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The paper quantifies the influence of interest rates and inflation 

rates on default rates of banks. By expanding the work of 
Duffee (1998), with the unspanned risks as in the work of Joslin, 
Priebsch, and Singleton (2014), we estimate a multifactor model 
with unspanned interest rates and inflation rates to test the 
performance of unspanned variables in the default rate term 
structure of banks. The model is trained in samples of positive 
interest rates and evaluated in samples of negative interest rates. 
we check the robustness of the model by comparing the results 
with the performance of alternative model specifications. The 
model reveals that unspanned variables have worse performance 
than alternative models specifications. The negative effect of 
interest rates on default rates over longer maturities may lead the 
EA banks to decrease the loan supply to the real economy. As a 
consequence EA banks will have a lower net interest margin as the 
return of assets is lower. This may increase the future probability of 
default. Thus, the solution for EA banks is on the reach to yield 
behavior as described by Bruno and Shin (2015). This means that EA 
banks have to modify the allocation of assets more in favour of 
riskier and longer maturity securities to obtain higher profitability. 
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1. INTRODUCTION 
 
The resilience of the European banking system is 
crucial to absorb shocks arising from the financial 
and economic environment and to reduce spillovers 
from the financial sector to the real economy as the 
consequences of the Great Recession on the real 
economy. The failure of Lehman Brothers and the 
breakdown of the Libor-OIS basis as a consequence 
of an increased counterparty risk perception in the 
European interbank market made spillover effects in 
the real economy. As a consequence, euro area (EA) 
banks had liquidity shortages that boosted higher 
default rates as shown by Cucinelli (2013). In this 
scenario, the Zero Lower Bound interest rates in 
Europe, as a result of the unconventional monetary 

policy implemented by the European Central Bank 
(ECB), put huge strains for the Euro area banking 
system. Two are the main source of risk for the 
overall stability of the European banking system: 

 Persistently low rates erode the 
profitability of banks, lowering net interest 
margin (NIM) (Claessens, Coleman, & Donnelly, 2018; 
Borio & Gambacorta, 2017) lead EA banks to 
rebalance their portfolio towards riskier assets 
(Bottero et al., 2019). 

 Unprecedented low European interest rates 
lead European inflation rates to remain low, below 
ECB desired level. 

As a consequence, firms have diffculties to pay 
back their debt because of higher debt values in real 
terms (firms are affected by the debt deflation 
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phenomenon described by David (2008) as the 
previous findings of Fisher (1933). This leads 
EA banks to increase losses from borrower’s default 
putting huge strains for the resilience of the 
European banking system. Furthermore, the 
unprecedented spillover effects of the Greek crisis 
on the Sovereign debt of EA countries on EA banks 
led them to decrease the capital ratios. This boosted 
EA banks default rates. The spread between banks 
corporate bonds and risk-free counterparts is one of 
the indicator factors for the development of the 
crisis. This quantity contains useful information for 
both policymakers and investors for the 
development of a crisis. This information is 
embedded in the term structure of the spread 
between banks corporate bonds and risk-free rates 
and in the dynamics of the related risk factors. 
Modelling the term structure of interest rates has 
always been of interest of a wide array of economic 
agents such as: 

 risk managers of financial and 
non-financial institutions for pricing financial 
instruments and hedging financial and non-financial 
risks; 

 policymakers and central bankers for 
forecasting the future value of interest rates and 
evaluating the impact of macro variables on them so 
as to implement more effective economic policies; 

 financial regulators to simulate a macro 
scenario for setting new capital requirements. 

These economic agents will use this term 
structure model to: 

1. Identify the relations that occur between 
EA banks corporate bonds credit risk premia and 
macroeconomics to handle financial risks more 
efficiently in light of the recent macroeconomic 
environment. 

2. Better evaluate the effect of 
macroeconomic variables in financial regulatory 
requirements (such as the CVA risk or the liquidity 
covered ratio) so as to implement more effective 
capital and asset allocation strategies. 

3. Implement monetary policies more 
banking oriented like the LTROs (long term 
refinancing operations) to incentive EA banks to lend 
more financial resources to the real economy. 

Therefore, investigating the impact of inflation 
rates on EA bank default rates in light of Zero Lower 
Bound interest rates environment, through a term 
structure model may help financial and economic 
agents to preserve the stability of the European 
banking system by understanding the 
interconnection among monetary policy, inflation 
rates and banking system in the euro area. The 
structure of the paper is as follows: Section 2 
reviews the existing literature, Section 3 analyses the 
data and the methodology used for answering the 
research question, Section 4 presents the results in 
light of the ongoing macroeconomic scenario 
focusing the attention on the importance of the 
results for the resilience of the EA banks system, 
Section 5 concludes. 
 

2. LITERATURE REVIEW 
 
The relationship between default rates and interest 
rates is exhaustively investigated by existing 
financial literature (Duffee 1998, 1999; Longstaff & 
Schwarz, 1995; Collin-Dufresne, Goldstein, & Martin, 

2001; Neal, Rolph, Dupoyet, & Morris, 2000). 
However, the impact of interest rates on default risk 
premium and the impact of inflation rates on the 
default risk of banks have not been yet analysed. 
Differently from the structural approach on credit 
risk and the macroeconomics (Gourio, 2012, 2013; 
Chen, 2010; Kang & Pflueger, 2015; Bhamra, Fisher, 
& Kuehn, 2011; Bhamra, Dorion, Jeanneret, & Weber, 
2018; David, 2008), the approach followed by 
financial corporations (Bellini, 2017) and rating 
based approach of credit risk (Carty & Fons, 1994; 
Jarrow, Lando, & Turnbull, 1997), this paper follows 
a reduced form of approach to identify the impact of 
macroeconomic variables on default rates of banks. 
By extending the analysis made by Lucheroni and 
Pacati (2004) and by Mari and Renò (2005) as the 
development of the previous study of Duffie and 
Singleton (1999), this paper provides an empirical 
analysis on EA banks default rates and 
macroeconomics, highlighting the effect of inflation 
rates and interest rates on EA banks default rates. 
This work will merge two streams of literature: the 
one on MTSM (macro-term structure modelling) 
(Joslin, Singleton, & Zhu, 2011; Joslin et al., 2014; 
Dewachter & Iania, 2011; Dewachter, Iania, Lemke, & 
Lyrio, 2019), and the other on the affine term 
structure of credit risk modelling (Lando, 1998, 
2004) to identify how the macroeconomic factors 
extracted from traded instruments (such as interest 
rate swaps or inflation swaps) affect the credit risk 
of EA banks over time. Analysing the determinants 
of bank credit risk over time is of great importance 
for the stability of the EA banking system. It is well 
known that credit risk is a determinant factor for 
bank profitability. As a consequence, the level of 
some macroeconomic variables has great importance 
for the economic performance and the portfolio 
allocation of EA banks. When the European interest 
rates decrease and the European inflation rates 
remain low, EA Banks, performing the asset 
transformation process have a negative impact on 
their profitability by investing in shorter maturities 
assets and less risky borrowers, as a consequence of 
a reduction on EA banks, the net interest margin 
(Cruz-Garcia, Fernández de Guevara, & Maudos, 
2019; Eisenschmidt & Smets, 2019; Borio, 
Gambacorta, & Hoffman, 2017). As a result, the Zero 
Lower Bound European interest rates lead EA banks, 
likes US banks (Aramonte, Lee, & Stebonovs, 2019) to 
change the composition of the portfolio of the 
assets in favour of riskier securities, as described by 
Demiralp, Eisenschmit, and Vlassopoulos (2019). 
Furthermore, the Zero Lower Bound European 
interest rates and the low European inflation rates 
lead EA banks to change the portfolio of liabilities in 
favour of issuing more debt conditionally to the 
financial regulation boundaries (liquidity coverage 
ratio and leverage ratio among others) (Lucas, 
Schaumburg, & Schwaab, 2019). 
 

3. DATA AND METHODOLOGY 

 

3.1. Interest rates, inflation rates and default rates 
description 
 
We consider a panel of European OIS (overnight 
indexed swaps) rates from Datastream over the 
period from November 3, 2008 till November 3, 
2016. For each day in our sample period, we 
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consider OIS rates for time to maturities 1–10 years, 
and 15, 20, 25 and 30 years. We fill in the missing 
integral maturities (e.g., 11, 12, ... years) by linear 
interpolation, as shown, for example, by Hagan and 
West (2006). We bootstrap short term interest rates 
following the procedure written by Bernhart (2013). 

