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Using methods from graph theory and network analysis, this paper 
identifies, visualizes and analyzes a correlation network of residual 
stock returns for more than 5,000 US-based publicly traded firms. 
Building on prior work by Billio et al. (2012), the paper computes a 
systemic measure of network centrality using principal components 
analysis. Two main questions are addressed: 1) What is the 
empirical relationship between expected stock returns and network 
centrality? and 2) Does network centrality have predictive power to 
identify firms, which are most at risk during systemic events? First, 
the paper finds that network centrality has substantial predictive 
power in out-of-sample tests related to the recent financial crisis. 
Second, firms that are more central in the network earn higher 
returns than firms that are located in the periphery. The paper 
rationalizes this finding by arguing that central firms are 
characterized by higher market risk because they are more exposed 
to idiosyncratic shocks passing through the network. Finally, the 
paper develops a novel factor-mimicking portfolio, weighted by 
centrality scores. The investment strategy earns an annualized risk 
premium of 3.38 % controlling for market beta, size and book-to-
market. 
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1. INTRODUCTION 
 
The standard macroeconomic diversification argument 
discards the possibility that firm-specific (idiosyncratic) 
shocks could have an impact on aggregate volatility or 
asset prices (Lucas, 1977). However, it ignores the fact 
that firms do not function in isolation but are 
embedded in intricate business networks. Firms in such 
a network are economically related: they receive shocks 
from their business partners through the network, and 
as a result, they tend to move together. This propensity 
to co-move with related stocks is called network risk. 

Recent work by Gabaix (2012), Carvalho & Gabaix 
(2013), Acemoglu et al. (2012), Acemoglu, Akcigit and 
Kerr (2015) and Barrot and Sauvagnat (2016)1 shows that 
when the firm-size distribution or network connections 
are sufficiently fat-tailed, the law of large numbers 
doesn’t apply and sectoral shocks don’t cancel out. An 
immediate implication of this result is that if 
idiosyncratic shocks are potential drivers of the 
volatility of the economic system, then companies with 
greater exposure to idiosyncratic shocks will be 

                                                           
1 Other examples of recent contributions in this field are: Acemoglu, 
Ozdglar, and Tahbez-Salehi (2017), Carvalho (2014), Carvalho and Gabaix 
(2013), Atalay (2017). 

characterized by higher levels of market risk, which 
should be reflected in higher stock returns. Modelling 
the economy as a network of firms, exposure to 
network shocks is given by the firm’s connectivity i.e. 
centrality in the network. To capture the network of 
business relationships, the paper uses information 
contained in asset prices. The idea is that asset prices 
are forward-looking and quickly reflect all information 
available on the market. Looking at asset correlations 
after having controlled for common market and 
industry-wide factors it is possible to infer business 
connections among firms.  

Given this framework, the paper explores the asset 
pricing implications of network connections for an 
extensive sample of publicly traded firms in the US 
during the period 2001-2015. It answers two questions: 
1) What is the empirical relationship between expected 
stock returns and network centrality? and 2) Does 
network centrality have predictive power to identify 
firms, which are most at risk during systemic events?  

The contribution of the paper is mainly empirical. 
First, it develops an econometric measure of network 
connectedness building on prior work by Billio et al. 
(2012). The authors focus on linkages between financial 
institutions and compute centrality scores based on 
principal components analysis (PCA) of stock returns 
correlations. This measure is systemic in nature because 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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it reflects how much a given financial institution 
contributes to the risk of the financial system as a 
whole. Typically, the literature characterizes systemic 
risk as any event, which threatens the stability of or 
confidence in the financial system. This paper argues 
that the concept can also be extended to a more general 
economic context. An illustrative example why this 
could be useful is the US government bailout of the 
automotive industry in 2009. In November 2008, Allan 
R. Mulally, the CEO of Ford, urged the Senate Banking 
Committee to support General Motors (GM) and 
Chrysler, Ford’s most prominent rivals. He argued that 
due to the significant overlap of suppliers and dealers 
between the three automotive giants, the failure of 
either GM or Chrysler will have significant ripple effects 
across the entire US economy (Mulally, 2008). This was 
also a key argument for the government bailout of 
several financial institutions during the 2007-2008 
crisis.  

Moreover, differently, from Billio et al. (2012) this 
paper computes the connectivity measure after netting 
out the effect of common factors from asset prices 
correlations. This is important because co-movement of 
asset prices could be either due to exposure to common 
risk factors or due to the existence of linkages. 
Conceptually, whereas Billio et al. (2012) view 
connections as a manifestation of market-wide forces, 
this paper argues that network risk constitutes a 
fraction of idiosyncratic risk. The first result of the 
paper is that network connectivity has substantial out-
of-sample predictive power to identify companies, 
which are most likely to suffer losses during systemic 
events, such as the Global Financial Crisis in 2007/8. 
This result is important from a practitioner’s point of 
view because it shows that network connections can be 
used as an early warning or risk management tool. 

Second, the paper uses the connectivity scores to 
construct a novel factor mimicking network risk and to 
show that it carries a positive risk premium. This result 
is in line with the findings by Ahern (2013), Kelly, Lustig 
and Van Nieuwerburgh (2013) and Herskovic (2018), 
who show that the network structure of the economy is 
an important factor driving asset prices. Most of the 
prior work in the field has worked with sectoral 
linkages obtained from Input-Output Tables or with 
customer-supplier linkages between large companies, 
which are unfortunately available on a very low 
frequency (usually every 5 years). This paper 
contributes to the literature by studying firm-level 
connections inferred from market data. The advantage 
of using market data is that this is an intuitive and 
easy-to-calculate approach, which allows calculating a 
time-series of centrality scores on a monthly frequency 
for small and big firms alike.  

