12.9880 6.4940 6.4940 

2 JPM 0.0347 0.2049 0.0347 JPM 0.8337 3.4554 0.8337 

3 MS 0.0160 0.1393 0.0160 MS 0.4698 2.3819 0.4698 

4 MET 0.0145 0.1063 0.0145 3FNMA 0.3652 1.8321 0.3652 

5 C 0.0119 0.0862 0.0119 MET 0.3558 1.5013 0.3558 

6 3FNMA 0.0108 0.0727 0.0108 C 0.2821 1.2746 0.2821 

7 WFC 0.0103 0.0631 0.0103 WFC 0.2446 1.1099 0.2446 

8 AIG 0.0069 0.0556 0.0069 3FMCC*1000 0.2118 0.9844 0.2118 

9 BAC 0.0000 0.0494 0.0000 AIG 0.1659 0.8843 0.1659 

10 3FMCC*1000 -0.0056 0.0442 0.0442 BAC 0.0011 0.7959 0.7959 