The (spot instantaneous) interest rates for each 
m are computed from the standard bootstrapping 
model: 
 

𝑠𝑚 =
1 − 𝑃(𝑡, 𝑡 + 𝑚)

∑ 𝑃(𝑡, 𝑡 + 1)𝑚
𝑖=1

 (1) 

 
By inverting the OIS rates and solving them 

with respect to the discount factors, we find that the 
risk-free yields are: 
 

𝑦(𝑡, 𝑡 + 𝑚) = −
1

𝑛
𝑙𝑛𝑃(𝑡, 𝑡 + 𝑚) (2) 

 
Figure 1. Interest rates at 1y, 5y, 10y and 

30y maturities 
 

 
 

We consider a panel of European ZCIS (zero 
coupon inflation swaps) rates from Datastream over 
the period from November 3, 2008 till November 3, 
2016. For each day in our sample period, we 
consider ZCIS rates for time to maturities 1–10 
years, and 15, 20, 25 and 30 years. We fill in the 
missing integral maturities using linear 
interpolation. ZCIS rates are readily zero-coupon 
rates and no bootstrap is needed. 

 
Figure 2. BEI (breakeven inflation) rates at 1y, 5y, 

10y and 30y maturities 
 

 
 

We consider a panel of standard CDS (credit 
default swaps) spreads from Datastream over the 
period from November 3, 2008 till November 3, 
2016, written on the default of UniCredit bank. 

Why Unicredit? Unicredit bank is the major 
banking group in Italy whose activity is widely 
spread around 32 countries. The leading markets in 
which Unicredit operates are Austria, Italy, Germany 
and East European countries and it is quoted in 
leading stock market indexes such as FTSE MIB 
(Italy) and DAX (Germany). As a consequence, it 
seems crucial to consider Unicredit bank 
performance as a proxy of the resilience of the EA 
banking system. 

For each day in our sample period, we consider 
CDS rates for time to maturities 1–5 years, 7 and 
10 years (standard CDS durations). We fill in the 
missing integral maturities using linear 
interpolation. We bootstrap the forward risk-neutral 
default intensities yd(t, t + m), following the 
procedure written by Castellacci (2008). For all 
maturities m = 1, 2, ..., M, the (forward risk-neutral 
instantaneous spot) default rate:1 
 

𝑦𝑑(𝑡, 𝑡 + 𝑚) = −
1

𝑚
𝑙𝑛 𝑄(𝑡, 𝑡 + 𝑚) (3) 

 
Figure 3. Default rates at 1y, 5y and 10y maturities 

 

 
 

The (instantaneous spot) zero-recovery risky 
rate is: 
 

𝑦∗ (𝑡, 𝑡 + 𝑚) = −
1

𝑚
ln[𝑄(𝑡, 𝑡 + 𝑚)𝑃(𝑡, 𝑡 + 𝑚)]

= 𝑦𝑑(𝑡, 𝑡 + 𝑚) + 𝑦(𝑡, 𝑡 + 𝑚) 
(4) 

 
Default rate yd(t, t + m) is, therefore, the spread 

we have to add to the risk-free rate y(t, t + m) to 
obtain the zero-recovery risky rate. 

How many factors do we need to describe the 
zero-recovery risky rate and instantaneous default 
rates? How do interest rates and inflation rates 
affect instantaneous default rates? 

By performing the pricipal component analysis 
(PCA) on data we find the following: 
 
Table 1. Variability of the term structure explained 

by each PCA factor of risky yield (on the left) and on 
default rates (on the right) 

 
Factors Unicredit risky yield Unicredit default rates 

1 0.950 0.967 

2 0.030 0.025 

3 0.008 0.004 

4 0.004 0.001 

5 0.002 0.000 

Tot var. 0.994 0.998 

                                                           
1 Q(t,T) be such that the price of a contingent claim paying 1 unit of cash at 
time T in case of non-default of the reference entity at time T is Q(t, T)p(t, T). 
Therefore Q(t, T) is the forward risk-neutral survival probability. 
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Therefore, the zero-recovery risky yield is 
described by five factors, where: 

 two factors describe the evolution of the 
default rates; 

 three factors are needed to describe the 
variability of risk-free rates. 

Factor weights (factor loadings) of Unicredit 
default rates and Unicredit risky yield are presented 
below: 
 
Figure 4. Factor loadings of Unicredit default rates 

(up) and risk-free rates (down) 
 

 

 
 
As a consequence, inflation rates play no role 

in the evolution of the variability of zero-recovery 
bond yield over time. 
 

3.2. The model 
 
Following Lando (1998) and Duffie and Singleton 
(2003), we model a credit default event as the first 
jump of a Poisson process with stochastic intensity 
λ(t). Under this assumption, at time t the survival 
probability at time T is following: 
 

𝐸𝑡 [𝑒𝑥𝑝− ∫ 𝜆(𝑢)𝑑𝑢
𝑇

𝑡 ] (5) 

 
Alternatively to more recent articles (Monfort & 

Renne, 2013), we model the default intensity as the 
sum of two Gaussian factors: 

 

𝜆(𝑡) =  𝜆1(𝑡) +  𝜆2(𝑡) (6) 
 
By setting Λ(t) = (λ1(t), λ2(t)), we assume the 

following risk-neutral dynamics: 
 

𝑑𝛬(𝑡) = 𝐴(𝛤𝜆 − 𝛬(𝑡) + 𝐶𝑟(𝑡))𝑑𝑡 + 𝛴𝑑𝑊𝑄(𝑡) (7) 

 
where r(t) is the (nominal) risk free short rate; 
 

𝐴 = [
𝛼1 0
0 𝛼2

]; 𝛤𝜆 = [
𝛾𝜆

0
]; 𝐶 = [

𝑐1

𝑐2
]; 𝛴 = [

𝛼1 0
0 𝛼2

] 

 
and dWQ is a vector of correlated Wiener processes 
of this form: 
 

𝑑𝑊𝑄 = [
𝑑𝑊1

𝑄(𝑡)

𝑑𝑊2
𝑄(𝑡)

],   𝑐𝑜𝑟𝑟 (𝑑𝑊1
𝑄(𝑡), 𝑑𝑊2

𝑄(𝑡)) = 𝜌𝜆dt 

 
We assume normally distributed default rates. 

The Gaussian distribution:  

 has higher mathematical tractability than 
alternative distributions (Schönbucher, 2003); 

 is used in the literature of default rates 
term structure models (Amato & Luisi, 2006; Wu & 
Zhang, 2008; Le Corlois & Nakagawa, 2013; Russo, 
Giacometti, & Fabozzi, 2017); 

 gives a positive probability of negative 
default rates (but negligible if long term mean is 
positive and mean reversion speed is high with 
respect to the volatility); 

 allows introducing macroeconomic 
variables in essentially affine models (Duffee, 2002). 
The alternative affine price of risk specification for 
non-Gaussian dynamics (extended affine models) 
proposed by Cheredito, Filipović, and Kimmel (2007) 
does not give improvements for multi-factor term 
structure models. 
 

3.2.1. What is new in this model? 
 
The default rate is stochastic, therefore, the credit 
risk is modelled by a so-called doubly stochastic 
intensity model as described by Lando (1998) and 
Duffie and Singleton (2003) extended for the macro 
variables. Alternatively to the recent default rates 
term structure models (Dewachter et al., 2019): 

 Our credit risk term structure model 
considers the continuous time term structure 
modelling as presented by Duffie and Kan (1996) 
and not the discrete time modelling of interest rates 
(Le, Singleton, & Dai, 2010). 

 Alternatively to other macro-finance term 
structure models, where both the risk-free part and 
the risky part of is extracted by the bond yield 
decomposition (Cochrane & Piazzesi, 2005), our 
model separates the risk-free part and the risky part 
of the bond yield by taking information from two 
different markets (CDS market from the risk 
premium and the money market for the risk-free 
part). 

 We take macroeconomic variables from 
derivative instruments (OIS rates for interest rates 
and inflation swaps for inflation rates) at different 
maturities. We do not consider time series of macro 
variables from national statistical databases as done 
by others (see Amato and Luisi (2006) and Dewacher 
et al. (2019) as a reference for credit risk term 
structure modelling with macroeconomics variables). 
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 Alternatively to other macro-finance term 
structure models, we extract the embedded 
information of macro variables by modelling the 
term structure of such macro variables. We do not 
consider the time series dimension of the macro 
variables. 

 We allow bond yields to be priced with 
an error. This makes the analysis of the term 
structure more realistic, as we consider the market 
microstructure noises (such as the bid-ask spread) 
that make bond yields difficult to observe. 

Furthermore, according to Ang and Piazzesi 
(2003) and Pericoli and Taboga (2008), the dynamics 
of default rates is a mixture of unobserved factors 
and observed factors with a striking difference. 

We don’t consider factors from the PCA 
analysis as a reference to macroeconomic 
information to introduce in the term structure 
model. Alternatively, we use factors extracted from 
the estimated term structure of macroeconomic 
variables found in financial instruments regularly 
quoted in the financial markets. 
 