The paper rationalizes the positive relationship 
between stock returns and network centrality by 
arguing that more connected firms are more exposed to 
shocks that pass through the network. Crucial for the 
argument is the idea that some firms are 
disproportionately well connected, which means that a 
shock originating in their business is distributed to 
many firms and dies out at a lower rate. In these 
circumstances, firm-specific shocks do not cancel out. 
Network risk becomes unverifiable and investors 
demand a premium to hold central firms in their 
portfolios. The paper extends our understanding of how 
idiosyncratic shocks transmitted through the economy 
and provides a micro foundation for market risk by 
emphasizing the role of firm-level network connections. 

This paper is organized as follows. Section 2 
reviews the relevant literature. Section 3 introduces the 
methodology used to conduct the empirical analysis. 
Section 4 provides the main results of the paper. 
Section 5 discusses the implications of the results and 
presents additional checks, which corroborate the main 
results of the paper. Finally, Section 6 concludes and 
outlines areas for future research. 

2. LITERATURE REVIEW 
 
This paper speaks to two main strands of literature. 
First, the paper relates to the literature studying the 
asset pricing implications of networks. Using Bureau of 
Economic Analysis (BEA) industry input-output tables, 
Ahern (2013)2 discovers that a factor mimicking 
portfolio of returns long in the highest quintile of 
centrality and short in the lowest quintile of centrality 
is positively priced in the cross-section of returns. 
Barrot & Sauvagnt (2016) document empirically that 
idiosyncratic shocks (natural disasters) transmit from 
suppliers to customers, especially when they produce 
specific inputs. On a related vein, Atalay (2017) 
develops a multi-sector general equilibrium model to 
quantify the effect of sectoral shocks to business cycle 
fluctuations in output. Herskovic (2018) finds that two 
properties of the network, concentration and sparsity, 
are priced in the cross-section of returns. Richmond 
(2019) studies network centrality in the context of 
currency risk premia and shows that countries, which 
are more central in a trade network have lower interest 
rates and currency risk premia. This paper contributes 
to the literature by addressing one of its challenges: the 
availability of data to identify network linkages. Data is 
usually available only for a subset of large firms/sectors 
at a yearly or 5-year frequency. This paper constructs a 
monthly firm-level time-series of centrality scores for 
5,203 US-based publicly traded companies. From an 
academic standpoint, it enriches our understanding of 
how idiosyncratic shocks transmit at a more 
disaggregated level. On the other hand, from an 
investor’s point of view, such a database could be 
useful for risk management and forecasting, which 
usually require inputs at a high frequency.  

Second, by analyzing asset return commonalities, 
the strength of linkages between individual stocks and 
the sensitivities of these connections to changing 
economic conditions, the paper broadly relates to the 
literature on systemic risk and identification of 
systemic events. Three measures have been developed 
recently to capture linkages between financial 
institutions: conditional value-at-risk (Adrian & 
Brunnermeier, 2011), systemic expected shortfall 
(Acharya et al., 2010) and a distressed insurance 
premium (Huag et al., 2011). On the asset pricing side, 
Buraschi & Tebaldi (2017) study the implications of 
systemic risk in network economies. The authors show 
theoretically that idiosyncratic shocks could generate 
aggregate fluctuations and that this largely depends on 
the topology of the network. The paper improves our 
understanding of the mechanisms of systemic risk by 
studying it from a novel perspective. The toolkit of 
networks provides us with a useful framework to 
extend the concept of systemic risk and contagion to 
the broader economy.  
 

3. DATA AND METHODOLOGY 
 

3.1. Data 
 

Monthly stock prices are obtained from the Center for 
Research in Security Prices (CRSP) database for January 
2000 to December 2015. Data on common stock traded 
at the New York Stock Exchange (NYSE), American Stock 

Exchange (AMEX) and NASDAQ Stock Exchange
3
. A firm-

month observation is included if the stock has no 
missing monthly observations in the following 36 
months. The requirement for non-missing observations 
is quite stringent and a relevant concern could be that it 
introduces a selection bias. However, the monthly set of 
stocks in the sample changes relatively slowly, with the 

                                                           
2 Using a similar dataset, Ahern and Harford (2014) study the propagation 
of merger waves through production networks. 
3 This corresponds to CRSP share code of 10, 11 or 12. 
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average replacement rate (the ration between the 
number of new companies, from a month to the next, 
and total number of companies) being less than 5%. 

Economic fundamentals are obtained from the 
COMPUSTAT Database4. To avoid look-ahead bias, when 
calculating size and book-to-market the paper follows 
the matching procedure by Fama and French (1992), 
which imposes a minimum gap of 6 months between 
fiscal year-ends and firm returns. Monthly returns from 
July of calendar year T are matched to June of calendar 
year T+1. Market equity (ME) is calculated as share price 
times number of shares outstanding. The variable is 
measured in June of year T, for the returns between 
July of year T and June of year T+1. Book-to-market 
(BM) is computed as the ratio between book equity and 
market equity in December of year T-1.  Book equity is 
calculated by summing shareholders’ equity, balance 
sheet deferred taxes and investments and subtracting 
the book value of preferred stock. The book value of 
preferred stock is depending on availability of data 
using the following (in this order): redemption, 
liquidation or par value. Variables are log-transformed 
and winsorized at the 1st and 99th percentiles level to 
avoid the effect of outliers.  

The dataset includes 481,609 firm-month 
observations from all sectors of the economy. Table 1 
provides a split by a number of observations by 
standard industry classification (SIC) code at the 
division level (11 groups).  
 

Table 1. Observations by industry division 
 

Industry division Observations 
Agriculture, Forestry, Fishing 779 
Mining 18,528 
Construction 5,602 
Manufacturing 196,915 
Transportation, Utilities 40,218 
Wholesale Trade 19,369 
Retail Trade 29,175 
Finance, Insurance and Real Estate 90,274 
Services 80,702 
Public Administration 44 
Non-classifiable 0 

 
The dataset provides a holistic representation of 

the economy. The sector with the largest number of 
observations is Manufacturing and the one with the 
smallest number in Public Administration. This is not 
surprising as it reflects a large degree industry size. 
One could be concerned that financial companies are 
inherently different from all other companies. They are 
heavily regulated, their stock has higher turnover and 
they usually lead the market when processing new 
information. If financial companies are over-
represented in the sample, this could induce spurious 
results. Table 1 shows that this is not the case: although 
sizeable, the proportion of financial companies in the 
data is 18.74 %. 