3.2.2. Further assumptions 
 
We make the following further assumptions: 

Assumption 1 (inflation rate). We use the 
BEI rate (breakeven inflation) as a proxy of inflation 
expectations. Although the two quantities may not 
coincide, the choice of the BEI rate as a proxy of 
inflation expectations is widely used among market 
practitioners (Ciccarelli & Garcia, 2009). 

Assumption 2 (interest rate and BEI rate). The 
short rate r(t) is described by a three-factor Gaussian 
mean reverting models (G3). We assume the same 
functional form for BEI rates.  

Assumption 3 (independence between interest 
rates and BEI rates). We assume that the Wieners 
driving the interest rate dynamics are independent 
of the Wieners driving the BEI dynamics. 

Assumption 4 (independence between default 
rates and BEI rates). We let BEI rates to affect only 
the future P-expected default rates and not the 
survival probability. This choice is consistent with 
the market bootstrapping practice, where BEI rates 
play no role in the bootstrapping procedure from 
CDS spread. 
 

3.2.3. Zero-recovery bond prices 
 
According to Lando (1998), in this model the price at 
time t of a zero-recovery unit default table 
zero-coupon bond maturing in T is given by: 
 

𝑃∗(𝑡, 𝑇) = 𝐸𝑄
𝑡 [𝑒𝑥𝑝− ∫ [𝜆(𝑢)+𝑟(𝑦)]𝑑𝑢

𝑇

𝑡 ] (8) 

 
so that default intensity has the role of the short 
credit spread. The price of the bond is a function of 
λ1, λ2, and of the factors x1, x2 and x3 of the 
risk-free short rate that solves the following 
boundary value problem (BVP): 
 

 
𝜕𝑃∗

𝜕𝑡
+ ∑ (𝛼𝑖 (𝛾𝜆𝑖

− 𝜆𝑖 + 𝑐𝑖(𝑥1 + 𝑥2 + 𝑥3))
𝜕𝑃∗

𝜕𝜆𝑖
+

1

2
𝜎𝜆𝑖

2 𝜕2𝑃∗

𝜕𝜆𝑖
2 ) + 𝜎𝜆1

𝜎𝜆2
𝑝𝜆

𝜕𝑃∗

𝜕𝜆1𝜕𝜆2
+ ∑ (𝜅𝑖(𝛾𝑖 − 𝑥𝑖(𝑡))

𝜕𝑃∗

𝜕𝑥𝑖
)3

𝑖=1 +2
𝑖=1

1

2
∑ (𝜎𝑖

2 𝜕2𝑃∗

𝜕𝑥𝑖
2 )3

𝑖=1 +
1

2
∑ ∑ (𝜎𝑖𝜎𝑗𝑝𝑖𝑗

𝜕2𝑃∗

𝜕𝑥𝑖𝜕𝑗𝑗
)3

𝑗=1
3
𝑖=1 = (𝜆1 + 𝜆2 + 𝑥1 + 𝑥2 + 𝑥3)𝑃∗  

𝑃∗(𝑇, 𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2) = 1 

(9) 

 
By standard arguments, the solution of this 

BVP is (τ = T − t): 
 

𝑃∗(𝑡, 𝑇) = 𝑒𝑥𝑝(𝐴𝑑(𝜏) − ∑ 𝐵𝑖
𝑑(𝜏)𝑥𝑖(𝑡) −3

𝑖=1

∑ 𝐶𝑖
𝑑(𝜏)𝜆𝑖(𝑡)2

𝑖=1 )  
(10) 

 
where 𝐴𝑑(𝜏), 𝐵𝑖

𝑑(𝜏) and 𝐶𝑖
𝑑(𝜏) are deterministic 

functions, solutions of a system of ODEs obtained in 
the usual way from our PDE: 
 

𝜕𝐴𝑑(𝜏)

𝜕𝜏
= −𝐵1

𝑑(𝜏)𝜅1𝛾1 − 𝐶1
𝑑(𝜏)𝛼1𝛾1 +

1

2
∑ 𝜎𝜆𝑖

2 𝐶𝑖
𝑑(𝜏)2 +

1

2
∑ 𝜎𝑖

2𝐵𝑖
𝑑(𝜏)2 +3

𝑖=1
2
𝑖=1

∑ 𝜎𝑖𝜎𝑗𝑝𝑖𝑗𝐵𝑖
𝑑(𝜏)𝐵𝑗

𝑑(𝜏) + 𝜎𝜆1
𝜎𝜆2

𝑝𝜆𝐶1
𝑑(𝜏)3

𝑖,𝑗=1
𝑖≠𝑗

𝐶2
𝑑(𝜏)  

(11) 

 

𝜕𝐵𝑖
𝑑(𝜏)

𝜕𝜏
= −𝐵𝑖

𝑑(𝜏)𝜅𝑖 + 𝛼1𝑐1𝐶1
𝑑(𝜏) + 𝛼2𝑐2𝐶2

𝑑(𝜏) + 1 (12) 

 
𝜕𝐶1

𝑑(𝜏)

𝜕𝜏
= −𝐶1

𝑑(𝜏)𝛼1 + 1  (13) 

 
𝜕𝐶2

𝑑(𝜏)

𝜕𝜏
= −𝐶2

𝑑(𝜏)𝛼2 + 1  (14) 

 
The zero-recovery risky rate at time t for 

maturity T, therefore, is: 
 

𝑦∗(𝑦, 𝑇) = −
𝐴𝑑(𝜏)

𝜏
+ ∑

𝐵𝑖
𝑑(𝜏)

𝜏

3
𝑖=1 𝑥𝑖(𝑡) +

∑
𝐶𝑖

𝑑(𝜏)

𝜏

2
𝑖=1 𝜆𝑖(𝑡), ∑

𝐶𝑖
𝑑(𝜏)

𝜏

2
𝑖=1 𝜆𝑖(𝑡)  

(15) 

The credit spread of a ZCB zero-recovery is: 
 

𝑦∗(𝑦, 𝑇) − 𝑦𝑟(𝑦, 𝑇) = (
𝐴𝑟(𝜏)−𝐴𝑑(𝜏)

𝜏
) +

(∑
𝐵𝑖

𝑑(𝜏)

𝜏
− ∑

𝐵𝑖
𝑟(𝜏)

𝜏

3
𝑖=1

3
𝑖=1 ) 𝑥𝑖(𝑡) + ∑

𝐶𝑖
𝑑(𝜏)

𝜏
𝜆𝑖(𝑡)2

𝑖=1   
(16) 

 

where functions 𝐵𝑖
𝑑(𝜏) and 𝐶𝑖

𝑑(𝜏) are factor loadings 
of the risk factors λ

1
, λ

2
, and of the factors x

1
, x

2
 and 

x3 on default rates and risky yield respectively. 
 

3.2.4. Market price of risk and P-dynamics 
 
The market price of risk is assumed to have the 
form: 
 

𝜔0𝑖 + 𝜔1𝑖𝜆(𝑡) + 𝜔𝑏𝑖𝑏(𝑡) + 𝜔𝑟𝑖𝑟(𝑡) (17) 
 
where r(t) is the short rate dynamics and b(t) is the 
instantaneous breakeven inflation (BEI) dynamics. 
Therefore, the natural drift is of the form: 
 

𝛼�̅� (𝛾𝜆𝑖
̅̅̅̅ − 𝜆(𝑡) + 𝑐�̅�𝑟(𝑡) + 𝜑𝑖𝑏(𝑡)) =

𝛼𝑖(𝛾𝜆 − 𝜆(𝑡) + 𝑐𝑖𝑟(𝑡)) + (𝜔0𝑖 + 𝜔1𝑖𝜆(𝑡) +

𝜔𝑏𝑖𝑏(𝑡) + 𝜔𝑟𝑖𝑟(𝑡))𝜎𝜆𝑖
   

(18) 

 
with 

𝛼�̅� = 𝛼𝑖 − 𝜔1𝑖
𝜎𝜆𝑖

 (19) 

 

𝛾𝜆𝑖
̅̅̅̅ =

𝛼𝑖𝛾𝜆 + 𝜔0𝑖𝜎𝜆𝑖

𝛼�̅�
 (20) 
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𝜑𝑖 =
𝜔𝑏𝑖𝜎𝜆𝑖

𝛼�̅�
 (21) 

 

𝑐�̅� =
𝑎𝑖𝑐𝑖 + 𝜔𝑟𝑖𝜎𝜆𝑖

𝛼�̅�
 (22) 

 
The dynamics of the default factors Λ under the 

natural probability measure P can be written as: 
 

𝑑𝛬(𝑡) = �̅�(𝛤�̅� − 𝛬(𝑡) + �̅�𝑟(𝑡) + Ф𝑏(𝑡))𝑑𝑡 +

∑ 𝑑𝑊𝑃(𝑡)  
(23) 

 
 