 

3.2. Network representation of the stock market 
 
This study considers a correlation-based network 
obtained by analyzing the return dynamics of a set of 
stocks simultaneously traded in the US stock market. 
Such an approach generates a network starting from a 
set of time-series. Following the pioneering work of 
Mantegna and Stanley (1999), which introduced 
concepts of statistical physics in the description of 
financial systems, a number of recent studies have used 
correlations between asset returns to infer network 
connections (Tse et al., 2010; Curme et al., 2015; 
Bariggozi & Brownlees, 2019). The main theoretical 
assumption of these studies is that network 

                                                           
4 Data (subject to subscription) is available to download from https://wrds-
web.wharton.upenn.edu/wrds/ 

connections are reflected in asset prices. In an efficient 
market, stock prices incorporate all information 
available to market participants, and, in equilibrium 
correspond to the discounted value of future dividends.   
The presence of a high-degree of cross-correlation is a 
well-known empirical fact in financial markets (Bonanno 
et al., 2001; Kelly, Lustig, & Van Nieuwerburgh, 2013). 
However, correlation in equity markets could be due to 
two very different mechanism. One way is due to a 
common macro shock, such as a monetary policy shock, 
which shifts the entire market. A second way is due to a 
firm-specific shock, which transmits to other related 
firms though the network and induces co-movement. 
This paper considers the latter mechanism. The first 
contribution of the paper is to provide a cleaner 
measure of network connectivity by first netting out the 
effect of common risk factors and working directly with 
idiosyncratic returns.  

Idiosyncratic returns are constructed on a rolling 
36-month basis using the following model5:   
 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑅𝐹,𝑖𝑡𝑀𝐾𝑇𝑅𝐹𝑡 + 𝛽𝑆𝑀𝐵,𝑖𝑡𝑆𝑀𝐵𝑡

+ 𝛽𝐻𝑀𝐿,𝑖𝑡𝐻𝑀𝐿𝑡 + 𝜀𝑖𝑡 
(1) 

 

where 𝑟𝑖𝑡 is the return of firm
6
 i at time t, 𝑟𝑓𝑡 is the 

risk-free rate and t denotes a monthly observation from 
𝑡 = 1, . . ,36. MKTRF, SMB and HML are the three Fama-
French factors (1992): the return on the market 
portfolio, the size factor and book-to-market factor 
respectively. The market portfolio is the return on a 
well-diversified portfolio of returns in excess of the 
risk-free rate7. 𝛽𝑀𝐾𝑇𝑅𝐹, 𝛽𝑆𝑀𝐵 and 𝛽𝐻𝑀𝐿 are asset-specific 
exposures to the common risk-factors. 𝜀𝑖𝑡 denote 
idiosyncratic returns i.e returns orthogonal to the 
common risk factors. In each month, the correlation 
matrix of idiosyncratic returns 𝛹 is used to infer 
network connections8. 

A network, or a graph object in mathematics 
𝐺(𝑉, 𝐸), is a set of vertices 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} linked by 
edges 𝐸 (Mantegna, 1999). In this paper vertices are 
represented by assets traded on the stock market and 
edges give undirected connections between them. 
Networks can be graphically represented by a square 
adjacency matrix 𝐴 with entries 𝑎𝑖𝑗 such that: 

 

= 𝑎𝑖𝑗 {
𝜓𝑖𝑗   𝑖𝑓 𝑖 ≠ 𝑗

0     𝑖𝑓 𝑖 = 𝑗
 (2) 

 

 
Entries on the main diagonal of 𝐴 are set equal to 

zero i.e. self-loops are excluded. The strength of the 
link between two assets i and j is given by their 
correlation. The result of this procedure is an 
undirected, time-varying and fully connected network. 
Note that the paper is agnostic with respect to the 
nature of connections: it could be a direct relationship 
as in the case of a supplier or a customer, or an indirect 
link such as a marketing consultancy, a financial audit 
firm or a logistics service provider. 

 
3.3. Network centrality 
 

Due to the finiteness of the financial time-series data, 
the correlation network described in Section 3.2 
contains some degree of noise. In order to remove the 
less relevant information, a suitable filtering procedure 

                                                           
5A detailed version of this paper is available for download from the author’s 
website at https://zornitsa-todorova.com/research 
6 The terms firms, assets and stocks are used inter-changeably in this paper. 
7 Data on MKTRF, SMB and HML  is obtained from Kenneth French’s online 
data library available at: https://mba.tuck.dartmouth.edu/pages/faculty/ 
ken.french/data_library.html 
8 Note that adding industry fixed effects to the econometric model in (1) 
would be possible to purge within-industry connections. However, the paper 
takes the stand that both between within-industry and across-industry 
connections contain valuable information for asset prices, and, so 
differentiating between the two is outside of the scope of the paper.  

https://wrds-web.wharton.upenn.edu/wrds/
https://wrds-web.wharton.upenn.edu/wrds/
https://zornitsa-todorova.com/research
https://mba.tuck.dartmouth.edu/pages/faculty/%20ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/%20ken.french/data_library.html
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has to be performed. The most common approach to 
address this problem is principal components analysis 
(PCA) of the correlation matrix of the data (Bonanno et 
al., 2004).  

The paper follows closely the PCA procedure 
suggested by Billio et al. (2012). The idea behind PCA is 
to describe the covariance structure of a given set of 
variables by identifying the primary sources of 
variation. By identifying the sources, PCA reduces the 
dimensionality of the data to a few common orthogonal 
factors of decreasing explanatory power. In order to do 
so, PCA computes the eigenvalues and the associated 
eigenvectors of the covariance matrix. More formally, 
the univariate measure of the connectivity of each stock 
to the system is: 

 

𝑃𝐶𝐴𝑆𝑖,𝑘 = ∑
𝜎𝑖

2

𝜎𝑆
2 𝐿𝑖𝑘

2 𝜆𝑘

𝐾

𝑘=1

|𝐾 <  𝑁 (3) 

 

where 𝜎𝑖
2 is the idiosyncratic variance of a stock, 

𝜎𝑆
2 is total system idiosyncratic variance and 𝐿 is a 

matrix of eigenvectors, associated with the eigenvalues 
𝜆𝑘. The PCAS measure is systemic in nature: it gives the 
contribution of each stock towards the riskiness of the 
system as a whole. Intuitively, PCAS reflects 
endogenous risk transmitted through the system due to 
the fact that stocks are connected in a network. 

Central to the theoretical and the empirical 
validity of the paper is the correct specification of the 
number of principal components, the loadings on which 
are used to derive PCAS. Following the Kaiser criterion, 
only those eigenvectors, where the associated 
eigenvalue is greater than 1, are retained. Then, three 
centrality measures are computed: PCAS1 (using the 1st 
principal component), PCAS5 (using principal 
components 1 to 5) and PCAS10 (using principal 
components 1 to 10). Since PCASs are highly skewed, 
the variables are log-transformed and summary 
statistics are presented in Table 2.  

 
Table 2. Summary statistics of centrality 

 

 logPCAS1 logPCAS5 logPCAS10 
Mean 0.710 1.372 1.530 
Standard Dev. 1.134 0.606 0.547 
Variance 1.280 0.367 0.299 
Skewness -0.911 0.154 0.325 
Kurtosis 4.061 2.839 2.857 

Note: LogPCAS1 is negatively skewed with extra kurtosis of 
1.061 compared to the normal distribution. LogPCAS5 and 
LogPCAS10 look similar to each other: they are positively skewed 
and have kurtosis less than 3. In terms of volatility, PCAS1 scores 
highest with standard deviation equal to 1.134, followed by 
PCAS5 with 0.606 and PCAS10 with 0.547.  
 

3.4. Alternative measures 
 

A number of measures have been developed in the 
literature to characterize centrality in networks. Some 
examples include in-degree and out-degree, closeness, 
betweenness, diameter and eigenvector centrality and 
Katz centrality. The reader is referred to Borgatti (2003) 
for a detailed discussion of the use of these measures 
and the assumptions underlying them.  
 

3.5. Hypothesis 
 

The main hypothesis of this paper is that a stock’s true 
market riskiness is, in part, influenced by its relative 
position in the network of stock returns. If idiosyncratic 
shocks can be accumulated to form aggregate shocks, 
then such local shocks will affect asset prices. If shocks 
are transmitted through the business network, then 
those companies that are more connected to the 
economy are more exposed to such shocks. Moreover, 
stocks in business networks are economically related, 
their asset prices tend to move together and such 
commonality will be reflected in the correlation matrix. 
Finally, companies cannot fully protect themselves 

against these shocks through diversification. 
Consequently, network risk becomes undiversified and 
the risk should be priced in the cross-section of returns. 
 

4. RESULTS 
 

4.1. Network centrality and traditional risk 
measures 
 

If the hypothesis that network centrality captures (in 
part) a firm’s riskiness is true, then centrality should be 
positively correlated with other risk measures 
traditionally used in the finance literature. Table 3 
presents the relationship between PCAS and risk 
measure standardly used in the asset pricing literature: 
market beta. Market betas, 𝛽𝑀𝐾𝑇𝑅𝐹,𝑖𝑡, are the exposures to 

the market factors, calculated from the model specified 
in Equation (1). 𝛽𝑀𝐾𝑇𝑅𝐹,𝑖𝑡 is interpreted as a firm-specific 

measure of riskiness relative to the market. The market 
itself has a beta of 1; beta > 1 means that a stock is 
riskier than the market; beta < 1 means the stock is less 
risky than the market.  
 

Table 3. Risk measures 
 

 logPCAS1 logPCAS5 logPCAS10 
𝛽𝑀𝐾𝑇𝑅𝐹,𝑖𝑡 0.12*** 0.28*** 0.33*** 

 (<0.00) (<0.00) (<0.00) 
Note: the table reports correlation coefficients between 

centrality measures PCAS1, PCAS5, PCAS10 and market beta. 
Values in the parentheses are p-values.  Statistical significance at 
the 10%, 5%, and 1% level is indicated by *, ** and ***. 

 
The results indicate that all centrality measures 

are positively correlated with market beta, which offers 
first preliminary evidence that central, connected firms 
are characterized by higher levels of risk. 

Applying the PCAS measure outlined in Section 3.3 
it is possible to calculate a centrality score for each 
stock i, which is updated every month 𝑡. The advantage 
of using market data is that they are easily available, 
have higher frequency (allows to update the links on a 
continuous basis) and are forward-looking in contrast to 
connections extracted from accounting data, which 
provide “snapshots” and could be considered as 
backward looking. The practical value-added of this 
approach can be described in the following way. Every 
month the distribution of centralities is divided into 5 
quintiles such that quintile 1 contains the least central 
stocks and quintile 5 contains the most central stocks. 
If stocks do not migrate at all between quintiles over 
time, then having a high-frequency time-series of 
centrality scores is not very useful. It is possible to 
calculate (average) transition probabilities i.e the 
probability that a stock is going to change quintiles in 
the following month. Table 4 shows that in fact stocks 
centralities change over time. For example, the 
probability that a firm assigned to quintile 5 is to going 
to be assigned to quintile 1 in one month is 0.13. This 
information is particularly valuable for active portfolio 
managers, who rebalance continuously to achieve 
higher performance targets. Instead, if the manager 
relies on accounting type of linkages available at a 
yearly frequency, she would be missing out an 
important aspect of the market dynamics. 