 
 

where 
 

�̅� = [
𝛼1̅̅̅̅ 0
0 𝛼2̅̅̅̅

]; 𝛤�̅� = [
𝛾𝜆1
̅̅ ̅̅

𝛾𝜆2
̅̅ ̅̅

]; 𝐶̅ = [
𝑐1̅

𝑐2̅
]; Ф = [

φ1
φ2

] 

 
and dWP(t) is a vector of correlated Wiener processes 
of the form: 
 

𝑑𝑊𝑃 = [
𝑑𝑊1

𝑃(𝑡)

𝑑𝑊2
𝑃(𝑡)

], 𝑐𝑜𝑟𝑟 (𝑑𝑊1
𝑃(𝑡), 𝑑𝑊2

𝑃(𝑡)) = 𝜌𝜆𝑑𝑡 

 
For a time step ∆t = t + ∆t − t, the expected 

default rate λ is: 
 

 
𝐸𝑃[𝜆(𝑡 + ∆𝑡)|𝐹𝑡] =

∑ (𝛾𝜆𝑖
̅̅̅̅ + 𝑐�̅�(𝐸𝑝[𝑟(𝑡)|𝐹𝑡−1]) + φi(𝐸𝑝[𝑏(𝑡)|𝐹𝑡−1]))2

𝑖=1 (1 − 𝑒𝑥𝑝(−𝛼�̅�∆𝑡)) + ∑ 𝑒𝑥𝑝(−𝛼�̅�∆𝑡)𝜆𝑡−1
2
𝑖=1   

(24) 

 
The variance of the default rate is: 

 
𝑉𝑎𝑟𝑃[𝜆(𝑡)|𝐹𝑡] =

∑ (𝑐�̅�
2𝑉𝑎𝑟𝑃[𝑟(𝑡)|𝐹𝑡−1](1 − 𝑒𝑥𝑝(−2𝛼�̅�∆𝑡))) + ∑ (φ𝑖

2𝑉𝑎𝑟𝑃[𝑏(𝑡)|𝐹𝑡−1](1 − 𝑒𝑥𝑝(−2𝛼�̅�∆𝑡))) +2
𝑖=1

2
𝑖=1

∑ (
𝜎𝜆(𝑖)2

2𝛼𝑖̅̅ ̅
(1 − 𝑒𝑥𝑝(−2𝛼�̅�∆𝑡))) + (

𝜎𝜆1𝜎𝜆2𝑝𝜆

𝛼1̅̅ ̅̅ +𝛼2̅̅ ̅̅
)2

𝑖=1 (1 − 𝑒𝑥𝑝(−(𝛼1̅̅ ̅ + 𝛼2̅̅ ̅)∆𝑡))  

(25) 

 
where r(t) and b(t) are the factors of the short rate 
and the BEI rate conditioned to time t−1. We 

consider the two rates as observable variables as 
they are previously filtered from ZCB (zero coupon 
bonds) yields and inflation swap respectively. 

The factors of the expected default rates are 
composed of three parts: the observed interest rates, 
BEI rates, and a not observed part. All of the parts 
describe the dynamics of the expected default rate 
in a composite way. The same holds for the variance. 
 

3.3. Estimation procedure 
 
The Gaussian assumption of default rates and the 
affine relation between the zero recovery risky rates 
and the factors allow us to use the Kalman filter to 
estimate the model parameters. This choice leads to:  

 Faster convergence towards the optimum 
than Sequential Monte Carlo filters (Doucet, 
de Freitas, & Gordon, 2001) and MCMC procedures 

such as the Gibbs sampling (S. Geman & D. Geman, 
1984) and the Metropolis-Hasting algorithm (Chib & 
Greenberg, 1995). All of these estimation procedures 
needed a couple of days to be completed. Thus when 
lots of data sets are needed to carry out the analysis, 
the estimation procedure could be dramatically long. 

 Less asymptotic biases than the use of 
Kalman filter with non-Gaussian dynamics as in the 
analysis proposed by De Jong (2000), Chen and Scott 
(2003), Duan and Simonato (1999). 

Considering a set of calendar times t1, t2, ..., tm 
and with constant time step ∆t = t

k + 1 
− t

k
 for every 

k = 1, 2, ..., m − 1 and (2×1) vector of latent variables 

X(t) (default rate components), two vectors (3×1) of 
observed variables XN(t) (risk free short rate 
components), Xb(t) (BEI rate components) ∀k a vector 
ζ(t

k
) = (ζ

1
(t

k
), ζ

2
(t

k
), ..., ζ

p
(t

k
))́ zero-recovery risky rates at 

fixed maturities τ
1
, τ

2
, ..., τ

p
, we have our state space 

model of the form: 

 

(measurement equation) 𝑧(𝑡𝑘) =  𝐴 + 𝐶  𝑋(𝑡𝑘) + 𝐵 𝑋𝑁(𝑡𝑘) +  𝜂(𝑡𝑘) 𝜂(𝑡𝑘) ~𝐼𝐼𝐷(0, 𝑅) 
 

p × 1 p × 1 p × 2 2 × 1 p × 3 3 × 1  p × 1 
 

(26) 

 

(transition equation) 𝑋(𝑡𝑘) =  𝛩 + 𝐹  𝑋(𝑡𝑘−1) + 𝜀(𝑡𝑘) 𝜀(𝑡𝑘) ~𝐼𝐼𝐷(0, 𝑄) 
 

2 × 1 2 × 1 2 × 2 2 × 1 p × 3 
 

(27) 

 
where 
 

𝛩 = [
(𝛾1̅ + 𝐶1

̅̅ ̅ ∑ (𝑥𝑁(𝑡𝑘|𝐹𝑡𝑘−1) + 𝜑1 ∑ (𝑥𝑏(𝑡𝑘|𝐹𝑡𝑘−1)) (1 − 𝑒𝑥𝑝(−�̅�∆𝑡))3
𝑖=1 )3

𝑖=1 )

(𝛾2̅̅̅ + 𝐶2
̅̅ ̅ ∑ (𝑥𝑁(𝑡𝑘|𝐹𝑡𝑘−1) + 𝜑2 ∑ (𝑥𝑏(𝑡𝑘|𝐹𝑡𝑘−1)) (1 − 𝑒𝑥𝑝(−�̅�1∆𝑡))3

𝑖=1 )3
𝑖=1 )

]  (28) 

and 
 

𝐹 = [
𝑒𝑥𝑝(−�̅�1∆𝑡) 0

0 𝑒𝑥𝑝(−�̅�2∆𝑡)
]  (29) 

 

𝜀(𝑡𝑘) = [
𝜀1(𝑡𝑘)

𝜀2(𝑡𝑘)
]  (30) 

 

𝑄 = [
𝜎1 𝜚12

𝜚12 𝜎2
]  (31) 
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The variance of the latent variables and the 
variance of the measurement equation are: 
 

𝑃(𝑡𝑘) = 𝐸 [(𝑋(𝑡𝑘) − �̂�(𝑡𝑘)) |𝐹𝑡𝑘]
2

  (32) 

 

𝑆(𝑡𝑘) = 𝐸[(𝑧(𝑡𝑘) − �̂�(𝑡𝑘))|𝐹𝑡𝑘]
2

  (33) 

 
 
Although heteroskedastic noises are considered 

in the estimation of both the interest rate process 
and the BEI rate process, the only pricing 
imperfection in this model comes from the 
imperfect observation of the bootstrapped default 
rates through maturities. We assume them to be 
fixed across maturities. 

This approach agrees with the model proposed 
by Joslin, Le and Singleton (2013). In particular, the 
model presented here is the TSf model where only 
the unobserved part, the default rate is filtered and 

the observable variables are introduced without 
measurement errors. 

The log likelihood function is: 
 

𝑙𝑜𝑔 𝐿 = −
𝑚𝑝

2
𝑙𝑜𝑔(2𝜋) −

1

2
∑ 𝑙𝑜𝑔 𝑑𝑒𝑡𝑆𝑚

𝑘=1 (𝑡𝑘) −
1

2
∑ 𝜂(𝑡𝑘)𝑆−1(𝑡𝑘)𝜂 ́(𝑡𝑘)𝑚

𝑘=1   
(34) 

 

4. RESULTS AND DISCUSSION 
 
We evaluate the performance of the model both in 
sample and out of sample. The estimation period 
includes the period of the Great Recession 
(2008-2009) and the sovereign debt crisis 
(2011-2012). Those periods, as a consequence of 
financial market turmoil, show an unprecedented 
level of EA banks default rates and positive interest 
rates. Afterwards, European interest rates became at 
Zero Lower Bound and negative and default rates 
decreased. Therefore, it is crucial to estimate the 
model in the period of crisis and evaluate it in 
a period of Zero Lower Bound interest and negative 
rates. 

Following Joslin et al. (2014), we perform the 
out of sample analysis by taking the parameter 
estimates as fixed on the level of the training set. We 
estimate interest rates models and BEI rates models 
over the training set and we project the models in 
the future. Afterwards, we introduce the forecasted 
factors of interest rates and BEI rates and the model 
parameters in the term structure of default rates 
model. 

We estimate the model through an expanding 
window, updating the parameter estimates over 
three subsamples:  

 the first one from 02/08/2014 to 
16/04/2015, the period before the implementation 
of the quantitative easing (QE) policy by the ECB; 

 the second from 17/04/2015 to 
25/12/2015; 

 the third from 26/12/2015 to 03/11/2016. 
We test the parameter instability within the 

subsample above, by performing a Chow forecast 
test once every subsample is added to the training 
set. Furthermore, we compare the performance of 
the model (model 1, or m1) with a performance of 
two restricted models. In particular: 

 We consider the price of risk of this form:  
𝜔0𝑖 + 𝜔1𝑖𝜆(𝑡) 

BEI rates and interest rates do not affect the price 
of risk of default rates, i.e, ω

b1
 = ω

r1
 = ω

b2
 = ω

r2
 = 0 

(model 2, or m2). 
 Independence of default rates and interest 

rates and BEI rates both in P and in Q, i.e, 
ω

b1
 = ω

r1
 = ω

b2
 = ω

r2
 = 0; c

1
 = c

2
 = 0, (model 3, or m3). 

 

4.1. In sample analysis 
 
The analysis in sample shows a statistically 
significant and negative relation between interest 
rates and default rates in the risk-neutral world for 
m2 and m1. 

Interest rates and BEI rates do not affect 
significantly the default risk premium. This result 
holds for every sample analysed. The log likelihood 
ratio test shows that model 2 is preferable over the 
model 1 at 1%. Model 3 has worse goodness of fit in 
every sample analysed than model 2 and model 1. 
 

Table 2. Log likelihood ratio test of model 1 (m1), 
model 2 (m2) and model 3 (m3) 

 
𝑳𝒐𝒈𝒍𝒊𝒌𝒆 𝒓𝒂𝒕𝒊𝒐 𝒕𝒆𝒔𝒕 = −𝟐(𝒍𝒐𝒈𝑳𝒖 − 𝒍𝒐𝒈𝑳𝒓)  ∼  𝝌𝒏 

Sample 03/11/2008 g – 01/08/2014 
 Loglike ratio p-value 

m1/m2 0.104** 0.0249 
m2/m3 119.061*** 0.0320 
m2/m3 119.166*** 0.0000 

Sample 03/11/2008 – 16/04/2015 
 Loglike ratio p-value 

m1/m2 0.137** 0.0320 
m2/m3 2220.771*** 0.0000 
m1/m3 2220.908*** 0.0000 

Sample 03/11/2008 – 25/12/2015 
 Loglike ratio p-value 

m1/m2 0.148** 0.0344 
m2/m3 3560.694*** 0.0000 
m1/m3 3560.694*** 0.0000 

Sample 03/11/2008 – 03/11/2016 
 Loglike ratio p-value 

m1/m2 0.1796** 0.0410 
m2/m3 3950.043*** 0.0000 
m1/m3 3950.222*** 0.0000 
𝑯𝟎 = 𝑳𝒖 <  𝑳𝒓, 𝑯𝟏 = 𝑳𝒖 >  𝑳𝒓 

Notes: *significance at 10%; **significance at 5%; 
***significance at 1% 

 
Every model shows autocorrelated residuals. 

The Durbin Watson test shows model 1 has slightly 
less autocorrelated residuals than model 2 and 
model 3. 
 

Table 3. Durbin Watson test over sample 
03/11/2008 – 01/08/2014 

 
Mat DW(m3) DW( m2) DW( m1) 
1 1.333 1.484 1.486 
2 1.479 1.459 1.461 
3 1.337 1.474 1.475 
4 1.332 1.504 1.505 
5 1.393 1.522 1.524 
6 1.474 1.523 1.524 
7 1.437 1.544 1.545 
8 1.416 1.460 1.461 
9 1.399 1.498 1.499 
10 1.311 1.452 1.452 

𝑫𝑾 =  𝟐(𝟏 − 𝝆(𝜺)) 

𝝆(𝜺) = 𝟎. 𝟓 (𝟐 − 𝑫𝑾) 

 
In general, a Durbin Watson that is smaller than 

1.5 indicates autocorrelated residuals. This result is 
shown in every sample analysed. Parameter 
estimates over all sample analysed show that 
unspanned variables are not statistically significant. 

Furthermore, the Chow forecasting test shows 
a structural break in the period of decreasing 
interest rates for model 1, model 2 and model 3.
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Table 4. Chow forecast test of model 1 (m1), model 2 (m2) and model 3(m3) 
 

𝑪𝒉𝒐𝒘 𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 𝒕𝒆𝒔𝒕 = (
(𝑹𝑺𝑺(𝒔𝟏) − 𝑹𝑺𝑺(𝒔𝟐))

𝑹𝑺𝑺(𝒔𝟐)
) 

𝒏(𝒔𝟐) − 𝒅𝒇

𝒏(𝒔𝟏) − 𝒏(𝒔𝟐)
~𝑭(𝒏(𝒔𝟏) − 𝒏(𝒔𝟐), 𝒏(𝒔𝟐) − 𝒅𝒇) 

Samples/models m3 p-value m2 p-value m1 p-value 
03/11/2008 – 01/08/2014 vs 03/11/2008 – 
16/04/2015 

0.293*** 0.000 0.241*** 0.000 0.289*** 0.000 

03/11/2008 – 01/08/2014 vs 03/11/2008 – 
25/12/2015 

0.314*** 0.000 0.299*** 0.000 0.454*** 0.000 

03/11/2008 – 16/04/2015 vs 03/11/2008 – 
25/12/2015 

0.432*** 0.002 0.458 0.976 0.839 0.957 

03/11/2008 – 01/08/2014 vs 03/11/2008 – 
03/11/2016 

0.721*** 0.000 1.034*** 0.000 0.379*** 0.000 

𝐻0 = 𝑝𝑎𝑟𝑎(𝑠1) = 𝑝𝑎𝑟𝑎(𝑠2),  𝐻1 = 𝑝𝑎𝑟𝑎(𝑠1) ≠ 𝑝𝑎𝑟𝑎(𝑠2)       
Notes: *significance at 10%; **significance at 5%; ***significance at 1% 

 
The results found in the estimation sample, 

show that the introduction of unspanned macro 
variables in the price of risk of EA banks default 
rates does not improve significantly the goodness of 
fit of the term structure model. 

On the other hand, there is a significant 
improvement of goodness of fit if interest rates are 
considered spanned in the term structure of default 
rates. This result is more evident after the 
implementation of the QE from the ECB. 
 

4.2. Out of sample analysis 
 
It is also important to evaluate the model outside 
the estimation procedure. It is well known in the 
literature that Bayesian estimation procedure 
“attach” historical data to model generated data 
through the optimization procedure. As 
a consequence, there may be poor forecasting 
accuracy outside the estimation sample. Serious 
problem that a researcher may have is the 
overfitting of the model outside the estimation 
sample. This may occur when the RMSE (root mean 
squared errors, also called root mean forecasting 
errors) of the evaluation sample are higher than the 
RMSE in the estimation sample. 

Indicators of overfitting are the presence of 
autocorrelated residuals in the estimation sample. In 
this case, the estimation of the model is still 
unbiased but it has no longer the minimum variance 
of the errors. As a consequence, using the vector of 
model parameters of that estimation sample leads to 
poor forecasting accuracy of future data. 

The poor forecasting accuracy is a problem 
widely addressed in the existing literature since 
early 2000 (Duffee, 2002). 

To solve the forecasting accuracy problem of 
term structure models, macroeconomic variables are 

introduced jointly with the yield curve factors 
(Ang & Piazzesi, 2003; Coroneo, Giannone, & 
Modugno, 2016). 

To evaluate the forecasting ability of the 
models, we generate an out of sample iterative 
forecast of the factors: 
 

𝐸 = [𝑋𝑁(𝑡𝑘+ℎ)|𝐹𝑡] = 𝛤 + 𝐹𝑁𝑋𝑁(𝑡𝑘) (35) 

 

𝐸 = [𝑋(𝑡𝑘+ℎ)|𝐹𝑡] = 𝛩 + 𝐹𝑋(𝑡𝑘) (36) 

 
where 

 XN(t
k
) are factors of risk-free yields and X(t

k
) 

are factors of default rates; 

 h is equal to the forecast horizon; and  

 F and F
N
 are estimated with the 

information available up to time t
k
. 