 

Table 4. Transition probabilities 
 

State 1 2 3 4 5 
1 0.3034 0.2327 0.1824 0.1503 0.1312 
2 0.2337 0.2603 0.2078 0.1663 0.1318 
3 0.1814 0.2090 0.2558 0.2075 0.1462 
4 0.1517 0.1647 0.2059 0.2895 0.1882 
5 0.1300 0.1335 0.1484 0.1867 0.4014 

Note: the table gives the probability that a stock is going to 
migrate from one state to another in the following month. States 
1 to 5 correspond to quintiles 1 to 5 of the network centrality 
distribution. Results are shown for PCAS1. 
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4.2. Factor-mimicking portfolio 
 
To test empirically whether centrality is associated with 
higher risk premia, centrality scores for each stock in 
the sample are used to create a factor mimicking 
portfolio of network risk. A mimicking portfolio is a 
portfolio of assets designed in a way to stand for a 
background factor. Such a design is usually preferred to 
directly using the factor in asset pricing tests especially 
when the realizations of the factor are not returns. 
Using a mimicking portfolio instead, the researcher 
retains only the information in the factor relevant for 
asset returns and reduces the amount of noise present 
in the model.  

Let  𝑋 be an N × 1 vector of centralities in month 𝑡, 
normalized such that 𝑋′𝑋 = 1. Then, it follows that 
𝐶𝑁𝑇𝑅𝑡 = 𝑋′𝜀𝑡 is a common factor, calculated as a 
weighted average of idiosyncratic returns. The weights 
are given by centrality scores and 𝜀𝑡 is a vector of 
idiosyncratic returns obtained from Equation (1). To 
obtain exogeneity of the weights, network centralities 
are lagged by 12 months9.  

 

4.3. Two-pass cross-sectional regression 
 
To test whether 𝐶𝑁𝑇𝑅𝑡 is priced in the cross-section of 
returns the paper follows the two-pass procedure by 
Fama and Macbeth (1973): a time-series regression, 
followed by a cross-sectional regression. In the first 
step, each asset’s idiosyncratic return 𝜀𝑖,𝑡 is regressed 
against the 𝐶𝑁𝑇𝑅𝑡 time series to determine how exposed 
it is to the factor: 
 

𝜀𝑖,𝑡 = 𝛼𝑖 + 𝛽𝐶𝑁𝑇𝑅,𝑖𝐶𝑁𝑇𝑅𝑡−12 + 𝜂𝑖,𝑡    𝑖 = 1, … , 𝑁 (4) 
 
N regressions are calculated to obtain factor exposures, 
𝛽𝐶𝑁𝑇𝑅,𝑖, for each 𝑖 = 1, . . , 𝑁.  In the second pass, the cross-

section of excess returns is regressed on 𝛽𝐶𝑁𝑇𝑅,𝑖, at each 

time step: 
 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝜆0𝑡 + 𝜆𝐶𝑁𝑇𝑅,𝑡𝛽 𝐶𝑁𝑇𝑅,𝑖 + 𝜈𝑖𝑡    𝑡 = 1, … 𝑇 (5) 
 

The main object of interest in the T cross-sectional 
regressions is the 𝜆’s, which measure the price of risk or 
risk premia. The result of the second step is to give a 
time-series of risk premia. The insight of the Fama-
Macbeth procedure is to average these coefficients, 
which gives the expected premium for a unit of 
exposure to the centrality risk factor over time. Hence, 

𝜆𝐶𝑁𝑇𝑅 =
∑ 𝜆𝐶𝑁𝑇𝑅,𝑡

𝑇
𝑡=1

𝑇
. If 𝜆𝐶𝑁𝑇𝑅 is positive, this means that the 

market compensates investors for accumulating 
network risk.  

The fact that factor exposures (𝛽 𝐶𝑁𝑇𝑅,𝑖) and the 
factor premium (𝜆𝐶𝑁𝑇𝑅) are not calculated on the same 
data sample is a crucial point here. Lagging centralities 
by 12 months, the estimation sample does not suffer 
from look-ahead bias. This allows making statements 
about risk out-of-sample, which is particularly useful 
for investment purposes. 

In some specifications of the Fama-Macbeth 
regressions control for market beta, size (ME), book-to-
market (BM), turnover and idiosyncratic volatility (IVOL) 
are included. Market betas are estimated from the time-
series regressions specified in Equation (1) and IVOL is 
the standard deviation of the residuals (𝜀𝑖𝑡) from this 
model. Turnover measures liquidity and is calculated as  
trading volume divided by a number of shares 
outstanding. All controls are log-transformed and 
lagged by 1 month. Table 5 shows summary statistics of 

                                                           
9 Results in the subsequent section are based on 𝑋 = 𝑙𝑜𝑔𝑃𝐶𝐴𝑆10. The results 
and conclusions do not change if instead logPCAS1 or logPCAS5 are used. 
These results are omitted for brevity and are available from the author upon 
request.  

the variables used in the Fama-Macbeth regressions. 
Excess returns have a mean on 1.2 %, a standard 
deviation of 15% and a positive skew. The average 
market beta is approximately 1 and the average network 
beta 𝛽𝐶𝑁𝑇𝑅 = 0.71. Two things are worth mentioning 
here. First, the magnitude of the network beta is very 
close to that of the market beta and, second, the 
network beta is considerably more positively skewed 
than the market beta. This result suggests that there is 
a small number of firms that load very heavily on the 
network risk factor.  

The logarithm of size has a mean of 3.82 and a 
standard deviation of 2.161. LogBM, LogTrnv and 
LogIVOL have negative means and very low values of 
skewness, which is a result of the logarithmic 
transformation.  

 
Table 5. Summary statistics of variables 

 
 

Mean 
St. 