We then compute the out of sample forecasts 
of zero recovery risky yields given the projection of 
the factors: 
 

𝐸[𝑧(𝑡𝑘+ℎ)|𝐹𝑡] = 𝐴 + 𝐶[𝑋(𝑡𝑘+ℎ)|𝐹𝑡] +
𝐵𝐸[𝑋𝑁(𝑡𝑘+ℎ)|𝐹𝑡]  

(37) 

 
Finally, we subtract the risk-free part of the 

zero recovery risky yield to obtain the forecasted 
default rates: 
 

𝐸[𝑧(𝑡𝑘+ℎ)|𝐹𝑡] − 𝐸[𝑧𝑁(𝑡𝑘+ℎ)|𝐹𝑡] = 𝐸[𝑧𝑑(𝑡𝑘+ℎ)|𝐹𝑡]  (38) 

 
Comparing the forecasted default rates with 

the forward risk-neutral default rates data over the 
test set, n = t

1
 – t

0
, we compute the root mean 

forecasting errors (RMFE). For every maturity 
τ = (τ

1
, τ

2
, ..., τ

p
), the RMFE are: 

 

 

𝑅𝑀𝐹𝐸(𝜏𝑖 , ℎ, 𝑚) = (√
∑ (𝐸[𝑧𝑑(𝜏𝑖)(𝑡𝑘+ℎ)|𝐹𝑡] − 𝑦𝑑(𝜏𝑖)(𝑡𝑘+ℎ))

2𝑡1
𝑡=𝑡0

𝑛 + 1
) (39) 

Following Coroneo et al. (2016), we compute 
ratios between the RMFE of every model analysed. 

Let M = (m1, m2, m3) the models considered, we 
have:

 

𝑅𝑀(𝜏𝑖 , ℎ, 𝑀) =
𝑅𝑀𝐹𝐸(𝜏𝑖,ℎ,𝑚𝛼)

𝑅𝑀𝐹𝐸(𝜏𝑖,ℎ,𝑚𝛽)
 ∀𝛼 ≠ 𝛽 (40) 
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Table 5. In sample and out of sample comparison of model 1 (m1), model 2 (m2) and model 3(m3) 
 

 In sample RMSE Out of sample RMFE 

 Estimation sample 03/11/2008 – 01/08/2014 Evaluation sample 02/08/2014 – 16/04/2015 

Maturity m1 m2 m3 m1 m2 m3 

1 0.0022 0.0022 0.0021 0.0032 0.0030 0.0027 

2 0.0021 0.0021 0.0019 0.0046 0.0044 0.0050 

3 0.0021 0.0021 0.0020 0.0055 0.0054 0.0064 

4 0.0020 0.0021 0.0020 0.0058 0.0056 0.0067 

5 0.0020 0.0020 0.0019 0.0063 0.0062 0.0071 

6 0.0019 0.0019 0.0018 0.0063 0.0062 0.0069 

7 0.0020 0.0021 0.0019 0.0060 0.0059 0.0063 

8 0.0019 0.0020 0.0019 0.0068 0.0067 0.0067 

9 0.0019 0.0019 0.0019 0.0070 0.0069 0.0065 

10 0.0020 0.0020 0.0019 0.0070 0.0070 0.0061 

 

Table 6. Out of sample analysis of model 1 (m1), model 2 (m2) and model 3 (m3) 
 

The ratio 𝒎𝜶/𝒎𝜷with 𝜶 ≠ 𝜷 is 𝑹𝑴(𝝉𝒊, 𝒉, 𝒎) 

Maturity 

 1 2 3 4 5 6 7 8 9 10 

Evaluation period 02/08/2014 – 16/04/2015 

m1/m2 1.101 1.053 1.034 1.026 1.021 1.018 1.016 1.012 1.010 1.009 

m2/m3 1.101 0.878 0.845 0.844 0.870 0.902 0.945 1.003 1.068 1.146 

m1/m3 1.213 0.925 0.874 0.866 0.888 0.918 0.960 1.016 1.080 1.157 

Evaluation period 17/04/2015 – 25/12/2015 

m1/m2 1.010 1.009 1.008 1.007 1.007 1.006 1.006 1.006 1.006 1.006 

m2/m3 1.072 1.328 1.407 1.382 1.352 1.264 1.172 1.113 1.040 0.974 

m1/m3 1.084 1.341 1.419 1.392 1.362 1.272 1.180 1.120 1.047 0.980 

Evaluation period 26/12/2015 – 03/11/2016 

m1/m2 1.028 1.022 1.017 1.014 1.013 1.012 1.010 1.010 1.010 1.010 

m2/m3 1.281 1.268 1.277 1.227 1.227 1.190 1.142 1.140 1.116 1.085 

m1/m3 1.318 1.296 1.299 1.246 1.243 1.205 1.155 1.153 1.128 1.096 

𝑹𝑴𝑭𝑬(𝝉𝒊, 𝒉, 𝒎) > 1 model β better than model α out of sample 

𝑹𝑴𝑭𝑬(𝝉𝒊, 𝒉, 𝒎) < 1 model β worse than model α out of sample 

 
The out of sample analysis with fixed 

parameters with h = 1 (one day ahead), shows that: 

 The forecasting performance is poorer 
than in sample analysis because 
RMSE (in sample) < RMSE (out of sample) (RMFE) in 
every period is analysed. 

 Interest rates improve the forecasting 
accuracy of the default rates model in the period 
that finishes at the beginning of the European 
quantitative easing (i.e., in the evaluation sample 
from 02/08/2014 to 16/04/2015) with respect to the 
restricted model with no links with macro variables. 

 The unspanned variables do not improve 
forecasts of future default rates in periods of 
negative rates. Model 2, always has better forecast 
accuracy than model 1. 

This holds in every evaluation sample. The out 
of sample analysis confirms the poor performance 
of affine term structure models (Duffee, 2002). This 

evidence holds after introducing unspanned macro 
variables in the term structure model. 
 

4.3. Implication for the banking industry 
 
From the models analysed we have that: 
 

𝑦∗(𝑦, 𝑇) − 𝑦𝑟(𝑦, 𝑇) = (
𝐴𝑟(𝜏)−𝐴𝑑(𝜏)

𝜏
) +

(∑
𝐵𝑖

𝑑(𝜏)

𝜏

3
𝑖=1 − ∑

𝐵𝑖
𝑟(𝜏)

𝜏

3
𝑖=1 ) 𝑥𝑖(𝑡) + ∑

𝐶𝑖
𝑑(𝜏)

𝜏

2
𝑖=1 𝜆𝑖(𝑡)  

(41) 

 
Risk-free rates affect banks' default rates. Does 

the risk-free rate affect more the long run default 
rates? Or does it affect only the bank default rates in 
the short run? Below it is shown how the term 
structure interest rates affect the term structure of 
default rates. 

 

Table 7. Effect of the term structure of risk-free rates on the term structure of default rates over sample 
from November 3, 2008 till August 1, 2014 

 
Mat 𝑪𝟏

𝒅�̅�𝟏𝒆𝒙𝒑(−�̅�𝟏∆𝒔) 𝑪𝟐
𝒅�̅�𝟐𝒆𝒙𝒑(−�̅�𝟐∆𝒔) 𝑩𝟏

𝒅 − 𝑩𝟏
𝒓 𝑩𝟐

𝒅 − 𝑩𝟑
𝒓 𝑩𝟑

𝒅 − 𝑩𝟑
𝒓 

1 -0.0001 -0.0001 -0.061 -0.072 -0.060 

2 -0.0003 -0.0003 -0.096 -0.131 -0.094 

3 -0.0005 -0.0003 -0.119 -0.184 -0.114 

4 -0.0007 -0.0004 -0.132 -0.231 -0.126 

5 -0.0009 -0.0004 -0.140 -0.274 -0.132 

6 -0.0011 -0.0004 -0.144 -0.314 -0.135 

7 -0.0012 -0.0004 -0.146 -0.350 -0.136 

8 -0.0014 -0.0004 -0.146 -0.385 -0.136 

9 -0.0016 -0.0004 -0.146 -0.416 -0.135 

10 -0.0017 -0.0004 -0.145 -0.446 -0.134 
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European interest rates span the EA banks 
default rates. As a consequence, EA banks default 
rate term structure variates as the European interest 
rates variates. This is confirmed by the default rates 
data and interest rates data. After the bursting of 
the sovereign debt crisis in July 2011, there were 
remarkable spillover effects among EA countries. 

In every EA country, the debt/GDP ratio soared 
over 100%. This created trouble to EA bank balance 
sheets as the suffered from huge losses coming 
from the negative variation of sovereign bond prices. 
As a consequence, EA banks had liquidity shortages. 
This led to higher default probabilities. 

As a result, the Zero Lower Bound policy put 
forward by the ECB had the aim to provide EA banks 
the liquidity to operate. This policy didn’t allow 
EA banks to operate more efficiently leading them to 
lend fewer resources to the real economy. 