Deviation 
Q1 Q3 Skew 

Panel A: Stock characteristics 

Exret 0.012 0.15 -0.055 0.064 4.00 
Beta 1.05 0.96 0.47 1.49 1.08 
𝛽𝐶𝑁𝑇𝑅 0.71 0.45 0.43 0.85 2.61 
LogSize 3.82 2.161 2.22 5.3 0.18 
LogBM -0.58 0.86 -1.05 -0.09 -0.40 
LogTrnv -0.16 1.28 -0.88 0.71 -0.73 
LogIVOL -2.13 0.52 -2.50 -1.70 0.31 

 

Table 6 (see Appendix) contains the main result 
of the paper. The estimates in Column (1) indicate that 
the network risk factor is positively priced in the cross-
section of returns. Economically, the result means that 
an investor who buys network risk is expected to earn a 
monthly risk-premium of 0.352 % in excess of the risk-
free rate. On an annualized basis, this amount to 4.22 %. 

The results in Table 3 indicate that the position of 
stock in the network is strongly related to market risk. 
Controlling for market beta in Column (2) reduces the 
magnitude of the risk premium to 0.23 %, but it does 
not affect its statistical significance. Moreover, the 
effect is robust to including size and book-to-market in 
Column (3) and volatility and turnover in Column (4). 
This result suggests that the centrality factor accounts 
for a different dimension of risk, which is not captured 
by asset pricing factors previously studied in the 
literature. 

One of the arguments of the paper is that the 
connectivity measure, which Billio et al. (2012) apply to 
the financial services sector only, can be extended to 
the economy as a whole. Therefore, a major concern 
could be that the results in Table 6 (see Appendix) are 
driven by financial companies. To address this concern, 
Column (5) repeats the baseline regression from 
Column (1) by excluding all financial companies10. The 
magnitude and significance of the risk premium 
estimate remain largely unchanged. This evidence is 
reassuring because it shows that the concept of network 
risk is not confined to the financial industry. 

 

4.4. Out-of-sample results during the financial crisis 
 
Given its systemic nature, Billio et al. (2012) suggest 
that one important application of connectivity measures 
is to provide early warning signals to financial 
regulators and risk managers. It would be interesting to 
test whether the PCAS measures have any power to 
predict losses during systemic events outside of the 
finance sector.  

To test the out-of-sample performance of the 
measure, stocks are first ranked based on PCAS1, 
PCAS5 and PCAS10. Then, the variable Maximum % Loss 
is computed and stocks are also ranked according to it. 

                                                           
10 Financial companies are denoted by SIC codes 6000 – 6799. 
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This is the maximum percentage loss suffered by each 
stock in the sample during the recent financial crisis 
period from July 2007 to December. The maximum 
percentage loss for a firm is defined to be the 
difference between market capitalization in the end of 
June 2007 and the minimum market capitalization 
during the period from July 2007 to December 2008, 
divided by the market capitalization in the end of June 
2007. Following Acharya, Pedersen, Philippon and 
Richardson (2017), two estimation samples for the 
PCAS measures are used: October 2002 – September 
2005 and July 2004 – June 2007. Table 7 gives the 
estimates of regressing Maximum % Loss on the stock’s 
PCAS rankings.  

 
Table 7. Predictive power of network centrality 

 
 Maximum % Loss 

 Coeff t-stat p-value Kendall 𝝉 

 October 2002-September 2005 

PCAS 1 0.01 1.14 0.256 0.01 
PCAS 1-5 0.12*** 7.00 0.00 0.08 
PCAS 1-10 0.17*** 9.49 0.00 0.11 
 July 2004-June 2007 

PCAS 1 0.05*** 3.22 0.001 0.03 
PCAS 1-5 0.19*** 10.92 0.00 0.12 
PCAS 1-10 0.24*** 14.19 0.00 0.16 

Note: the table shows coefficients, t-stats, p-values and 
Kendall (1938) 𝜏 rank-correlation coefficients of regressions of 
Maximum % Loss on PCAS 1, PCAS 1-5 and PCAS 1-10. Estimates 
are shown for two samples: October 2002- September 2005 and 
July 2004 to June 2007. Statistical significance at the 10%, 5%, 
and 1% level is indicated by *, ** and ***. 

 

Stocks that were more exposed to network risk, i.e. 
with larger PCAS loadings, are more likely to suffer 
considerable losses during the recent financial crisis. 
The beta-coefficients are significant at the 5 % level, 
which suggests that the centrality measure correctly 
identifies stocks that will be more affected during crisis 
periods. 

  

4.5. Discussion 
 
The empirical evidence outlined in the previous sections 
supports the hypothesis that firms that are central in 
the network of business relationships earn higher 
returns as compensation for higher exposure to 
network risk. This result is consistent with previous 
studies in the field, such as Ahern (2013), which finds 
that centrality bears a positive monthly premium. The 
paper acknowledges that a positive loading on CNTR 
could be reconciled with multiple hypotheses. The most 
natural explanation could be that it captures systematic 
risk that is not accounted by the other standard factors. 
Alternatively, as Ahern (2013) argues, it could be the 
case that the ex-post beta coefficient is measured 
poorly, and thus, CNTR gives a better estimate of ex-
ante exposure to market risk. 
 

5. ROBUSTNESS 
 

5.1. Sub-samples analysis 
 

The financial crisis of 2007-2008 induced a key 
structural break in the US economy: liquidity was 
scarce, financial regulation tightened and interest rates 
plummeted close to the zero-lower bound as a result of 
expansionary monetary policy. Performing the analysis 
over two different sub-samples, crisis (2007-2008) and 
non-crisis (2001-2006; 2009-2015), shows that the 
network risk-premium was nearly 2 times higher during 
the crisis period. One explanation for this result could 
be that periods of the economic crisis are characterized 
by high stock market volatility and high instability, 
which translates into higher risk-aversion. Therefore, 

risk-averse investors should require a higher risk 
premium during troughs than during expansions. 
 

Table 8. Sub-sample analysis 
 

 (1) No crisis (2) Crisis 

betaCNTR 
0.322*** 
(<0.00) 

0.502*** 
(0.014) 

Constant 
0.97*** 
(<0.00) 

0.83*** 
(<0.00) 

Note: this table presents results of two-stage monthly cross-
sectional regressions of average excess firm-level returns on 
centrality beta. The crisis period refers to the time frame 2007-
2009. The CNTR factor is calculated using residuals weighted by 
LogPCAS10 centrality. Coefficients estimates are in percentages. 
Statistics are computed using the Newey-West procedure with lag 
length 1. Values in the parentheses are p-values.  Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, ** and 
***. 
 

5.2. Test assets 
 

This section tests whether the CNTR factor is able to 
price other test assets besides firm-level returns. Three 
sets of assets are used: 25 portfolios sorted on size and 
book-to-market, 25 portfolios sorted on centrality and 
size and 25 portfolios sorted on centrality and book-to-
market and firm-level returns. Portfolio betas are 
estimated in time-series regressions controlling for the 
three Fama-French factors (1992): MKTRF (the return 
spread of the value-weighted CRSP portfolio minus the 
risk-free rate), SMB (the return spread of small minus 
big stocks, i.e. size effect) and HML (the return spread 
of high/cheap minus low/expensive Book-to-Market 
stocks, i.e. value effect).  
 

Table 9. Robustness: Fama-Macbeth cross-sectional 
regression 

 

 

(1) 
25 Size and 

BM 
Portfolios 

(2) 
25 Size and 
Centrality 
Portfolios 

(3) 
25 BM and 
Centrality 
Portfolios 

betaMktrf 
-0.62 

(0.613) 
-0.037 
(0.650) 

-0.19 
(0.861) 

betaSMB 
0.19 

(0.415) 
0.155 

(0.640) 
0.41 

(0.717) 

betaHML 
0.019 

(0.715) 
0.37 

(0.650) 
0.35 

(<0.434) 

betaCNTR 
0.44 

(0.675) 
0.93** 
(0.03) 

1.14** 
(0.022) 

Constant 
1.50 

(0.283) 
0.73 

(0.353) 
1.89*** 
(<0.00) 

R2 17.85 19.93 20.12 
Note: this table presents results of two-stage monthly cross-

sectional regressions of average excess firm-level returns on 
centrality beta and a set of controls over the period December 
2002: December 2015. The CNTR factor is calculated using 
residuals weighted by LogPCAS10 centrality. Betas are estimated 
from time-series regressions of Fama-French 3 Factor Model 
augmented with CNTR. Coefficients estimates are in percentages. 
T -statistics are computed using the Newey-West procedure with 
lag length 1. Values in the parentheses are p-values.  Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, ** and 
***. 
 

Table 9, Column (1) presents results that are 
consistent with prior research: there is a negative 
market beta and a positive constant. The factor 
premium on CNTR is positive, but not significant and 
hence, CNTR does not help explain variation in these 
portfolios. In contrast, when portfolios sorted on size 
and centrality (Column (2) and BM and centrality 
Column (3)) are used, CNTR is statistically significant 
and carries a positive risk premium of 0.93 % and 1.14 % 
respectively.  
 

5.3. Relationship to macroeconomic variables 
 
This section studies the relationship between centrality 
and network risk and macroeconomic variables. Three 
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macroeconomic variables are considered: 
unemployment, recessions and consumption growth. 
The recession variable is based on the US National 

Bureau of Economic Research (NBER) definitions11. NBER 
maintains the most comprehensive chronology of the 
US business cycle. The chronology contains alternating 
dates of peaks and troughs of the economy. A recession 
is defined as a period between a trough and a peak. 
During the time period that the paper considers, there 
are 4 announcement dates: March 2001 (peak), 
November 2001 (trough), December 2007 (peak) and 
June 2009 (trough). The analysis introduces a business 
cycle variable, which equals 1 during troughs and 0 
during peaks. In the months between these 
announcement dates, the recession variable is filled 
with linearly interpolated values. Consumption growth 
is defined as the growth in nondurable consumption 
per capita in the future 6 months.  

 

Table 10. Cross-sectional regression with macro 
variables 

 
 Mktrf SMB HML CNTR 

Unemployment 
-0.235 
(-0.57) 

-0.057 
(-0.23) 

-0.000 
(-0.22) 

-0.503 
(-0.62) 

Recession 
-3.192 
(-1.31) 

-2.010 
(-1.54) 

-0.010 
(-0.82) 

-7.41 
(-1.62) 

Consumption 
0.405** 
(2.34) 

-0.043 
(-0.59) 

-0.001 
(-1.42) 

0.311** 
(2.15) 

Time Trend Yes Yes Yes Yes 
Observations 157 157 157 157 
R2 0.093 0.047 0.044 0.119 

Note: the table presents the results of regressions of 3FF 
Factors and Centrality on macroeconomic outcomes over the 
period December 2002 to December 2015. Recession is based on 
NBER business cycle announcement dates and equals 1 for 
troughs and 0 for peaks, with values in the intervening months 
being linearly interpolated. Consumption growth is defined as 
the growth rate in nondurable consumption per capita in the 
future 6 months. T-statistics are given in brackets. Statistical 
significance at the 10%, 5%, and 1% level is indicated by *, ** and 
***. 

In Table 10 cross-sectional regressions of MKTRF, 
SMB, HML and CNTR are ran on unemployment, 
recession, consumption growth and a time trend. 
Consumption growth is positively related to Mktrf and 
CNTR with coefficients of nearly equal magnitudes. 
Unfortunately, the other two macroeconomic outcomes 
are not related to any of the factors. In the case of 
recession, one potential explanation could be the 
limited amount of announcement dates, which makes 
the interpolation procedure less precise and reduces the 
power of these tests. 