The spanning relation between European 
interest rates and EA banks default rates shown here 
is stronger at longer maturities. As a result, when 
the European interest rates term structure flattens, 
the EA banks default rates term structure will be 
steeper. This is a consequence of what is shown in 
Table A.2 and Table A.3, where for every model 
specification (m1, m2) a reduction of short term 
European interest rates leads the EA banks short 
term default rates to increase more than two times. 

This relation affects the allocation of EA banks 
assets and liabilities. 

Below is shown the exposition of risk factors 
taken from the model estimated here. The results 
are compared with the factors computed with the 
PCA analysis. 

For an illustrative example, consider a portfolio 
composed by a 1y risky bond, 5y risky bond and 
10y risky bond. Consider a negative variation of risk 
free rate of 1 bp. At one year the risk bond price has 
a 1 milion, a variation of 5 milion at 5 year and 
a variation of 10 milion at 10 years. 

Given that the risky bond yield is: 
 

𝑦∗(𝑡, 𝑡 + 𝑚) = −
1

𝑚
ln[𝑄(𝑡, 𝑡 + 𝑚)𝑃(𝑡, 𝑡 + 𝑚)]

= 𝑦𝑑(𝑡, 𝑡 + 𝑚) + 𝑦(𝑡, 𝑡 + 𝑚) 
(42) 

 
whose dynamics is explained by five factors: two 
explain the variability of default rates and three 
factors explain the variability of risk free rates. 
Considering the factor loadings found by pricipal 
component analysis (Figure 4) and the factor 

loadings implied by the models (functions 𝐵𝑖
𝑑(𝜏) and 

𝐶𝑖
𝑑(𝜏)),the exposition of each yield factor is: 

 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑟𝑎𝑡𝑒𝑠 𝑃𝐶𝐴 = 𝑤1
𝑑,𝑝𝑐𝑎(1) 1 + 𝑤1

𝑑,𝑝𝑐𝑎(5) 5 + 𝑤1
𝑑,𝑝𝑐𝑎(10) 10  (43) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑃𝐶𝐴 = 𝑤1
𝑟,𝑝𝑐𝑎(1) 1 + 𝑤1

𝑟,𝑝𝑐𝑎(5) 5 + 𝑤1
𝑟,𝑝𝑐𝑎(10) 10 (44) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑟𝑎𝑡𝑒𝑠 𝑃𝐶𝐴 = 𝑤2
𝑑,𝑝𝑐𝑎(1) 1 + 𝑤2

𝑑,𝑝𝑐𝑎(5) 5 + 𝑤2
𝑑,𝑝𝑐𝑎(10) 10  (45) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑃𝐶𝐴 = 𝑤2
𝑟,𝑝𝑐𝑎(1) 1 + 𝑤2

𝑟,𝑝𝑐𝑎(5) 5 + 𝑤2
𝑟,𝑝𝑐𝑎(10) 10  (46) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡ℎ𝑖𝑟𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑃𝐶𝐴 = 𝑤3
𝑟,𝑝𝑐𝑎(1) 1 + 𝑤3

𝑟,𝑝𝑐𝑎(5) 5 + 𝑤3
𝑟,𝑝𝑐𝑎(10) 10  (47) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑟𝑎𝑡𝑒𝑠 𝑚1 𝑎𝑛𝑑 𝑚3 = 𝐶1
𝑑,(1) 1 + 𝐶1

𝑑,(5) 5 + 𝐶1
𝑑,(10) 10 (48) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑟𝑎𝑡𝑒𝑠 𝑚1 𝑎𝑛𝑑 𝑚3 = 𝐶2
𝑑,(1) 1 + 𝐶2

𝑑,(5) 5 + 𝐶2
𝑑,(10) 10  (49) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑚1 𝑎𝑛𝑑 𝑚3 = 𝐵1
𝑑,(1) 1 + 𝐵1

𝑑,(5) 5 + 𝐵1
𝑑,(10) 10  (50) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑚1 𝑎𝑛𝑑 𝑚3 = 𝐵2
𝑑,(1) 1 + 𝐵2

𝑑,(5) 5 + 𝐵2
𝑑,(10) 10  (51) 

 

𝐸𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡ℎ𝑖𝑟𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 −  𝑟𝑎𝑡𝑒𝑠 𝑚1 𝑎𝑛𝑑 𝑚3 = 𝐵3
𝑑,(1) 1 + 𝐵3

𝑑,(5) 5 + 𝐵3
𝑑,(10) 10  (52) 

 

where 𝑤𝑖
𝑟,𝑝𝑐𝑎(𝜏(𝑗))and  𝐵𝑖

𝑑,(𝜏(𝑗)) are the factor loadings 

of risk-free rates factor I at maturity τ(j) on risk-free 

yields, 𝐶𝑖
𝑑,(𝜏(𝑗)) is the factor loading of default rates 

factor I at maturity τ(j) and 1, 5 and 10 are bond’s 

prices variations of 1 year maturity bond, 5 year 
maturity bond and 10 year maturity bond 
respectively. 
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Figure 5. Exposition to default rate factors in million of 
euros given a negative variation of risk-free rate of 1 bp 
 

 
 

Figure 6. Exposition to interest rate risk factors in 
million of euros given a variation of risk-free rate of 1 bp 
 

 
 

To a variation of 1bp of risk-free rates, we have 
a greater exposition to default rates than risk-free 
rates, more in the long run. 

By decreasing the duration of assets to reduce 
the exposition to default risk, EA banks will further 
reduce the net interest margin as well. As 
a consequence, this leads the bank default risk to 
further increase. 

Indeed EA banks will hold longer maturities 
and riskier assets in their portfolio to maximize the 
NIM at the cost of having a riskier portfolio of assets 
and lending fewer resources to the real economy. 

This argument agrees with the recent literature 
on bank profitability and risk-taking behavior 
(Martynova, Ratnovski, & Vlahu, in press; Ferrero, 
Nobili, & Sene, 2019). 
 

5. CONCLUSION 
 
In this work, we estimate a bivariate Gaussian 
default rate model. We assume an unspanned 
relation between BEI rates and default rates. 
BEI rates affects only the expectation of future 
default rate in P through the default risk premium. 
We find that interest rates and inflation rates do not 
significantly affect the price of risk of default. 

 
 

Furthermore:  
1. Results on the correlation between interest 

rates and default rates in the Q-measure agree with 
the existing literature (Duffee, 1998, 1999). 

2. Interest rates impact more the long term 
default rates. Negative interest rates make the slope 
of the default rate term structure steeper. This may 
create strains for banks. 

3. The introduction of unspanned 
macroeconomic variables in the default rates model 
developed here does not improve the goodness of fit 
in sample with respect to reduced versions of the 
model. Model 2 outperforms both model 1 and 
model 3 in every samples taken into account. In 
particular, this holds in samples where interest rates 
are less negative (i.e., in the period before QE). 

4. Macroeconomics variables improve the 
forecasting accuracy of the model when interest 
rates are higher and less negative. However, they 
don’t improve the forecasting accuracy of the model 
after the implementation of QE (from the end of 
March 2015 onwards). 

5. The poor forecasting ability of the term 
structure model developed here arises from the 
assumption of the Gaussian distribution for 
describing the evolution of both default rates and 
macroeconomic variables in periods on Zero Lower 
Bound and negative interest rates. The Gaussian 
distribution overestimates the price of risks asked 
by investors to bear any financial instrument in an 
economy of lower interest rates. 

What are the consequences for EA banks? 
Taking for granted the term structure modelling 
issues, point 2 suggests that EA banks need to 
change their asset liability management in favour of 
longer maturity assets to maintain profitability. As 
a consequence, EA banks will be more risk taker 
(Bruno and Shin (2015) analyzed the role of financial 
intermediation and risk-taking behavior) by going 
through the reach of yield behavior. This may put 
further strains on the EA banking system as: 

 Liquidity capital requirements, such as 
NSFR (net stable funding ratio), will be difficult to 
match as there will be fewer short term liquidity in 
EA banks balance sheets. 

 Possibility of spillover effects as 
a consequence of the liquidity crisis of a G-SIB. 

 Further increase of probability of default 
of EA banks putting further strains on the stability 
of the European banking system. 

However, the model developed here, with an 
assumption of the Gaussian dynamics for describing 
both default rates and macroeconomic variables, is 
a serious source of bias for a risk manager for 
handling default risks and macro risks in the 
banking book and in the trading book that may put 
further strains to EA banking system. 

Thus, in the ongoing macro-financial context 
we need to develop good financial models that 
consider the effect of macroeconomic determinants 
to price instruments to handle risks and make better 
forecasts to prevent the European banking system to 
collapse. This helps us to explain phenomena like 
the reach to yield behavior and to evaluate its effect 
on the stability of the banking system as a whole. We 
leave the further development of new and more 
complex financial models to further research 
objectives.
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APPENDIX 
 

Table A.1. Interest rates and BEI rates over sample 03/11/2008 - 01/08/2014 
 

Para Interest rates S.E. BEI rates S.E. 

𝜅1 0.569*** 0.018 0.145*** 0.002 

𝛾1 0.103*** 0.001 0.072*** 0.002 

𝜎1 0.152*** 0.071 0,345*** 0.006 

𝜆01 0.528*** 0.263 0.158 0.122 

𝜆11 0.100*** 0.026 -0.019 0.013 

𝜅2 0.027*** 0.001 0.088*** 0.001 

𝜎21 0.009*** 0.001 -0.067*** 0.002 

𝜎22 0.015*** 0.001 0.045*** 0.001 

𝜆02 -0.205*** 0.105 -0.030 0.045 

𝜆12 -0.918*** 0.163 0.972*** 0.028 

𝜅3 0.479*** 0.024 0.189*** 0.002 

𝜎31 -0.159*** 0.071 -0.290*** 0.004 

𝜎32 -0.017*** 0.001 -0.044*** 0.002 

𝜎33 0.006*** 0.001 0.009*** 0.001 

𝜆03 -0.640** 0.270 -0.159 0.148 

𝜆13 -0.794* 0.463 -0.255 0.133 

Loglike -134249  -129229.12  
Notes: *significance at 10%; **significance at 5%; ***significance at 1% 

 
Table A.2. Model parameters of default rates over sample 03/11/2008 - 01/08/2014 

 
Para m3 S.E. m2 S.E. m1 S.E. 

𝛼 0.0144*** 0.0003 0.0256*** 0.0007 0.0256*** 0.0021 

𝛾𝜆 0.3265*** 0.0090 0.3061*** 0.0087 0.3061*** 0.0170 

𝜎𝜆1
 0.0256*** 0.0002 0.0263*** 0.0003 0.0263*** 0.0005 

𝜔01 -0.161 0.0235 -0.278 0.1248 -0.277 0.4401*** 

𝜔11 -0.988*** 0.104 -0.996 0.4368 -0.996 0.9155 

𝜔𝑏1 - - - - -0.033 0.1814 

𝜔𝑟1 - - - - 0.1076 0.5650 

𝑐 - - -2.851*** 0.0822 -2.851*** 0.2987 

𝑐1 - - -0.163*** 0.0199 -0.163*** 0.0719 

𝛼1 0.4765*** 0.0028 0.5910*** 0.0056 0.5910*** 0.0123 
𝜎𝜆2

 0.0237*** 0.0006 0.0239*** 0.0008 0.0239 0.0023 

𝜔02 -0.150 0.0175 -0.024*** 0.0065 -0.011 0.0552 

𝜔12 -0.330 0.0752 -0.733*** 0.1718 -0.933 1.0955 

𝜔𝑏2 - - - - -0.977 2.2142 

𝜔𝑟2 - - - - 0.1057 0.4472 

𝑝𝜆 0.0635*** 0.0085 0.0216*** 0.0088 0.0214 0.0548 

𝜎𝜖 0.0006*** 0.0000 0.0006*** 0.0000 0.0006*** 0.0000 

Loglike -83851.8  -83911.3  -83911.4  
Notes: *significance at 10%; **significance at 5%; ***significance at 1% 

 
Table A.3. Model parameters of default rates over sample 03/11/2008 - 17/04/2015 

 
Para m3 S.E. m2 S.E. m1 S.E. 

𝛼1 0.0225*** 0.0018 0.0171*** 0.0007 0.0171*** 0.0006 
𝛾𝜆 0.2419*** 0.0258 0.3756*** 0.0100 0.3757*** 0.0128 

𝜎𝜆1
 0.0276*** 0.0037 0.0253*** 0.0007 0.0253*** 0.0024 

𝜔01 -0.184 1.7356 -0.247*** 0.0218 -0.248 0.1354 

𝜔11 -0.988 1.6364 -0.997** 0.2975 -0.997 1.0563 

𝜔𝑏1 - - - - 0.1090 0.3082 

𝜔𝑟1 - - - - 0.6488 1.9683 

𝑐 - - -3.218*** 0.3079 -3.218*** 0.1240 

𝑐1 - - -0.040*** 0.0015 -0.040 0.1314 

𝛼2 0.4522*** 0.0778 0.6256*** 0.0140 0.6256*** 0.0433 

𝜎𝜆2
 0.0225*** 0.0068 0.0229*** 0.0006 0.0229*** 0.0010 

𝜔02 -0.023 0.2962 0.0305*** 0.0063 0.0362 0.0911 

𝜔12 -0.226 1.8415 -0.734 0.1470 -0.593 0.8770 

𝜔𝑏2 - - - - -0.983 2.1751 

𝜔𝑟2 - - - - 0.1073 0.6343 

𝑝𝜆 -0.073 0.3462 0.0419*** 0.0006 0.0421 0.0547 

𝜎𝜖 0.0007*** 0.0001 0.0006*** 0.0000 0.0006*** 0.0000 

Loglike -93586.3  -94696.7  -94696.8  
Notes: *significance at 10%; **significance at 5%; ***significance at 1% 
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Table A.4. Model parameters of default rates over sample 03/11/2008 - 25/12/2015 
 

Para m3 S.E. m2 S.E. m1 S.E. 

𝛼1 0.0282** 0.0151 0.0184*** 0.0003 0.0184*** 0.0033 

𝛾𝜆 0.2059** 0.0894 0.3447*** 0.0117 0.3446*** 0.0393 

𝜎𝜆1
 0.0285** 0.0027 0.0246*** 0.0002 0.0246*** 0.0017 

𝜔01 -0.174 0.7391 -0.239*** 0.0301 -0.239** 0.1503 

𝜔11 -0.988 1.6763 -0.997*** 0.1148 -0.997 2.3733 

𝜔𝑏1 - - - - 0.2440 1.7308 

𝜔𝑟1 - - - - 0.5275 2.0655 

𝑐 - - -3.396*** 0.2027 -3.398*** 0.1120 

𝑐1 - - 0.0007 0.0009 0.0013 0.0681 

𝛼2 0.4296*** 0.0817 0.6260*** 0.0032 0.6261*** 0.0103 

𝜎𝜆2
 0.0218*** 0.0019 0.0221*** 0.0007 0.0221*** 0.0007 

𝜔02 -0.072 0.1112 -0.078** 0.0070 -0.080 1.1723 

𝜔12 0.0088 0.0461 -0.838** 0.3729 -0.551 10.549 

𝜔𝑏2 - - - - -0.984 11.354 

𝜔𝑟2 - - - - -0.077 1.9830 

𝑝𝜆 -0.177 0.1462 0.0022** 0.0010 0.0034 0.0372 

𝜎𝜖 0.0007*** 0.0000 0.0006*** 0.0000 0.0006*** 0.0000 

Loglike -103899  -105679  -105679  

Notes: *significance at 10%; **significance at 5%; ***significance at 1% 

 
Table A.5. Model parameters of default rates over sample 03/11/2008 - 03/11/2016 

 
Para m3 S.E. m2 S.E. m1 S.E. 

𝛼1 0.0303*** 0.0021 0.0178*** 0.0003 0.0178*** 0.0026 

𝛾𝜆 0.1984*** 0.0136 0.3465*** 0.0087 0.3465*** 0.0193 

𝜎𝜆1
 0.0294*** 0.0022 0.0250*** 0.0003 0.0250*** 0.0015 

𝜔01 -0.160 0.0473 -0.222 0.0341 -0.222 0.1661 

𝜔11 -0.999 3.0796 -0.999 0.1475 -0.999 1.0437 

𝜔𝑏1 - - - - 0.7601 1.4762 

𝜔𝑟1 - - - - 0.0609 0.3817 

𝑐 - - -3.158*** 0.0674 -3.157*** 0.2176 

𝑐1 - - 0.0418*** 0.0010 0.0417*** 0.0113 

𝛼2 0.1259* 0.0817 0.6191*** 0.0034 0.6191*** 0.0124 

𝜎𝜆2
 0.0012 0.0019 0.0252*** 0.0007 0.0252*** 0.0020 

𝜔02 0.0166 0.1112 -0.090 0.0280 -0.087 0.4398 

𝜔12 0.3283** 0.0461 -0.391*** 0.0802 -0.988 0.9094 

𝜔𝑏2 - - - - -0.995 0.9570 

𝜔𝑟2 - - - - -0.065 0.4065 

𝑝𝜆 -0.267** 0.0402 0.0496** 0.0074 0.0496 0.2131 

𝜎𝜖 0.0007*** 0.0001 0.0006*** 0.0000 0.0006*** 0.0000 

Loglike -116901  -118876  -118876  

Notes: *significance at 10%; **significance at 5%; ***significance at 1% 

 
Figure A.1. Model parameters of default rates over sample 03/11/2008 - 03/11/2016 
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