The results are consistent with the hypothesis that 
central firms face more economic risks than peripheral 
ones. When CNTR is high i.e. the returns of more central 
firms are higher, then future consumption growth 
increases as well. Furthermore, the fact that CNTR bears 
similarities to the market premium means that 
centrality could enrich our understanding of the driving 
forces of market risk. 
 

5.4. Economic mechanism 
 

To discuss in more detail the economic intuition behind 
the main result of the paper, Figure 1 (see Appendix) 
plots the empirical densities of the three centrality 
measures. Estimates are based on a normal kernel 
function, which is evaluated at a 100 equally-spaced 
points. It is immediate to observe that the distribution 
is heavily skewed to the right, which suggests that there 
is a small number of firms that are highly connected to 
the rest of the economy. To further characterize such 
heavy-tailed distributions, Panel B plots the empirical 
counter-cumulative distribution function on a log-log 
scale. The nearly linear relationship indicates that the 

                                                           
11 A detailed list of NBER announcement dates is available at 
https://www.nber.org/cycles.html 

right tail of the distribution can be approximated by a 
power-law distribution. The presence of a fat right tail 
is crucial because it shows how the diversification 
argument could break down. A shock hitting a 
particularly central firm is transmitted through the 
network and is translated into aggregate volatility.  
Hence, investors demand a premium to hold central 
firms due to network risk. 
 

6. CONCLUSION  
 

This paper investigates the empirical relationship 
between network centrality and firm returns. By 
identifying links between firms on the stock market, 
their strength and sensitivity to changing market 
conditions and quantifying the individual contribution 
of stock to the idiosyncratic volatility of the system, the 
paper offers insights into how micro shocks translate 
into the aggregate economy. 

The contribution of this paper is mainly empirical. 
First, it creates a monthly database of centrality scores 
for more than 5,000 US-based publicly traded firms. It 
documents substantial heterogeneity in the degree of 
connectivity of firms and shows that firm-level 
centrality changes over time. These features of data 
make a high-frequency time-series of centrality a useful 
tool to follow market dynamics and monitor the 
buildup of risk, from which regulators, portfolio 
managers and risk managers could benefit. 
Additionally, the paper shows that an essential feature 
of linkages is its fat-tailed distribution. The fact that 
there is a small number of firms, who play a 
disproportionately important role in the economy, 
becomes extremely important when the regulator has to 
decide whether to bail out a distressed company. 
Taking a network perspective would help evaluate the 
scope and magnitude of potential spillovers and help 
the regulator make an informed decision. 

Second, using the cross-sectional variation in the 
data the paper constructs a novel factor mimicking 
network risk using centrality scores as weights. The 
paper finds that higher centrality predicts higher 
expected returns on the stock market. From a single 
firm’s perspective, a better understanding of 
interlinkages between firms is crucial because it has 
implications for corporate policy decisions (e.g., hiring, 
compensation, investment) as well as for firm value and 
asset prices. 

One caveat of this paper is that estimating 
centrality scores using PCA precludes the possibility of 
assigning directionality to the inferred connections. In 
fact, PCA allows to establish whether there is a 
connection between firm A and firm B, but it does not 
allow to establish the direction of the link.  One 
potential extension for future research could be to use 
Granger-causality to establish the direction of links and 
then to use the information to study the dynamic 
propagation of shocks from close to distant firms in the 
network.  

A second avenue for future return could be to 
study how firm-specific shocks transmit through such a 
directed correlation network. One way to cleanly 
identify idiosyncratic shocks is to use the occurrence of 
natural disasters. A third avenue to follow relates to 
portfolio construction. It would be interesting to see 
whether incorporating information about the linkages 
between stocks improves asset allocation and portfolio 
performance. Fourth, it is a well-known fact that the 
correlation between a portfolio of stocks diminishes as 
the time horizon used to compute stock returns is 
decreased (Bonanno, 2001). The existence of this 
phenomenon, known as the “Epps Effect”, motivates the 
investigation of the properties of the correlation 
network as a function of the horizon of the return time 
series used to reconstruct it. 
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APPENDIX  
 

Table 6. Fama-Macbeth cross-sectional regression 
 

 (1) (2) (3) (4) (5) 

betaCNTR 
0.352*** 
(<0.00) 

0.234*** 
(0.008) 

0.165* 
(<0.08) 

0.282** 
(<0.07) 

0.344*** 
(<0.00) 

betaMktrf  
0.12*** 
(<0.00) 

0.125** 
(0.03) 

0.05 
(0.127) 

 

LogSize   
-0.172*** 
(<0.00) 

-0.261*** 
(<0.00) 

 

LogBM   
0.455*** 
(<0.00) 

0.481*** 
(<0.00) 

 

LogTrnv    
0.317*** 
(<0.00) 

 

LogIVOL    
-0.02 
(0.75) 

 

Constant 
0.864*** 
(<0.00) 

0.88*** 
(<0.00) 

0.89*** 
(<0.00) 

0.237*** 
(<0.00) 

1.05*** 
(<0.00) 

Includes FIN YES YES YES YES NO 
R2 0.009 0.015 0.070 0.077 0.010 

Note: this table presents results of two-stage monthly cross-sectional regressions of average excess firm-level returns on centrality beta 
and a set of controls over the period December 2002: December 2015. The CNTR factor is calculated using residuals weighted by LogPCAS10 
centrality. Coefficients estimates are in percentages. Statistics are computed using the Newey-West procedure with lag length 1. Values in the 
parentheses are p-values.  Statistical significance at the 10%, 5%, and 1% level is indicated by *, ** and ***. 
 

Figure 1. Empirical density of centrality 

Note: Panel A shows the empirical density function of PCAS, PCAS5 and PCAS10. The estimate is based on a normal kernel function and 
is evaluated at 100 equally-spaced points. Panel B gives the counter-cumulative distribution on a log-log scale. 

 

 


